Minimax theorems for set-valued maps without continuity assumptions
We introduce several classes of set-valued maps with new generalized convexity properties. We also obtain minimax theorems for set-valued maps which satisfy these convexity assumptions and which are not continuous. Our method consists of the use of a fixed point theorem for weakly naturally quasicon...
Ausführliche Beschreibung
Autor*in: |
Patriche, Monica [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2015 Taylor & Francis 2015 |
---|
Schlagwörter: |
weakly z-convex set-valued map weakly naturally quasiconcave set-valued map transfer properly S-quasiconvex |
---|
Übergeordnetes Werk: |
Enthalten in: Optimization - Reading [u.a] : Taylor & Francis, 1985, 65(2016), 5, Seite 957 |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:2016 ; number:5 ; pages:957 |
Links: |
---|
DOI / URN: |
10.1080/02331934.2015.1091822 |
---|
Katalog-ID: |
OLC1975324471 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1975324471 | ||
003 | DE-627 | ||
005 | 20230714191926.0 | ||
007 | tu | ||
008 | 160609s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/02331934.2015.1091822 |2 doi | |
028 | 5 | 2 | |a PQ20160610 |
035 | |a (DE-627)OLC1975324471 | ||
035 | |a (DE-599)GBVOLC1975324471 | ||
035 | |a (PRQ)a1741-e75bad3607da41e313cb1c460b65e322030752f54c4fb82b75e20f31b26729710 | ||
035 | |a (KEY)0092524120160000065000500957minimaxtheoremsforsetvaluedmapswithoutcontinuityas | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 28 |a 004 |q DE-101 |
082 | 0 | 4 | |a 510 |q AVZ |
100 | 1 | |a Patriche, Monica |e verfasserin |4 aut | |
245 | 1 | 0 | |a Minimax theorems for set-valued maps without continuity assumptions |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We introduce several classes of set-valued maps with new generalized convexity properties. We also obtain minimax theorems for set-valued maps which satisfy these convexity assumptions and which are not continuous. Our method consists of the use of a fixed point theorem for weakly naturally quasiconcave set-valued maps, defined on a simplex in a topological vector space, or of a constant selection of quasiconvex set-valued maps. | ||
540 | |a Nutzungsrecht: © 2015 Taylor & Francis 2015 | ||
650 | 4 | |a 49J35 | |
650 | 4 | |a convex set-valued map | |
650 | 4 | |a weakly z-convex set-valued map | |
650 | 4 | |a S-transfer | |
650 | 4 | |a weakly naturally quasiconcave set-valued map | |
650 | 4 | |a 90C47 | |
650 | 4 | |a minimax theorems | |
650 | 4 | |a transfer properly S-quasiconvex | |
650 | 4 | |a fixed point theorem | |
650 | 4 | |a S-transfer [Formula omitted.] -convex set-valued map | |
650 | 4 | |a Theorems | |
650 | 4 | |a Maps | |
650 | 4 | |a Optimization and Control | |
650 | 4 | |a Mathematics | |
773 | 0 | 8 | |i Enthalten in |t Optimization |d Reading [u.a] : Taylor & Francis, 1985 |g 65(2016), 5, Seite 957 |w (DE-627)13041199X |w (DE-600)622846-X |w (DE-576)015914984 |x 0233-1934 |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:2016 |g number:5 |g pages:957 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/02331934.2015.1091822 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/02331934.2015.1091822 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1778492398 |
856 | 4 | 2 | |u http://arxiv.org/abs/1304.0339 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 65 |j 2016 |e 5 |h 957 |
author_variant |
m p mp |
---|---|
matchkey_str |
article:02331934:2016----::iiatermfrevlempwtotot |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1080/02331934.2015.1091822 doi PQ20160610 (DE-627)OLC1975324471 (DE-599)GBVOLC1975324471 (PRQ)a1741-e75bad3607da41e313cb1c460b65e322030752f54c4fb82b75e20f31b26729710 (KEY)0092524120160000065000500957minimaxtheoremsforsetvaluedmapswithoutcontinuityas DE-627 ger DE-627 rakwb eng 28 004 DE-101 510 AVZ Patriche, Monica verfasserin aut Minimax theorems for set-valued maps without continuity assumptions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We introduce several classes of set-valued maps with new generalized convexity properties. We also obtain minimax theorems for set-valued maps which satisfy these convexity assumptions and which are not continuous. Our method consists of the use of a fixed point theorem for weakly naturally quasiconcave set-valued maps, defined on a simplex in a topological vector space, or of a constant selection of quasiconvex set-valued maps. Nutzungsrecht: © 2015 Taylor & Francis 2015 49J35 convex set-valued map weakly z-convex set-valued map S-transfer weakly naturally quasiconcave set-valued map 90C47 minimax theorems transfer properly S-quasiconvex fixed point theorem S-transfer [Formula omitted.] -convex set-valued map Theorems Maps Optimization and Control Mathematics Enthalten in Optimization Reading [u.a] : Taylor & Francis, 1985 65(2016), 5, Seite 957 (DE-627)13041199X (DE-600)622846-X (DE-576)015914984 0233-1934 nnns volume:65 year:2016 number:5 pages:957 http://dx.doi.org/10.1080/02331934.2015.1091822 Volltext http://www.tandfonline.com/doi/abs/10.1080/02331934.2015.1091822 http://search.proquest.com/docview/1778492398 http://arxiv.org/abs/1304.0339 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_69 GBV_ILN_70 GBV_ILN_4700 AR 65 2016 5 957 |
spelling |
10.1080/02331934.2015.1091822 doi PQ20160610 (DE-627)OLC1975324471 (DE-599)GBVOLC1975324471 (PRQ)a1741-e75bad3607da41e313cb1c460b65e322030752f54c4fb82b75e20f31b26729710 (KEY)0092524120160000065000500957minimaxtheoremsforsetvaluedmapswithoutcontinuityas DE-627 ger DE-627 rakwb eng 28 004 DE-101 510 AVZ Patriche, Monica verfasserin aut Minimax theorems for set-valued maps without continuity assumptions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We introduce several classes of set-valued maps with new generalized convexity properties. We also obtain minimax theorems for set-valued maps which satisfy these convexity assumptions and which are not continuous. Our method consists of the use of a fixed point theorem for weakly naturally quasiconcave set-valued maps, defined on a simplex in a topological vector space, or of a constant selection of quasiconvex set-valued maps. Nutzungsrecht: © 2015 Taylor & Francis 2015 49J35 convex set-valued map weakly z-convex set-valued map S-transfer weakly naturally quasiconcave set-valued map 90C47 minimax theorems transfer properly S-quasiconvex fixed point theorem S-transfer [Formula omitted.] -convex set-valued map Theorems Maps Optimization and Control Mathematics Enthalten in Optimization Reading [u.a] : Taylor & Francis, 1985 65(2016), 5, Seite 957 (DE-627)13041199X (DE-600)622846-X (DE-576)015914984 0233-1934 nnns volume:65 year:2016 number:5 pages:957 http://dx.doi.org/10.1080/02331934.2015.1091822 Volltext http://www.tandfonline.com/doi/abs/10.1080/02331934.2015.1091822 http://search.proquest.com/docview/1778492398 http://arxiv.org/abs/1304.0339 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_69 GBV_ILN_70 GBV_ILN_4700 AR 65 2016 5 957 |
allfields_unstemmed |
10.1080/02331934.2015.1091822 doi PQ20160610 (DE-627)OLC1975324471 (DE-599)GBVOLC1975324471 (PRQ)a1741-e75bad3607da41e313cb1c460b65e322030752f54c4fb82b75e20f31b26729710 (KEY)0092524120160000065000500957minimaxtheoremsforsetvaluedmapswithoutcontinuityas DE-627 ger DE-627 rakwb eng 28 004 DE-101 510 AVZ Patriche, Monica verfasserin aut Minimax theorems for set-valued maps without continuity assumptions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We introduce several classes of set-valued maps with new generalized convexity properties. We also obtain minimax theorems for set-valued maps which satisfy these convexity assumptions and which are not continuous. Our method consists of the use of a fixed point theorem for weakly naturally quasiconcave set-valued maps, defined on a simplex in a topological vector space, or of a constant selection of quasiconvex set-valued maps. Nutzungsrecht: © 2015 Taylor & Francis 2015 49J35 convex set-valued map weakly z-convex set-valued map S-transfer weakly naturally quasiconcave set-valued map 90C47 minimax theorems transfer properly S-quasiconvex fixed point theorem S-transfer [Formula omitted.] -convex set-valued map Theorems Maps Optimization and Control Mathematics Enthalten in Optimization Reading [u.a] : Taylor & Francis, 1985 65(2016), 5, Seite 957 (DE-627)13041199X (DE-600)622846-X (DE-576)015914984 0233-1934 nnns volume:65 year:2016 number:5 pages:957 http://dx.doi.org/10.1080/02331934.2015.1091822 Volltext http://www.tandfonline.com/doi/abs/10.1080/02331934.2015.1091822 http://search.proquest.com/docview/1778492398 http://arxiv.org/abs/1304.0339 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_69 GBV_ILN_70 GBV_ILN_4700 AR 65 2016 5 957 |
allfieldsGer |
10.1080/02331934.2015.1091822 doi PQ20160610 (DE-627)OLC1975324471 (DE-599)GBVOLC1975324471 (PRQ)a1741-e75bad3607da41e313cb1c460b65e322030752f54c4fb82b75e20f31b26729710 (KEY)0092524120160000065000500957minimaxtheoremsforsetvaluedmapswithoutcontinuityas DE-627 ger DE-627 rakwb eng 28 004 DE-101 510 AVZ Patriche, Monica verfasserin aut Minimax theorems for set-valued maps without continuity assumptions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We introduce several classes of set-valued maps with new generalized convexity properties. We also obtain minimax theorems for set-valued maps which satisfy these convexity assumptions and which are not continuous. Our method consists of the use of a fixed point theorem for weakly naturally quasiconcave set-valued maps, defined on a simplex in a topological vector space, or of a constant selection of quasiconvex set-valued maps. Nutzungsrecht: © 2015 Taylor & Francis 2015 49J35 convex set-valued map weakly z-convex set-valued map S-transfer weakly naturally quasiconcave set-valued map 90C47 minimax theorems transfer properly S-quasiconvex fixed point theorem S-transfer [Formula omitted.] -convex set-valued map Theorems Maps Optimization and Control Mathematics Enthalten in Optimization Reading [u.a] : Taylor & Francis, 1985 65(2016), 5, Seite 957 (DE-627)13041199X (DE-600)622846-X (DE-576)015914984 0233-1934 nnns volume:65 year:2016 number:5 pages:957 http://dx.doi.org/10.1080/02331934.2015.1091822 Volltext http://www.tandfonline.com/doi/abs/10.1080/02331934.2015.1091822 http://search.proquest.com/docview/1778492398 http://arxiv.org/abs/1304.0339 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_69 GBV_ILN_70 GBV_ILN_4700 AR 65 2016 5 957 |
allfieldsSound |
10.1080/02331934.2015.1091822 doi PQ20160610 (DE-627)OLC1975324471 (DE-599)GBVOLC1975324471 (PRQ)a1741-e75bad3607da41e313cb1c460b65e322030752f54c4fb82b75e20f31b26729710 (KEY)0092524120160000065000500957minimaxtheoremsforsetvaluedmapswithoutcontinuityas DE-627 ger DE-627 rakwb eng 28 004 DE-101 510 AVZ Patriche, Monica verfasserin aut Minimax theorems for set-valued maps without continuity assumptions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We introduce several classes of set-valued maps with new generalized convexity properties. We also obtain minimax theorems for set-valued maps which satisfy these convexity assumptions and which are not continuous. Our method consists of the use of a fixed point theorem for weakly naturally quasiconcave set-valued maps, defined on a simplex in a topological vector space, or of a constant selection of quasiconvex set-valued maps. Nutzungsrecht: © 2015 Taylor & Francis 2015 49J35 convex set-valued map weakly z-convex set-valued map S-transfer weakly naturally quasiconcave set-valued map 90C47 minimax theorems transfer properly S-quasiconvex fixed point theorem S-transfer [Formula omitted.] -convex set-valued map Theorems Maps Optimization and Control Mathematics Enthalten in Optimization Reading [u.a] : Taylor & Francis, 1985 65(2016), 5, Seite 957 (DE-627)13041199X (DE-600)622846-X (DE-576)015914984 0233-1934 nnns volume:65 year:2016 number:5 pages:957 http://dx.doi.org/10.1080/02331934.2015.1091822 Volltext http://www.tandfonline.com/doi/abs/10.1080/02331934.2015.1091822 http://search.proquest.com/docview/1778492398 http://arxiv.org/abs/1304.0339 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_69 GBV_ILN_70 GBV_ILN_4700 AR 65 2016 5 957 |
language |
English |
source |
Enthalten in Optimization 65(2016), 5, Seite 957 volume:65 year:2016 number:5 pages:957 |
sourceStr |
Enthalten in Optimization 65(2016), 5, Seite 957 volume:65 year:2016 number:5 pages:957 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
49J35 convex set-valued map weakly z-convex set-valued map S-transfer weakly naturally quasiconcave set-valued map 90C47 minimax theorems transfer properly S-quasiconvex fixed point theorem S-transfer [Formula omitted.] -convex set-valued map Theorems Maps Optimization and Control Mathematics |
dewey-raw |
28 |
isfreeaccess_bool |
false |
container_title |
Optimization |
authorswithroles_txt_mv |
Patriche, Monica @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
13041199X |
dewey-sort |
228 |
id |
OLC1975324471 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1975324471</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714191926.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/02331934.2015.1091822</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1975324471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1975324471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1741-e75bad3607da41e313cb1c460b65e322030752f54c4fb82b75e20f31b26729710</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0092524120160000065000500957minimaxtheoremsforsetvaluedmapswithoutcontinuityas</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">28</subfield><subfield code="a">004</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Patriche, Monica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimax theorems for set-valued maps without continuity assumptions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We introduce several classes of set-valued maps with new generalized convexity properties. We also obtain minimax theorems for set-valued maps which satisfy these convexity assumptions and which are not continuous. Our method consists of the use of a fixed point theorem for weakly naturally quasiconcave set-valued maps, defined on a simplex in a topological vector space, or of a constant selection of quasiconvex set-valued maps.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 Taylor & Francis 2015</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">49J35</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convex set-valued map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weakly z-convex set-valued map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">S-transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weakly naturally quasiconcave set-valued map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">90C47</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">minimax theorems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transfer properly S-quasiconvex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fixed point theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">S-transfer [Formula omitted.] -convex set-valued map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theorems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization and Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optimization</subfield><subfield code="d">Reading [u.a] : Taylor & Francis, 1985</subfield><subfield code="g">65(2016), 5, Seite 957</subfield><subfield code="w">(DE-627)13041199X</subfield><subfield code="w">(DE-600)622846-X</subfield><subfield code="w">(DE-576)015914984</subfield><subfield code="x">0233-1934</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:957</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/02331934.2015.1091822</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/02331934.2015.1091822</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1778492398</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1304.0339</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">957</subfield></datafield></record></collection>
|
author |
Patriche, Monica |
spellingShingle |
Patriche, Monica ddc 28 ddc 510 misc 49J35 misc convex set-valued map misc weakly z-convex set-valued map misc S-transfer misc weakly naturally quasiconcave set-valued map misc 90C47 misc minimax theorems misc transfer properly S-quasiconvex misc fixed point theorem misc S-transfer [Formula omitted.] -convex set-valued map misc Theorems misc Maps misc Optimization and Control misc Mathematics Minimax theorems for set-valued maps without continuity assumptions |
authorStr |
Patriche, Monica |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)13041199X |
format |
Article |
dewey-ones |
028 - Reading & use of other information media 004 - Data processing & computer science 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0233-1934 |
topic_title |
28 004 DE-101 510 AVZ Minimax theorems for set-valued maps without continuity assumptions 49J35 convex set-valued map weakly z-convex set-valued map S-transfer weakly naturally quasiconcave set-valued map 90C47 minimax theorems transfer properly S-quasiconvex fixed point theorem S-transfer [Formula omitted.] -convex set-valued map Theorems Maps Optimization and Control Mathematics |
topic |
ddc 28 ddc 510 misc 49J35 misc convex set-valued map misc weakly z-convex set-valued map misc S-transfer misc weakly naturally quasiconcave set-valued map misc 90C47 misc minimax theorems misc transfer properly S-quasiconvex misc fixed point theorem misc S-transfer [Formula omitted.] -convex set-valued map misc Theorems misc Maps misc Optimization and Control misc Mathematics |
topic_unstemmed |
ddc 28 ddc 510 misc 49J35 misc convex set-valued map misc weakly z-convex set-valued map misc S-transfer misc weakly naturally quasiconcave set-valued map misc 90C47 misc minimax theorems misc transfer properly S-quasiconvex misc fixed point theorem misc S-transfer [Formula omitted.] -convex set-valued map misc Theorems misc Maps misc Optimization and Control misc Mathematics |
topic_browse |
ddc 28 ddc 510 misc 49J35 misc convex set-valued map misc weakly z-convex set-valued map misc S-transfer misc weakly naturally quasiconcave set-valued map misc 90C47 misc minimax theorems misc transfer properly S-quasiconvex misc fixed point theorem misc S-transfer [Formula omitted.] -convex set-valued map misc Theorems misc Maps misc Optimization and Control misc Mathematics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Optimization |
hierarchy_parent_id |
13041199X |
dewey-tens |
020 - Library & information sciences 000 - Computer science, knowledge & systems 510 - Mathematics |
hierarchy_top_title |
Optimization |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)13041199X (DE-600)622846-X (DE-576)015914984 |
title |
Minimax theorems for set-valued maps without continuity assumptions |
ctrlnum |
(DE-627)OLC1975324471 (DE-599)GBVOLC1975324471 (PRQ)a1741-e75bad3607da41e313cb1c460b65e322030752f54c4fb82b75e20f31b26729710 (KEY)0092524120160000065000500957minimaxtheoremsforsetvaluedmapswithoutcontinuityas |
title_full |
Minimax theorems for set-valued maps without continuity assumptions |
author_sort |
Patriche, Monica |
journal |
Optimization |
journalStr |
Optimization |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
957 |
author_browse |
Patriche, Monica |
container_volume |
65 |
class |
28 004 DE-101 510 AVZ |
format_se |
Aufsätze |
author-letter |
Patriche, Monica |
doi_str_mv |
10.1080/02331934.2015.1091822 |
dewey-full |
28 004 510 |
title_sort |
minimax theorems for set-valued maps without continuity assumptions |
title_auth |
Minimax theorems for set-valued maps without continuity assumptions |
abstract |
We introduce several classes of set-valued maps with new generalized convexity properties. We also obtain minimax theorems for set-valued maps which satisfy these convexity assumptions and which are not continuous. Our method consists of the use of a fixed point theorem for weakly naturally quasiconcave set-valued maps, defined on a simplex in a topological vector space, or of a constant selection of quasiconvex set-valued maps. |
abstractGer |
We introduce several classes of set-valued maps with new generalized convexity properties. We also obtain minimax theorems for set-valued maps which satisfy these convexity assumptions and which are not continuous. Our method consists of the use of a fixed point theorem for weakly naturally quasiconcave set-valued maps, defined on a simplex in a topological vector space, or of a constant selection of quasiconvex set-valued maps. |
abstract_unstemmed |
We introduce several classes of set-valued maps with new generalized convexity properties. We also obtain minimax theorems for set-valued maps which satisfy these convexity assumptions and which are not continuous. Our method consists of the use of a fixed point theorem for weakly naturally quasiconcave set-valued maps, defined on a simplex in a topological vector space, or of a constant selection of quasiconvex set-valued maps. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_69 GBV_ILN_70 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Minimax theorems for set-valued maps without continuity assumptions |
url |
http://dx.doi.org/10.1080/02331934.2015.1091822 http://www.tandfonline.com/doi/abs/10.1080/02331934.2015.1091822 http://search.proquest.com/docview/1778492398 http://arxiv.org/abs/1304.0339 |
remote_bool |
false |
ppnlink |
13041199X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1080/02331934.2015.1091822 |
up_date |
2024-07-04T06:17:17.956Z |
_version_ |
1803628144697016320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1975324471</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714191926.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/02331934.2015.1091822</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1975324471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1975324471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1741-e75bad3607da41e313cb1c460b65e322030752f54c4fb82b75e20f31b26729710</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0092524120160000065000500957minimaxtheoremsforsetvaluedmapswithoutcontinuityas</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">28</subfield><subfield code="a">004</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Patriche, Monica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimax theorems for set-valued maps without continuity assumptions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We introduce several classes of set-valued maps with new generalized convexity properties. We also obtain minimax theorems for set-valued maps which satisfy these convexity assumptions and which are not continuous. Our method consists of the use of a fixed point theorem for weakly naturally quasiconcave set-valued maps, defined on a simplex in a topological vector space, or of a constant selection of quasiconvex set-valued maps.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 Taylor & Francis 2015</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">49J35</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convex set-valued map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weakly z-convex set-valued map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">S-transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weakly naturally quasiconcave set-valued map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">90C47</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">minimax theorems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transfer properly S-quasiconvex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fixed point theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">S-transfer [Formula omitted.] -convex set-valued map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theorems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization and Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optimization</subfield><subfield code="d">Reading [u.a] : Taylor & Francis, 1985</subfield><subfield code="g">65(2016), 5, Seite 957</subfield><subfield code="w">(DE-627)13041199X</subfield><subfield code="w">(DE-600)622846-X</subfield><subfield code="w">(DE-576)015914984</subfield><subfield code="x">0233-1934</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:957</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/02331934.2015.1091822</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/02331934.2015.1091822</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1778492398</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1304.0339</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">957</subfield></datafield></record></collection>
|
score |
7.400654 |