Energy boost in laser wakefield accelerators using sharp density transitions
The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the pl...
Ausführliche Beschreibung
Autor*in: |
Döpp, A [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © Author(s) |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Physics of plasmas - Melville, NY : AIP, 1994, 23(2016), 5 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2016 ; number:5 |
Links: |
---|
DOI / URN: |
10.1063/1.4946018 |
---|
Katalog-ID: |
OLC1975779339 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1975779339 | ||
003 | DE-627 | ||
005 | 20230714192833.0 | ||
007 | tu | ||
008 | 160609s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1063/1.4946018 |2 doi | |
028 | 5 | 2 | |a PQ20160719 |
035 | |a (DE-627)OLC1975779339 | ||
035 | |a (DE-599)GBVOLC1975779339 | ||
035 | |a (PRQ)a976-2e0f8106ee3f7b41148bca98e68417d2fac387d60afdc3c80c4e738f3979e4290 | ||
035 | |a (KEY)0178548620160000023000500000energyboostinlaserwakefieldacceleratorsusingsharpd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DNB |
100 | 1 | |a Döpp, A |e verfasserin |4 aut | |
245 | 1 | 0 | |a Energy boost in laser wakefield accelerators using sharp density transitions |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing. | ||
540 | |a Nutzungsrecht: © Author(s) | ||
650 | 4 | |a Physics | |
650 | 4 | |a Accelerator Physics | |
650 | 4 | |a Plasma Physics | |
700 | 1 | |a Guillaume, E |4 oth | |
700 | 1 | |a Thaury, C |4 oth | |
700 | 1 | |a Lifschitz, A |4 oth | |
700 | 1 | |a Ta Phuoc, K |4 oth | |
700 | 1 | |a Malka, V |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Physics of plasmas |d Melville, NY : AIP, 1994 |g 23(2016), 5 |w (DE-627)171342119 |w (DE-600)1179425-2 |w (DE-576)038876949 |x 1070-664X |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2016 |g number:5 |
856 | 4 | 1 | |u http://dx.doi.org/10.1063/1.4946018 |3 Volltext |
856 | 4 | 2 | |u http://dx.doi.org/10.1063/1.4946018 |
856 | 4 | 2 | |u http://arxiv.org/abs/1512.05973 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OPC-AST | ||
912 | |a SSG-OPC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 23 |j 2016 |e 5 |
author_variant |
a d ad |
---|---|
matchkey_str |
article:1070664X:2016----::nryosilsraeilaclrtruighr |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1063/1.4946018 doi PQ20160719 (DE-627)OLC1975779339 (DE-599)GBVOLC1975779339 (PRQ)a976-2e0f8106ee3f7b41148bca98e68417d2fac387d60afdc3c80c4e738f3979e4290 (KEY)0178548620160000023000500000energyboostinlaserwakefieldacceleratorsusingsharpd DE-627 ger DE-627 rakwb eng 530 DNB Döpp, A verfasserin aut Energy boost in laser wakefield accelerators using sharp density transitions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing. Nutzungsrecht: © Author(s) Physics Accelerator Physics Plasma Physics Guillaume, E oth Thaury, C oth Lifschitz, A oth Ta Phuoc, K oth Malka, V oth Enthalten in Physics of plasmas Melville, NY : AIP, 1994 23(2016), 5 (DE-627)171342119 (DE-600)1179425-2 (DE-576)038876949 1070-664X nnns volume:23 year:2016 number:5 http://dx.doi.org/10.1063/1.4946018 Volltext http://dx.doi.org/10.1063/1.4946018 http://arxiv.org/abs/1512.05973 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_47 GBV_ILN_70 AR 23 2016 5 |
spelling |
10.1063/1.4946018 doi PQ20160719 (DE-627)OLC1975779339 (DE-599)GBVOLC1975779339 (PRQ)a976-2e0f8106ee3f7b41148bca98e68417d2fac387d60afdc3c80c4e738f3979e4290 (KEY)0178548620160000023000500000energyboostinlaserwakefieldacceleratorsusingsharpd DE-627 ger DE-627 rakwb eng 530 DNB Döpp, A verfasserin aut Energy boost in laser wakefield accelerators using sharp density transitions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing. Nutzungsrecht: © Author(s) Physics Accelerator Physics Plasma Physics Guillaume, E oth Thaury, C oth Lifschitz, A oth Ta Phuoc, K oth Malka, V oth Enthalten in Physics of plasmas Melville, NY : AIP, 1994 23(2016), 5 (DE-627)171342119 (DE-600)1179425-2 (DE-576)038876949 1070-664X nnns volume:23 year:2016 number:5 http://dx.doi.org/10.1063/1.4946018 Volltext http://dx.doi.org/10.1063/1.4946018 http://arxiv.org/abs/1512.05973 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_47 GBV_ILN_70 AR 23 2016 5 |
allfields_unstemmed |
10.1063/1.4946018 doi PQ20160719 (DE-627)OLC1975779339 (DE-599)GBVOLC1975779339 (PRQ)a976-2e0f8106ee3f7b41148bca98e68417d2fac387d60afdc3c80c4e738f3979e4290 (KEY)0178548620160000023000500000energyboostinlaserwakefieldacceleratorsusingsharpd DE-627 ger DE-627 rakwb eng 530 DNB Döpp, A verfasserin aut Energy boost in laser wakefield accelerators using sharp density transitions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing. Nutzungsrecht: © Author(s) Physics Accelerator Physics Plasma Physics Guillaume, E oth Thaury, C oth Lifschitz, A oth Ta Phuoc, K oth Malka, V oth Enthalten in Physics of plasmas Melville, NY : AIP, 1994 23(2016), 5 (DE-627)171342119 (DE-600)1179425-2 (DE-576)038876949 1070-664X nnns volume:23 year:2016 number:5 http://dx.doi.org/10.1063/1.4946018 Volltext http://dx.doi.org/10.1063/1.4946018 http://arxiv.org/abs/1512.05973 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_47 GBV_ILN_70 AR 23 2016 5 |
allfieldsGer |
10.1063/1.4946018 doi PQ20160719 (DE-627)OLC1975779339 (DE-599)GBVOLC1975779339 (PRQ)a976-2e0f8106ee3f7b41148bca98e68417d2fac387d60afdc3c80c4e738f3979e4290 (KEY)0178548620160000023000500000energyboostinlaserwakefieldacceleratorsusingsharpd DE-627 ger DE-627 rakwb eng 530 DNB Döpp, A verfasserin aut Energy boost in laser wakefield accelerators using sharp density transitions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing. Nutzungsrecht: © Author(s) Physics Accelerator Physics Plasma Physics Guillaume, E oth Thaury, C oth Lifschitz, A oth Ta Phuoc, K oth Malka, V oth Enthalten in Physics of plasmas Melville, NY : AIP, 1994 23(2016), 5 (DE-627)171342119 (DE-600)1179425-2 (DE-576)038876949 1070-664X nnns volume:23 year:2016 number:5 http://dx.doi.org/10.1063/1.4946018 Volltext http://dx.doi.org/10.1063/1.4946018 http://arxiv.org/abs/1512.05973 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_47 GBV_ILN_70 AR 23 2016 5 |
allfieldsSound |
10.1063/1.4946018 doi PQ20160719 (DE-627)OLC1975779339 (DE-599)GBVOLC1975779339 (PRQ)a976-2e0f8106ee3f7b41148bca98e68417d2fac387d60afdc3c80c4e738f3979e4290 (KEY)0178548620160000023000500000energyboostinlaserwakefieldacceleratorsusingsharpd DE-627 ger DE-627 rakwb eng 530 DNB Döpp, A verfasserin aut Energy boost in laser wakefield accelerators using sharp density transitions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing. Nutzungsrecht: © Author(s) Physics Accelerator Physics Plasma Physics Guillaume, E oth Thaury, C oth Lifschitz, A oth Ta Phuoc, K oth Malka, V oth Enthalten in Physics of plasmas Melville, NY : AIP, 1994 23(2016), 5 (DE-627)171342119 (DE-600)1179425-2 (DE-576)038876949 1070-664X nnns volume:23 year:2016 number:5 http://dx.doi.org/10.1063/1.4946018 Volltext http://dx.doi.org/10.1063/1.4946018 http://arxiv.org/abs/1512.05973 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_47 GBV_ILN_70 AR 23 2016 5 |
language |
English |
source |
Enthalten in Physics of plasmas 23(2016), 5 volume:23 year:2016 number:5 |
sourceStr |
Enthalten in Physics of plasmas 23(2016), 5 volume:23 year:2016 number:5 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics Accelerator Physics Plasma Physics |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Physics of plasmas |
authorswithroles_txt_mv |
Döpp, A @@aut@@ Guillaume, E @@oth@@ Thaury, C @@oth@@ Lifschitz, A @@oth@@ Ta Phuoc, K @@oth@@ Malka, V @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
171342119 |
dewey-sort |
3530 |
id |
OLC1975779339 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1975779339</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714192833.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.4946018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1975779339</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1975779339</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a976-2e0f8106ee3f7b41148bca98e68417d2fac387d60afdc3c80c4e738f3979e4290</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0178548620160000023000500000energyboostinlaserwakefieldacceleratorsusingsharpd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Döpp, A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy boost in laser wakefield accelerators using sharp density transitions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Author(s)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accelerator Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma Physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guillaume, E</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thaury, C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lifschitz, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ta Phuoc, K</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malka, V</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics of plasmas</subfield><subfield code="d">Melville, NY : AIP, 1994</subfield><subfield code="g">23(2016), 5</subfield><subfield code="w">(DE-627)171342119</subfield><subfield code="w">(DE-600)1179425-2</subfield><subfield code="w">(DE-576)038876949</subfield><subfield code="x">1070-664X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1063/1.4946018</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1063/1.4946018</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1512.05973</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield></datafield></record></collection>
|
author |
Döpp, A |
spellingShingle |
Döpp, A ddc 530 misc Physics misc Accelerator Physics misc Plasma Physics Energy boost in laser wakefield accelerators using sharp density transitions |
authorStr |
Döpp, A |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171342119 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1070-664X |
topic_title |
530 DNB Energy boost in laser wakefield accelerators using sharp density transitions Physics Accelerator Physics Plasma Physics |
topic |
ddc 530 misc Physics misc Accelerator Physics misc Plasma Physics |
topic_unstemmed |
ddc 530 misc Physics misc Accelerator Physics misc Plasma Physics |
topic_browse |
ddc 530 misc Physics misc Accelerator Physics misc Plasma Physics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
e g eg c t ct a l al p k t pk pkt v m vm |
hierarchy_parent_title |
Physics of plasmas |
hierarchy_parent_id |
171342119 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Physics of plasmas |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171342119 (DE-600)1179425-2 (DE-576)038876949 |
title |
Energy boost in laser wakefield accelerators using sharp density transitions |
ctrlnum |
(DE-627)OLC1975779339 (DE-599)GBVOLC1975779339 (PRQ)a976-2e0f8106ee3f7b41148bca98e68417d2fac387d60afdc3c80c4e738f3979e4290 (KEY)0178548620160000023000500000energyboostinlaserwakefieldacceleratorsusingsharpd |
title_full |
Energy boost in laser wakefield accelerators using sharp density transitions |
author_sort |
Döpp, A |
journal |
Physics of plasmas |
journalStr |
Physics of plasmas |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Döpp, A |
container_volume |
23 |
class |
530 DNB |
format_se |
Aufsätze |
author-letter |
Döpp, A |
doi_str_mv |
10.1063/1.4946018 |
dewey-full |
530 |
title_sort |
energy boost in laser wakefield accelerators using sharp density transitions |
title_auth |
Energy boost in laser wakefield accelerators using sharp density transitions |
abstract |
The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing. |
abstractGer |
The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing. |
abstract_unstemmed |
The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_47 GBV_ILN_70 |
container_issue |
5 |
title_short |
Energy boost in laser wakefield accelerators using sharp density transitions |
url |
http://dx.doi.org/10.1063/1.4946018 http://arxiv.org/abs/1512.05973 |
remote_bool |
false |
author2 |
Guillaume, E Thaury, C Lifschitz, A Ta Phuoc, K Malka, V |
author2Str |
Guillaume, E Thaury, C Lifschitz, A Ta Phuoc, K Malka, V |
ppnlink |
171342119 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1063/1.4946018 |
up_date |
2024-07-03T13:31:26.894Z |
_version_ |
1803564862031265792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1975779339</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714192833.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.4946018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1975779339</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1975779339</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a976-2e0f8106ee3f7b41148bca98e68417d2fac387d60afdc3c80c4e738f3979e4290</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0178548620160000023000500000energyboostinlaserwakefieldacceleratorsusingsharpd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Döpp, A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy boost in laser wakefield accelerators using sharp density transitions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Author(s)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accelerator Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma Physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guillaume, E</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thaury, C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lifschitz, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ta Phuoc, K</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malka, V</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics of plasmas</subfield><subfield code="d">Melville, NY : AIP, 1994</subfield><subfield code="g">23(2016), 5</subfield><subfield code="w">(DE-627)171342119</subfield><subfield code="w">(DE-600)1179425-2</subfield><subfield code="w">(DE-576)038876949</subfield><subfield code="x">1070-664X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1063/1.4946018</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1063/1.4946018</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1512.05973</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield></datafield></record></collection>
|
score |
7.401458 |