Estimation of low-altitude moving target trajectory using single acoustic array
An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also l...
Ausführliche Beschreibung
Autor*in: |
Tong, Jianfei [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © Acoustical Society of America |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: The journal of the Acoustical Society of America - Melville, NY : AIP, 1929, 139(2016), 4, Seite 1848-1858 |
---|---|
Übergeordnetes Werk: |
volume:139 ; year:2016 ; number:4 ; pages:1848-1858 |
Links: |
---|
DOI / URN: |
10.1121/1.4944567 |
---|
Katalog-ID: |
OLC1975452658 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1975452658 | ||
003 | DE-627 | ||
005 | 20220223210426.0 | ||
007 | tu | ||
008 | 160609s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1121/1.4944567 |2 doi | |
028 | 5 | 2 | |a PQ20160610 |
035 | |a (DE-627)OLC1975452658 | ||
035 | |a (DE-599)GBVOLC1975452658 | ||
035 | |a (PRQ)p825-64b124e44a8a4f0b17f9bac9504f849c8623a3b028d94c3813336e565ea206890 | ||
035 | |a (KEY)0112299120160000139000401848estimationoflowaltitudemovingtargettrajectoryusing | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DNB |
084 | |a LING |2 fid | ||
084 | |a EQ 1000: |q AVZ |2 rvk | ||
084 | |a 33.12 |2 bkl | ||
084 | |a 50.36 |2 bkl | ||
100 | 1 | |a Tong, Jianfei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Estimation of low-altitude moving target trajectory using single acoustic array |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments. | ||
540 | |a Nutzungsrecht: © Acoustical Society of America | ||
700 | 1 | |a Xie, Wei |4 oth | |
700 | 1 | |a Hu, Yu-Hen |4 oth | |
700 | 1 | |a Bao, Ming |4 oth | |
700 | 1 | |a Li, Xiaodong |4 oth | |
700 | 1 | |a He, Wei |4 oth | |
773 | 0 | 8 | |i Enthalten in |t The journal of the Acoustical Society of America |d Melville, NY : AIP, 1929 |g 139(2016), 4, Seite 1848-1858 |w (DE-627)129550264 |w (DE-600)219231-7 |w (DE-576)015003663 |x 0001-4966 |7 nnns |
773 | 1 | 8 | |g volume:139 |g year:2016 |g number:4 |g pages:1848-1858 |
856 | 4 | 1 | |u http://dx.doi.org/10.1121/1.4944567 |3 Volltext |
856 | 4 | 2 | |u http://dx.doi.org/10.1121/1.4944567 |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/27106332 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-LING | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MUS | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_201 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2045 | ||
912 | |a GBV_ILN_2192 | ||
912 | |a GBV_ILN_2256 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a EQ 1000: |
936 | b | k | |a 33.12 |q AVZ |
936 | b | k | |a 50.36 |q AVZ |
951 | |a AR | ||
952 | |d 139 |j 2016 |e 4 |h 1848-1858 |
author_variant |
j t jt |
---|---|
matchkey_str |
article:00014966:2016----::siainfoattdmvntretaetruig |
hierarchy_sort_str |
2016 |
bklnumber |
33.12 50.36 |
publishDate |
2016 |
allfields |
10.1121/1.4944567 doi PQ20160610 (DE-627)OLC1975452658 (DE-599)GBVOLC1975452658 (PRQ)p825-64b124e44a8a4f0b17f9bac9504f849c8623a3b028d94c3813336e565ea206890 (KEY)0112299120160000139000401848estimationoflowaltitudemovingtargettrajectoryusing DE-627 ger DE-627 rakwb eng 530 DNB LING fid EQ 1000: AVZ rvk 33.12 bkl 50.36 bkl Tong, Jianfei verfasserin aut Estimation of low-altitude moving target trajectory using single acoustic array 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments. Nutzungsrecht: © Acoustical Society of America Xie, Wei oth Hu, Yu-Hen oth Bao, Ming oth Li, Xiaodong oth He, Wei oth Enthalten in The journal of the Acoustical Society of America Melville, NY : AIP, 1929 139(2016), 4, Seite 1848-1858 (DE-627)129550264 (DE-600)219231-7 (DE-576)015003663 0001-4966 nnns volume:139 year:2016 number:4 pages:1848-1858 http://dx.doi.org/10.1121/1.4944567 Volltext http://dx.doi.org/10.1121/1.4944567 http://www.ncbi.nlm.nih.gov/pubmed/27106332 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-PHY SSG-OLC-MUS GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_170 GBV_ILN_201 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2045 GBV_ILN_2192 GBV_ILN_2256 GBV_ILN_4219 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4700 EQ 1000: 33.12 AVZ 50.36 AVZ AR 139 2016 4 1848-1858 |
spelling |
10.1121/1.4944567 doi PQ20160610 (DE-627)OLC1975452658 (DE-599)GBVOLC1975452658 (PRQ)p825-64b124e44a8a4f0b17f9bac9504f849c8623a3b028d94c3813336e565ea206890 (KEY)0112299120160000139000401848estimationoflowaltitudemovingtargettrajectoryusing DE-627 ger DE-627 rakwb eng 530 DNB LING fid EQ 1000: AVZ rvk 33.12 bkl 50.36 bkl Tong, Jianfei verfasserin aut Estimation of low-altitude moving target trajectory using single acoustic array 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments. Nutzungsrecht: © Acoustical Society of America Xie, Wei oth Hu, Yu-Hen oth Bao, Ming oth Li, Xiaodong oth He, Wei oth Enthalten in The journal of the Acoustical Society of America Melville, NY : AIP, 1929 139(2016), 4, Seite 1848-1858 (DE-627)129550264 (DE-600)219231-7 (DE-576)015003663 0001-4966 nnns volume:139 year:2016 number:4 pages:1848-1858 http://dx.doi.org/10.1121/1.4944567 Volltext http://dx.doi.org/10.1121/1.4944567 http://www.ncbi.nlm.nih.gov/pubmed/27106332 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-PHY SSG-OLC-MUS GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_170 GBV_ILN_201 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2045 GBV_ILN_2192 GBV_ILN_2256 GBV_ILN_4219 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4700 EQ 1000: 33.12 AVZ 50.36 AVZ AR 139 2016 4 1848-1858 |
allfields_unstemmed |
10.1121/1.4944567 doi PQ20160610 (DE-627)OLC1975452658 (DE-599)GBVOLC1975452658 (PRQ)p825-64b124e44a8a4f0b17f9bac9504f849c8623a3b028d94c3813336e565ea206890 (KEY)0112299120160000139000401848estimationoflowaltitudemovingtargettrajectoryusing DE-627 ger DE-627 rakwb eng 530 DNB LING fid EQ 1000: AVZ rvk 33.12 bkl 50.36 bkl Tong, Jianfei verfasserin aut Estimation of low-altitude moving target trajectory using single acoustic array 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments. Nutzungsrecht: © Acoustical Society of America Xie, Wei oth Hu, Yu-Hen oth Bao, Ming oth Li, Xiaodong oth He, Wei oth Enthalten in The journal of the Acoustical Society of America Melville, NY : AIP, 1929 139(2016), 4, Seite 1848-1858 (DE-627)129550264 (DE-600)219231-7 (DE-576)015003663 0001-4966 nnns volume:139 year:2016 number:4 pages:1848-1858 http://dx.doi.org/10.1121/1.4944567 Volltext http://dx.doi.org/10.1121/1.4944567 http://www.ncbi.nlm.nih.gov/pubmed/27106332 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-PHY SSG-OLC-MUS GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_170 GBV_ILN_201 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2045 GBV_ILN_2192 GBV_ILN_2256 GBV_ILN_4219 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4700 EQ 1000: 33.12 AVZ 50.36 AVZ AR 139 2016 4 1848-1858 |
allfieldsGer |
10.1121/1.4944567 doi PQ20160610 (DE-627)OLC1975452658 (DE-599)GBVOLC1975452658 (PRQ)p825-64b124e44a8a4f0b17f9bac9504f849c8623a3b028d94c3813336e565ea206890 (KEY)0112299120160000139000401848estimationoflowaltitudemovingtargettrajectoryusing DE-627 ger DE-627 rakwb eng 530 DNB LING fid EQ 1000: AVZ rvk 33.12 bkl 50.36 bkl Tong, Jianfei verfasserin aut Estimation of low-altitude moving target trajectory using single acoustic array 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments. Nutzungsrecht: © Acoustical Society of America Xie, Wei oth Hu, Yu-Hen oth Bao, Ming oth Li, Xiaodong oth He, Wei oth Enthalten in The journal of the Acoustical Society of America Melville, NY : AIP, 1929 139(2016), 4, Seite 1848-1858 (DE-627)129550264 (DE-600)219231-7 (DE-576)015003663 0001-4966 nnns volume:139 year:2016 number:4 pages:1848-1858 http://dx.doi.org/10.1121/1.4944567 Volltext http://dx.doi.org/10.1121/1.4944567 http://www.ncbi.nlm.nih.gov/pubmed/27106332 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-PHY SSG-OLC-MUS GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_170 GBV_ILN_201 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2045 GBV_ILN_2192 GBV_ILN_2256 GBV_ILN_4219 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4700 EQ 1000: 33.12 AVZ 50.36 AVZ AR 139 2016 4 1848-1858 |
allfieldsSound |
10.1121/1.4944567 doi PQ20160610 (DE-627)OLC1975452658 (DE-599)GBVOLC1975452658 (PRQ)p825-64b124e44a8a4f0b17f9bac9504f849c8623a3b028d94c3813336e565ea206890 (KEY)0112299120160000139000401848estimationoflowaltitudemovingtargettrajectoryusing DE-627 ger DE-627 rakwb eng 530 DNB LING fid EQ 1000: AVZ rvk 33.12 bkl 50.36 bkl Tong, Jianfei verfasserin aut Estimation of low-altitude moving target trajectory using single acoustic array 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments. Nutzungsrecht: © Acoustical Society of America Xie, Wei oth Hu, Yu-Hen oth Bao, Ming oth Li, Xiaodong oth He, Wei oth Enthalten in The journal of the Acoustical Society of America Melville, NY : AIP, 1929 139(2016), 4, Seite 1848-1858 (DE-627)129550264 (DE-600)219231-7 (DE-576)015003663 0001-4966 nnns volume:139 year:2016 number:4 pages:1848-1858 http://dx.doi.org/10.1121/1.4944567 Volltext http://dx.doi.org/10.1121/1.4944567 http://www.ncbi.nlm.nih.gov/pubmed/27106332 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-PHY SSG-OLC-MUS GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_170 GBV_ILN_201 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2045 GBV_ILN_2192 GBV_ILN_2256 GBV_ILN_4219 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4700 EQ 1000: 33.12 AVZ 50.36 AVZ AR 139 2016 4 1848-1858 |
language |
English |
source |
Enthalten in The journal of the Acoustical Society of America 139(2016), 4, Seite 1848-1858 volume:139 year:2016 number:4 pages:1848-1858 |
sourceStr |
Enthalten in The journal of the Acoustical Society of America 139(2016), 4, Seite 1848-1858 volume:139 year:2016 number:4 pages:1848-1858 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
The journal of the Acoustical Society of America |
authorswithroles_txt_mv |
Tong, Jianfei @@aut@@ Xie, Wei @@oth@@ Hu, Yu-Hen @@oth@@ Bao, Ming @@oth@@ Li, Xiaodong @@oth@@ He, Wei @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129550264 |
dewey-sort |
3530 |
id |
OLC1975452658 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1975452658</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223210426.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1121/1.4944567</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1975452658</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1975452658</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p825-64b124e44a8a4f0b17f9bac9504f849c8623a3b028d94c3813336e565ea206890</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0112299120160000139000401848estimationoflowaltitudemovingtargettrajectoryusing</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">EQ 1000:</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tong, Jianfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimation of low-altitude moving target trajectory using single acoustic array</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Acoustical Society of America</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yu-Hen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bao, Ming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaodong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of the Acoustical Society of America</subfield><subfield code="d">Melville, NY : AIP, 1929</subfield><subfield code="g">139(2016), 4, Seite 1848-1858</subfield><subfield code="w">(DE-627)129550264</subfield><subfield code="w">(DE-600)219231-7</subfield><subfield code="w">(DE-576)015003663</subfield><subfield code="x">0001-4966</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:139</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1848-1858</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1121/1.4944567</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1121/1.4944567</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/27106332</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MUS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2045</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2256</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">EQ 1000:</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.12</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.36</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">139</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">1848-1858</subfield></datafield></record></collection>
|
author |
Tong, Jianfei |
spellingShingle |
Tong, Jianfei ddc 530 fid LING rvk EQ 1000: bkl 33.12 bkl 50.36 Estimation of low-altitude moving target trajectory using single acoustic array |
authorStr |
Tong, Jianfei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129550264 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-4966 |
topic_title |
530 DNB LING fid EQ 1000: AVZ rvk 33.12 bkl 50.36 bkl Estimation of low-altitude moving target trajectory using single acoustic array |
topic |
ddc 530 fid LING rvk EQ 1000: bkl 33.12 bkl 50.36 |
topic_unstemmed |
ddc 530 fid LING rvk EQ 1000: bkl 33.12 bkl 50.36 |
topic_browse |
ddc 530 fid LING rvk EQ 1000: bkl 33.12 bkl 50.36 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
w x wx y h h yhh m b mb x l xl w h wh |
hierarchy_parent_title |
The journal of the Acoustical Society of America |
hierarchy_parent_id |
129550264 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
The journal of the Acoustical Society of America |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129550264 (DE-600)219231-7 (DE-576)015003663 |
title |
Estimation of low-altitude moving target trajectory using single acoustic array |
ctrlnum |
(DE-627)OLC1975452658 (DE-599)GBVOLC1975452658 (PRQ)p825-64b124e44a8a4f0b17f9bac9504f849c8623a3b028d94c3813336e565ea206890 (KEY)0112299120160000139000401848estimationoflowaltitudemovingtargettrajectoryusing |
title_full |
Estimation of low-altitude moving target trajectory using single acoustic array |
author_sort |
Tong, Jianfei |
journal |
The journal of the Acoustical Society of America |
journalStr |
The journal of the Acoustical Society of America |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1848 |
author_browse |
Tong, Jianfei |
container_volume |
139 |
class |
530 DNB LING fid EQ 1000: AVZ rvk 33.12 bkl 50.36 bkl |
format_se |
Aufsätze |
author-letter |
Tong, Jianfei |
doi_str_mv |
10.1121/1.4944567 |
dewey-full |
530 |
title_sort |
estimation of low-altitude moving target trajectory using single acoustic array |
title_auth |
Estimation of low-altitude moving target trajectory using single acoustic array |
abstract |
An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments. |
abstractGer |
An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments. |
abstract_unstemmed |
An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-PHY SSG-OLC-MUS GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_170 GBV_ILN_201 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2045 GBV_ILN_2192 GBV_ILN_2256 GBV_ILN_4219 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Estimation of low-altitude moving target trajectory using single acoustic array |
url |
http://dx.doi.org/10.1121/1.4944567 http://www.ncbi.nlm.nih.gov/pubmed/27106332 |
remote_bool |
false |
author2 |
Xie, Wei Hu, Yu-Hen Bao, Ming Li, Xiaodong He, Wei |
author2Str |
Xie, Wei Hu, Yu-Hen Bao, Ming Li, Xiaodong He, Wei |
ppnlink |
129550264 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1121/1.4944567 |
up_date |
2024-07-04T06:34:00.794Z |
_version_ |
1803629196250972160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1975452658</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223210426.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1121/1.4944567</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1975452658</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1975452658</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p825-64b124e44a8a4f0b17f9bac9504f849c8623a3b028d94c3813336e565ea206890</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0112299120160000139000401848estimationoflowaltitudemovingtargettrajectoryusing</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">EQ 1000:</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tong, Jianfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimation of low-altitude moving target trajectory using single acoustic array</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Acoustical Society of America</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yu-Hen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bao, Ming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaodong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of the Acoustical Society of America</subfield><subfield code="d">Melville, NY : AIP, 1929</subfield><subfield code="g">139(2016), 4, Seite 1848-1858</subfield><subfield code="w">(DE-627)129550264</subfield><subfield code="w">(DE-600)219231-7</subfield><subfield code="w">(DE-576)015003663</subfield><subfield code="x">0001-4966</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:139</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1848-1858</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1121/1.4944567</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1121/1.4944567</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/27106332</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MUS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2045</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2256</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">EQ 1000:</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.12</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.36</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">139</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">1848-1858</subfield></datafield></record></collection>
|
score |
7.4008827 |