Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System
Wind power ramp events have become one of the major challenges of power balance in power systems with high wind power penetration. Conventional thermal or hydro units have to be dispatched, shut down or started up more frequently to keep the balance between generation and load. This paper proposes a...
Ausführliche Beschreibung
Autor*in: |
Gong, Yuzhong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on power systems - New York, NY : IEEE, 1986, 31(2016), 3, Seite 1831-1844 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2016 ; number:3 ; pages:1831-1844 |
Links: |
---|
DOI / URN: |
10.1109/TPWRS.2015.2445382 |
---|
Katalog-ID: |
OLC1975698460 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1975698460 | ||
003 | DE-627 | ||
005 | 20220220120647.0 | ||
007 | tu | ||
008 | 160609s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TPWRS.2015.2445382 |2 doi | |
028 | 5 | 2 | |a PQ20160610 |
035 | |a (DE-627)OLC1975698460 | ||
035 | |a (DE-599)GBVOLC1975698460 | ||
035 | |a (PRQ)c967-63e5102414b085d5c3133f66561084dc7aa4522b104499dd5abbc022ac0e5ae90 | ||
035 | |a (KEY)0163645620160000031000301831rampeventforecastbasedwindpowerrampcontrolwithener | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 53.00 |2 bkl | ||
084 | |a 53.30 |2 bkl | ||
100 | 1 | |a Gong, Yuzhong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Wind power ramp events have become one of the major challenges of power balance in power systems with high wind power penetration. Conventional thermal or hydro units have to be dispatched, shut down or started up more frequently to keep the balance between generation and load. This paper proposes a wind power ramp control method with energy storage system (ESS) based on wind power ramp event forecast. An optimization model is established to optimize the output power of ESS and the wind curtailment to meet a hybrid wind power ramp limit. Three types of wind power ramp scenarios are presented based on the ramp event forecast, including normal scenario, positive ramp scenarios, and negative ramp scenarios. In each scenario, the optimization model is modified with scenario switching adjustment (SSA) to reduce the capacity demand of ESS and the curtailed wind energy. While the parameters for modification are obtained by different fuzzy logic systems (FLS). Finally, the effectiveness of the proposed wind power ramp control method is verified through case studies. | ||
650 | 4 | |a scenario switching adjustment (SSA) | |
650 | 4 | |a fuzzy logic system (FLS) | |
650 | 4 | |a Energy storage system (ESS) | |
650 | 4 | |a Power systems | |
650 | 4 | |a Discharges (electric) | |
650 | 4 | |a Energy states | |
650 | 4 | |a Wind forecasting | |
650 | 4 | |a wind power ramp control | |
650 | 4 | |a wind power ramp event | |
650 | 4 | |a Wind power generation | |
650 | 4 | |a Optimization | |
700 | 1 | |a Jiang, Quanyuan |4 oth | |
700 | 1 | |a Baldick, Ross |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on power systems |d New York, NY : IEEE, 1986 |g 31(2016), 3, Seite 1831-1844 |w (DE-627)129582344 |w (DE-600)232866-5 |w (DE-576)015075893 |x 0885-8950 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2016 |g number:3 |g pages:1831-1844 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TPWRS.2015.2445382 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7173063 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
936 | b | k | |a 53.00 |q AVZ |
936 | b | k | |a 53.30 |q AVZ |
951 | |a AR | ||
952 | |d 31 |j 2016 |e 3 |h 1831-1844 |
author_variant |
y g yg |
---|---|
matchkey_str |
article:08858950:2016----::apvnfrcsbsdidoermcnrlihn |
hierarchy_sort_str |
2016 |
bklnumber |
53.00 53.30 |
publishDate |
2016 |
allfields |
10.1109/TPWRS.2015.2445382 doi PQ20160610 (DE-627)OLC1975698460 (DE-599)GBVOLC1975698460 (PRQ)c967-63e5102414b085d5c3133f66561084dc7aa4522b104499dd5abbc022ac0e5ae90 (KEY)0163645620160000031000301831rampeventforecastbasedwindpowerrampcontrolwithener DE-627 ger DE-627 rakwb eng 620 DNB 53.00 bkl 53.30 bkl Gong, Yuzhong verfasserin aut Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Wind power ramp events have become one of the major challenges of power balance in power systems with high wind power penetration. Conventional thermal or hydro units have to be dispatched, shut down or started up more frequently to keep the balance between generation and load. This paper proposes a wind power ramp control method with energy storage system (ESS) based on wind power ramp event forecast. An optimization model is established to optimize the output power of ESS and the wind curtailment to meet a hybrid wind power ramp limit. Three types of wind power ramp scenarios are presented based on the ramp event forecast, including normal scenario, positive ramp scenarios, and negative ramp scenarios. In each scenario, the optimization model is modified with scenario switching adjustment (SSA) to reduce the capacity demand of ESS and the curtailed wind energy. While the parameters for modification are obtained by different fuzzy logic systems (FLS). Finally, the effectiveness of the proposed wind power ramp control method is verified through case studies. scenario switching adjustment (SSA) fuzzy logic system (FLS) Energy storage system (ESS) Power systems Discharges (electric) Energy states Wind forecasting wind power ramp control wind power ramp event Wind power generation Optimization Jiang, Quanyuan oth Baldick, Ross oth Enthalten in IEEE transactions on power systems New York, NY : IEEE, 1986 31(2016), 3, Seite 1831-1844 (DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 0885-8950 nnns volume:31 year:2016 number:3 pages:1831-1844 http://dx.doi.org/10.1109/TPWRS.2015.2445382 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7173063 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 53.00 AVZ 53.30 AVZ AR 31 2016 3 1831-1844 |
spelling |
10.1109/TPWRS.2015.2445382 doi PQ20160610 (DE-627)OLC1975698460 (DE-599)GBVOLC1975698460 (PRQ)c967-63e5102414b085d5c3133f66561084dc7aa4522b104499dd5abbc022ac0e5ae90 (KEY)0163645620160000031000301831rampeventforecastbasedwindpowerrampcontrolwithener DE-627 ger DE-627 rakwb eng 620 DNB 53.00 bkl 53.30 bkl Gong, Yuzhong verfasserin aut Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Wind power ramp events have become one of the major challenges of power balance in power systems with high wind power penetration. Conventional thermal or hydro units have to be dispatched, shut down or started up more frequently to keep the balance between generation and load. This paper proposes a wind power ramp control method with energy storage system (ESS) based on wind power ramp event forecast. An optimization model is established to optimize the output power of ESS and the wind curtailment to meet a hybrid wind power ramp limit. Three types of wind power ramp scenarios are presented based on the ramp event forecast, including normal scenario, positive ramp scenarios, and negative ramp scenarios. In each scenario, the optimization model is modified with scenario switching adjustment (SSA) to reduce the capacity demand of ESS and the curtailed wind energy. While the parameters for modification are obtained by different fuzzy logic systems (FLS). Finally, the effectiveness of the proposed wind power ramp control method is verified through case studies. scenario switching adjustment (SSA) fuzzy logic system (FLS) Energy storage system (ESS) Power systems Discharges (electric) Energy states Wind forecasting wind power ramp control wind power ramp event Wind power generation Optimization Jiang, Quanyuan oth Baldick, Ross oth Enthalten in IEEE transactions on power systems New York, NY : IEEE, 1986 31(2016), 3, Seite 1831-1844 (DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 0885-8950 nnns volume:31 year:2016 number:3 pages:1831-1844 http://dx.doi.org/10.1109/TPWRS.2015.2445382 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7173063 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 53.00 AVZ 53.30 AVZ AR 31 2016 3 1831-1844 |
allfields_unstemmed |
10.1109/TPWRS.2015.2445382 doi PQ20160610 (DE-627)OLC1975698460 (DE-599)GBVOLC1975698460 (PRQ)c967-63e5102414b085d5c3133f66561084dc7aa4522b104499dd5abbc022ac0e5ae90 (KEY)0163645620160000031000301831rampeventforecastbasedwindpowerrampcontrolwithener DE-627 ger DE-627 rakwb eng 620 DNB 53.00 bkl 53.30 bkl Gong, Yuzhong verfasserin aut Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Wind power ramp events have become one of the major challenges of power balance in power systems with high wind power penetration. Conventional thermal or hydro units have to be dispatched, shut down or started up more frequently to keep the balance between generation and load. This paper proposes a wind power ramp control method with energy storage system (ESS) based on wind power ramp event forecast. An optimization model is established to optimize the output power of ESS and the wind curtailment to meet a hybrid wind power ramp limit. Three types of wind power ramp scenarios are presented based on the ramp event forecast, including normal scenario, positive ramp scenarios, and negative ramp scenarios. In each scenario, the optimization model is modified with scenario switching adjustment (SSA) to reduce the capacity demand of ESS and the curtailed wind energy. While the parameters for modification are obtained by different fuzzy logic systems (FLS). Finally, the effectiveness of the proposed wind power ramp control method is verified through case studies. scenario switching adjustment (SSA) fuzzy logic system (FLS) Energy storage system (ESS) Power systems Discharges (electric) Energy states Wind forecasting wind power ramp control wind power ramp event Wind power generation Optimization Jiang, Quanyuan oth Baldick, Ross oth Enthalten in IEEE transactions on power systems New York, NY : IEEE, 1986 31(2016), 3, Seite 1831-1844 (DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 0885-8950 nnns volume:31 year:2016 number:3 pages:1831-1844 http://dx.doi.org/10.1109/TPWRS.2015.2445382 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7173063 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 53.00 AVZ 53.30 AVZ AR 31 2016 3 1831-1844 |
allfieldsGer |
10.1109/TPWRS.2015.2445382 doi PQ20160610 (DE-627)OLC1975698460 (DE-599)GBVOLC1975698460 (PRQ)c967-63e5102414b085d5c3133f66561084dc7aa4522b104499dd5abbc022ac0e5ae90 (KEY)0163645620160000031000301831rampeventforecastbasedwindpowerrampcontrolwithener DE-627 ger DE-627 rakwb eng 620 DNB 53.00 bkl 53.30 bkl Gong, Yuzhong verfasserin aut Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Wind power ramp events have become one of the major challenges of power balance in power systems with high wind power penetration. Conventional thermal or hydro units have to be dispatched, shut down or started up more frequently to keep the balance between generation and load. This paper proposes a wind power ramp control method with energy storage system (ESS) based on wind power ramp event forecast. An optimization model is established to optimize the output power of ESS and the wind curtailment to meet a hybrid wind power ramp limit. Three types of wind power ramp scenarios are presented based on the ramp event forecast, including normal scenario, positive ramp scenarios, and negative ramp scenarios. In each scenario, the optimization model is modified with scenario switching adjustment (SSA) to reduce the capacity demand of ESS and the curtailed wind energy. While the parameters for modification are obtained by different fuzzy logic systems (FLS). Finally, the effectiveness of the proposed wind power ramp control method is verified through case studies. scenario switching adjustment (SSA) fuzzy logic system (FLS) Energy storage system (ESS) Power systems Discharges (electric) Energy states Wind forecasting wind power ramp control wind power ramp event Wind power generation Optimization Jiang, Quanyuan oth Baldick, Ross oth Enthalten in IEEE transactions on power systems New York, NY : IEEE, 1986 31(2016), 3, Seite 1831-1844 (DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 0885-8950 nnns volume:31 year:2016 number:3 pages:1831-1844 http://dx.doi.org/10.1109/TPWRS.2015.2445382 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7173063 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 53.00 AVZ 53.30 AVZ AR 31 2016 3 1831-1844 |
allfieldsSound |
10.1109/TPWRS.2015.2445382 doi PQ20160610 (DE-627)OLC1975698460 (DE-599)GBVOLC1975698460 (PRQ)c967-63e5102414b085d5c3133f66561084dc7aa4522b104499dd5abbc022ac0e5ae90 (KEY)0163645620160000031000301831rampeventforecastbasedwindpowerrampcontrolwithener DE-627 ger DE-627 rakwb eng 620 DNB 53.00 bkl 53.30 bkl Gong, Yuzhong verfasserin aut Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Wind power ramp events have become one of the major challenges of power balance in power systems with high wind power penetration. Conventional thermal or hydro units have to be dispatched, shut down or started up more frequently to keep the balance between generation and load. This paper proposes a wind power ramp control method with energy storage system (ESS) based on wind power ramp event forecast. An optimization model is established to optimize the output power of ESS and the wind curtailment to meet a hybrid wind power ramp limit. Three types of wind power ramp scenarios are presented based on the ramp event forecast, including normal scenario, positive ramp scenarios, and negative ramp scenarios. In each scenario, the optimization model is modified with scenario switching adjustment (SSA) to reduce the capacity demand of ESS and the curtailed wind energy. While the parameters for modification are obtained by different fuzzy logic systems (FLS). Finally, the effectiveness of the proposed wind power ramp control method is verified through case studies. scenario switching adjustment (SSA) fuzzy logic system (FLS) Energy storage system (ESS) Power systems Discharges (electric) Energy states Wind forecasting wind power ramp control wind power ramp event Wind power generation Optimization Jiang, Quanyuan oth Baldick, Ross oth Enthalten in IEEE transactions on power systems New York, NY : IEEE, 1986 31(2016), 3, Seite 1831-1844 (DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 0885-8950 nnns volume:31 year:2016 number:3 pages:1831-1844 http://dx.doi.org/10.1109/TPWRS.2015.2445382 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7173063 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 53.00 AVZ 53.30 AVZ AR 31 2016 3 1831-1844 |
language |
English |
source |
Enthalten in IEEE transactions on power systems 31(2016), 3, Seite 1831-1844 volume:31 year:2016 number:3 pages:1831-1844 |
sourceStr |
Enthalten in IEEE transactions on power systems 31(2016), 3, Seite 1831-1844 volume:31 year:2016 number:3 pages:1831-1844 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
scenario switching adjustment (SSA) fuzzy logic system (FLS) Energy storage system (ESS) Power systems Discharges (electric) Energy states Wind forecasting wind power ramp control wind power ramp event Wind power generation Optimization |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on power systems |
authorswithroles_txt_mv |
Gong, Yuzhong @@aut@@ Jiang, Quanyuan @@oth@@ Baldick, Ross @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129582344 |
dewey-sort |
3620 |
id |
OLC1975698460 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1975698460</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220120647.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPWRS.2015.2445382</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1975698460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1975698460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c967-63e5102414b085d5c3133f66561084dc7aa4522b104499dd5abbc022ac0e5ae90</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0163645620160000031000301831rampeventforecastbasedwindpowerrampcontrolwithener</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gong, Yuzhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wind power ramp events have become one of the major challenges of power balance in power systems with high wind power penetration. Conventional thermal or hydro units have to be dispatched, shut down or started up more frequently to keep the balance between generation and load. This paper proposes a wind power ramp control method with energy storage system (ESS) based on wind power ramp event forecast. An optimization model is established to optimize the output power of ESS and the wind curtailment to meet a hybrid wind power ramp limit. Three types of wind power ramp scenarios are presented based on the ramp event forecast, including normal scenario, positive ramp scenarios, and negative ramp scenarios. In each scenario, the optimization model is modified with scenario switching adjustment (SSA) to reduce the capacity demand of ESS and the curtailed wind energy. While the parameters for modification are obtained by different fuzzy logic systems (FLS). Finally, the effectiveness of the proposed wind power ramp control method is verified through case studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scenario switching adjustment (SSA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuzzy logic system (FLS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy storage system (ESS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discharges (electric)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy states</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind forecasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind power ramp control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind power ramp event</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind power generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Quanyuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baldick, Ross</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on power systems</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">31(2016), 3, Seite 1831-1844</subfield><subfield code="w">(DE-627)129582344</subfield><subfield code="w">(DE-600)232866-5</subfield><subfield code="w">(DE-576)015075893</subfield><subfield code="x">0885-8950</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1831-1844</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPWRS.2015.2445382</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7173063</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.30</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="h">1831-1844</subfield></datafield></record></collection>
|
author |
Gong, Yuzhong |
spellingShingle |
Gong, Yuzhong ddc 620 bkl 53.00 bkl 53.30 misc scenario switching adjustment (SSA) misc fuzzy logic system (FLS) misc Energy storage system (ESS) misc Power systems misc Discharges (electric) misc Energy states misc Wind forecasting misc wind power ramp control misc wind power ramp event misc Wind power generation misc Optimization Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System |
authorStr |
Gong, Yuzhong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129582344 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0885-8950 |
topic_title |
620 DNB 53.00 bkl 53.30 bkl Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System scenario switching adjustment (SSA) fuzzy logic system (FLS) Energy storage system (ESS) Power systems Discharges (electric) Energy states Wind forecasting wind power ramp control wind power ramp event Wind power generation Optimization |
topic |
ddc 620 bkl 53.00 bkl 53.30 misc scenario switching adjustment (SSA) misc fuzzy logic system (FLS) misc Energy storage system (ESS) misc Power systems misc Discharges (electric) misc Energy states misc Wind forecasting misc wind power ramp control misc wind power ramp event misc Wind power generation misc Optimization |
topic_unstemmed |
ddc 620 bkl 53.00 bkl 53.30 misc scenario switching adjustment (SSA) misc fuzzy logic system (FLS) misc Energy storage system (ESS) misc Power systems misc Discharges (electric) misc Energy states misc Wind forecasting misc wind power ramp control misc wind power ramp event misc Wind power generation misc Optimization |
topic_browse |
ddc 620 bkl 53.00 bkl 53.30 misc scenario switching adjustment (SSA) misc fuzzy logic system (FLS) misc Energy storage system (ESS) misc Power systems misc Discharges (electric) misc Energy states misc Wind forecasting misc wind power ramp control misc wind power ramp event misc Wind power generation misc Optimization |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
q j qj r b rb |
hierarchy_parent_title |
IEEE transactions on power systems |
hierarchy_parent_id |
129582344 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on power systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 |
title |
Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System |
ctrlnum |
(DE-627)OLC1975698460 (DE-599)GBVOLC1975698460 (PRQ)c967-63e5102414b085d5c3133f66561084dc7aa4522b104499dd5abbc022ac0e5ae90 (KEY)0163645620160000031000301831rampeventforecastbasedwindpowerrampcontrolwithener |
title_full |
Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System |
author_sort |
Gong, Yuzhong |
journal |
IEEE transactions on power systems |
journalStr |
IEEE transactions on power systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1831 |
author_browse |
Gong, Yuzhong |
container_volume |
31 |
class |
620 DNB 53.00 bkl 53.30 bkl |
format_se |
Aufsätze |
author-letter |
Gong, Yuzhong |
doi_str_mv |
10.1109/TPWRS.2015.2445382 |
dewey-full |
620 |
title_sort |
ramp event forecast based wind power ramp control with energy storage system |
title_auth |
Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System |
abstract |
Wind power ramp events have become one of the major challenges of power balance in power systems with high wind power penetration. Conventional thermal or hydro units have to be dispatched, shut down or started up more frequently to keep the balance between generation and load. This paper proposes a wind power ramp control method with energy storage system (ESS) based on wind power ramp event forecast. An optimization model is established to optimize the output power of ESS and the wind curtailment to meet a hybrid wind power ramp limit. Three types of wind power ramp scenarios are presented based on the ramp event forecast, including normal scenario, positive ramp scenarios, and negative ramp scenarios. In each scenario, the optimization model is modified with scenario switching adjustment (SSA) to reduce the capacity demand of ESS and the curtailed wind energy. While the parameters for modification are obtained by different fuzzy logic systems (FLS). Finally, the effectiveness of the proposed wind power ramp control method is verified through case studies. |
abstractGer |
Wind power ramp events have become one of the major challenges of power balance in power systems with high wind power penetration. Conventional thermal or hydro units have to be dispatched, shut down or started up more frequently to keep the balance between generation and load. This paper proposes a wind power ramp control method with energy storage system (ESS) based on wind power ramp event forecast. An optimization model is established to optimize the output power of ESS and the wind curtailment to meet a hybrid wind power ramp limit. Three types of wind power ramp scenarios are presented based on the ramp event forecast, including normal scenario, positive ramp scenarios, and negative ramp scenarios. In each scenario, the optimization model is modified with scenario switching adjustment (SSA) to reduce the capacity demand of ESS and the curtailed wind energy. While the parameters for modification are obtained by different fuzzy logic systems (FLS). Finally, the effectiveness of the proposed wind power ramp control method is verified through case studies. |
abstract_unstemmed |
Wind power ramp events have become one of the major challenges of power balance in power systems with high wind power penetration. Conventional thermal or hydro units have to be dispatched, shut down or started up more frequently to keep the balance between generation and load. This paper proposes a wind power ramp control method with energy storage system (ESS) based on wind power ramp event forecast. An optimization model is established to optimize the output power of ESS and the wind curtailment to meet a hybrid wind power ramp limit. Three types of wind power ramp scenarios are presented based on the ramp event forecast, including normal scenario, positive ramp scenarios, and negative ramp scenarios. In each scenario, the optimization model is modified with scenario switching adjustment (SSA) to reduce the capacity demand of ESS and the curtailed wind energy. While the parameters for modification are obtained by different fuzzy logic systems (FLS). Finally, the effectiveness of the proposed wind power ramp control method is verified through case studies. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 |
container_issue |
3 |
title_short |
Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System |
url |
http://dx.doi.org/10.1109/TPWRS.2015.2445382 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7173063 |
remote_bool |
false |
author2 |
Jiang, Quanyuan Baldick, Ross |
author2Str |
Jiang, Quanyuan Baldick, Ross |
ppnlink |
129582344 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/TPWRS.2015.2445382 |
up_date |
2024-07-04T07:06:25.263Z |
_version_ |
1803631235174498304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1975698460</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220120647.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPWRS.2015.2445382</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1975698460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1975698460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c967-63e5102414b085d5c3133f66561084dc7aa4522b104499dd5abbc022ac0e5ae90</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0163645620160000031000301831rampeventforecastbasedwindpowerrampcontrolwithener</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gong, Yuzhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wind power ramp events have become one of the major challenges of power balance in power systems with high wind power penetration. Conventional thermal or hydro units have to be dispatched, shut down or started up more frequently to keep the balance between generation and load. This paper proposes a wind power ramp control method with energy storage system (ESS) based on wind power ramp event forecast. An optimization model is established to optimize the output power of ESS and the wind curtailment to meet a hybrid wind power ramp limit. Three types of wind power ramp scenarios are presented based on the ramp event forecast, including normal scenario, positive ramp scenarios, and negative ramp scenarios. In each scenario, the optimization model is modified with scenario switching adjustment (SSA) to reduce the capacity demand of ESS and the curtailed wind energy. While the parameters for modification are obtained by different fuzzy logic systems (FLS). Finally, the effectiveness of the proposed wind power ramp control method is verified through case studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scenario switching adjustment (SSA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuzzy logic system (FLS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy storage system (ESS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discharges (electric)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy states</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind forecasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind power ramp control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind power ramp event</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind power generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Quanyuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baldick, Ross</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on power systems</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">31(2016), 3, Seite 1831-1844</subfield><subfield code="w">(DE-627)129582344</subfield><subfield code="w">(DE-600)232866-5</subfield><subfield code="w">(DE-576)015075893</subfield><subfield code="x">0885-8950</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1831-1844</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPWRS.2015.2445382</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7173063</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.30</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="h">1831-1844</subfield></datafield></record></collection>
|
score |
7.3996277 |