RLS Adaptive Filter With Inequality Constraints
In practical implementations of estimation algorithms, designers usually have information about the range in which the unknown variables must lie either due to physical constraints (such as power always being non-negative) or due to hardware constraints (such as in implementations using fixed-point...
Ausführliche Beschreibung
Autor*in: |
Nascimento, Vitor H [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE signal processing letters - Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5, New York, NY, 19XX, 23(2016), 5, Seite 752-756 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2016 ; number:5 ; pages:752-756 |
Links: |
---|
DOI / URN: |
10.1109/LSP.2016.2551468 |
---|
Katalog-ID: |
OLC1975987675 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1975987675 | ||
003 | DE-627 | ||
005 | 20220216211342.0 | ||
007 | tu | ||
008 | 160609s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/LSP.2016.2551468 |2 doi | |
028 | 5 | 2 | |a PQ20160610 |
035 | |a (DE-627)OLC1975987675 | ||
035 | |a (DE-599)GBVOLC1975987675 | ||
035 | |a (PRQ)i534-561e90561f9794189fff7586744ffce20e10e6331e458d4c7945f972d0a169d0 | ||
035 | |a (KEY)02390256u20160000023000500752rlsadaptivefilterwithinequalityconstraints | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
084 | |a 53.00 |2 bkl | ||
100 | 1 | |a Nascimento, Vitor H |e verfasserin |4 aut | |
245 | 1 | 0 | |a RLS Adaptive Filter With Inequality Constraints |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In practical implementations of estimation algorithms, designers usually have information about the range in which the unknown variables must lie either due to physical constraints (such as power always being non-negative) or due to hardware constraints (such as in implementations using fixed-point arithmetic). In this letter, we propose a fast (i.e., whose complexity grows linearly with the filter length) version of the dichotomous coordinate descent recursive least-squares (RLS) adaptive filter which can incorporate constraints on the variables. The constraints can be in the form of lower and upper bounds on each entry of the filter, or norm bounds. We compare the proposed algorithm with the recently proposed normalized non-negative least-mean-squares (N-NLMS) and projected-gradient normalized LMS (PG-NLMS) filters, which also include inequality constraints in the variables. | ||
650 | 4 | |a Indexes | |
650 | 4 | |a Upper bound | |
650 | 4 | |a inequality constraint | |
650 | 4 | |a Signal processing algorithms | |
650 | 4 | |a adaptive filter | |
650 | 4 | |a Approximation algorithms | |
650 | 4 | |a Hardware | |
650 | 4 | |a non-negativity | |
650 | 4 | |a Estimation | |
650 | 4 | |a box constraint | |
650 | 4 | |a RLS-DCD | |
650 | 4 | |a Complexity theory | |
700 | 1 | |a Zakharov, Yuriy V |4 oth | |
773 | 0 | 8 | |i Enthalten in |a Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 |t IEEE signal processing letters |d New York, NY, 19XX |g 23(2016), 5, Seite 752-756 |w (DE-627)182273075 |w (DE-600)916964-7 |x 1070-9908 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2016 |g number:5 |g pages:752-756 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/LSP.2016.2551468 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7448422 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
936 | b | k | |a 53.00 |q AVZ |
951 | |a AR | ||
952 | |d 23 |j 2016 |e 5 |h 752-756 |
author_variant |
v h n vh vhn |
---|---|
matchkey_str |
article:10709908:2016----::laatvflewtieult |
hierarchy_sort_str |
2016 |
bklnumber |
53.00 |
publishDate |
2016 |
allfields |
10.1109/LSP.2016.2551468 doi PQ20160610 (DE-627)OLC1975987675 (DE-599)GBVOLC1975987675 (PRQ)i534-561e90561f9794189fff7586744ffce20e10e6331e458d4c7945f972d0a169d0 (KEY)02390256u20160000023000500752rlsadaptivefilterwithinequalityconstraints DE-627 ger DE-627 rakwb eng 53.00 bkl Nascimento, Vitor H verfasserin aut RLS Adaptive Filter With Inequality Constraints 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In practical implementations of estimation algorithms, designers usually have information about the range in which the unknown variables must lie either due to physical constraints (such as power always being non-negative) or due to hardware constraints (such as in implementations using fixed-point arithmetic). In this letter, we propose a fast (i.e., whose complexity grows linearly with the filter length) version of the dichotomous coordinate descent recursive least-squares (RLS) adaptive filter which can incorporate constraints on the variables. The constraints can be in the form of lower and upper bounds on each entry of the filter, or norm bounds. We compare the proposed algorithm with the recently proposed normalized non-negative least-mean-squares (N-NLMS) and projected-gradient normalized LMS (PG-NLMS) filters, which also include inequality constraints in the variables. Indexes Upper bound inequality constraint Signal processing algorithms adaptive filter Approximation algorithms Hardware non-negativity Estimation box constraint RLS-DCD Complexity theory Zakharov, Yuriy V oth Enthalten in Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 IEEE signal processing letters New York, NY, 19XX 23(2016), 5, Seite 752-756 (DE-627)182273075 (DE-600)916964-7 1070-9908 nnns volume:23 year:2016 number:5 pages:752-756 http://dx.doi.org/10.1109/LSP.2016.2551468 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7448422 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 53.00 AVZ AR 23 2016 5 752-756 |
spelling |
10.1109/LSP.2016.2551468 doi PQ20160610 (DE-627)OLC1975987675 (DE-599)GBVOLC1975987675 (PRQ)i534-561e90561f9794189fff7586744ffce20e10e6331e458d4c7945f972d0a169d0 (KEY)02390256u20160000023000500752rlsadaptivefilterwithinequalityconstraints DE-627 ger DE-627 rakwb eng 53.00 bkl Nascimento, Vitor H verfasserin aut RLS Adaptive Filter With Inequality Constraints 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In practical implementations of estimation algorithms, designers usually have information about the range in which the unknown variables must lie either due to physical constraints (such as power always being non-negative) or due to hardware constraints (such as in implementations using fixed-point arithmetic). In this letter, we propose a fast (i.e., whose complexity grows linearly with the filter length) version of the dichotomous coordinate descent recursive least-squares (RLS) adaptive filter which can incorporate constraints on the variables. The constraints can be in the form of lower and upper bounds on each entry of the filter, or norm bounds. We compare the proposed algorithm with the recently proposed normalized non-negative least-mean-squares (N-NLMS) and projected-gradient normalized LMS (PG-NLMS) filters, which also include inequality constraints in the variables. Indexes Upper bound inequality constraint Signal processing algorithms adaptive filter Approximation algorithms Hardware non-negativity Estimation box constraint RLS-DCD Complexity theory Zakharov, Yuriy V oth Enthalten in Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 IEEE signal processing letters New York, NY, 19XX 23(2016), 5, Seite 752-756 (DE-627)182273075 (DE-600)916964-7 1070-9908 nnns volume:23 year:2016 number:5 pages:752-756 http://dx.doi.org/10.1109/LSP.2016.2551468 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7448422 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 53.00 AVZ AR 23 2016 5 752-756 |
allfields_unstemmed |
10.1109/LSP.2016.2551468 doi PQ20160610 (DE-627)OLC1975987675 (DE-599)GBVOLC1975987675 (PRQ)i534-561e90561f9794189fff7586744ffce20e10e6331e458d4c7945f972d0a169d0 (KEY)02390256u20160000023000500752rlsadaptivefilterwithinequalityconstraints DE-627 ger DE-627 rakwb eng 53.00 bkl Nascimento, Vitor H verfasserin aut RLS Adaptive Filter With Inequality Constraints 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In practical implementations of estimation algorithms, designers usually have information about the range in which the unknown variables must lie either due to physical constraints (such as power always being non-negative) or due to hardware constraints (such as in implementations using fixed-point arithmetic). In this letter, we propose a fast (i.e., whose complexity grows linearly with the filter length) version of the dichotomous coordinate descent recursive least-squares (RLS) adaptive filter which can incorporate constraints on the variables. The constraints can be in the form of lower and upper bounds on each entry of the filter, or norm bounds. We compare the proposed algorithm with the recently proposed normalized non-negative least-mean-squares (N-NLMS) and projected-gradient normalized LMS (PG-NLMS) filters, which also include inequality constraints in the variables. Indexes Upper bound inequality constraint Signal processing algorithms adaptive filter Approximation algorithms Hardware non-negativity Estimation box constraint RLS-DCD Complexity theory Zakharov, Yuriy V oth Enthalten in Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 IEEE signal processing letters New York, NY, 19XX 23(2016), 5, Seite 752-756 (DE-627)182273075 (DE-600)916964-7 1070-9908 nnns volume:23 year:2016 number:5 pages:752-756 http://dx.doi.org/10.1109/LSP.2016.2551468 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7448422 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 53.00 AVZ AR 23 2016 5 752-756 |
allfieldsGer |
10.1109/LSP.2016.2551468 doi PQ20160610 (DE-627)OLC1975987675 (DE-599)GBVOLC1975987675 (PRQ)i534-561e90561f9794189fff7586744ffce20e10e6331e458d4c7945f972d0a169d0 (KEY)02390256u20160000023000500752rlsadaptivefilterwithinequalityconstraints DE-627 ger DE-627 rakwb eng 53.00 bkl Nascimento, Vitor H verfasserin aut RLS Adaptive Filter With Inequality Constraints 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In practical implementations of estimation algorithms, designers usually have information about the range in which the unknown variables must lie either due to physical constraints (such as power always being non-negative) or due to hardware constraints (such as in implementations using fixed-point arithmetic). In this letter, we propose a fast (i.e., whose complexity grows linearly with the filter length) version of the dichotomous coordinate descent recursive least-squares (RLS) adaptive filter which can incorporate constraints on the variables. The constraints can be in the form of lower and upper bounds on each entry of the filter, or norm bounds. We compare the proposed algorithm with the recently proposed normalized non-negative least-mean-squares (N-NLMS) and projected-gradient normalized LMS (PG-NLMS) filters, which also include inequality constraints in the variables. Indexes Upper bound inequality constraint Signal processing algorithms adaptive filter Approximation algorithms Hardware non-negativity Estimation box constraint RLS-DCD Complexity theory Zakharov, Yuriy V oth Enthalten in Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 IEEE signal processing letters New York, NY, 19XX 23(2016), 5, Seite 752-756 (DE-627)182273075 (DE-600)916964-7 1070-9908 nnns volume:23 year:2016 number:5 pages:752-756 http://dx.doi.org/10.1109/LSP.2016.2551468 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7448422 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 53.00 AVZ AR 23 2016 5 752-756 |
allfieldsSound |
10.1109/LSP.2016.2551468 doi PQ20160610 (DE-627)OLC1975987675 (DE-599)GBVOLC1975987675 (PRQ)i534-561e90561f9794189fff7586744ffce20e10e6331e458d4c7945f972d0a169d0 (KEY)02390256u20160000023000500752rlsadaptivefilterwithinequalityconstraints DE-627 ger DE-627 rakwb eng 53.00 bkl Nascimento, Vitor H verfasserin aut RLS Adaptive Filter With Inequality Constraints 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In practical implementations of estimation algorithms, designers usually have information about the range in which the unknown variables must lie either due to physical constraints (such as power always being non-negative) or due to hardware constraints (such as in implementations using fixed-point arithmetic). In this letter, we propose a fast (i.e., whose complexity grows linearly with the filter length) version of the dichotomous coordinate descent recursive least-squares (RLS) adaptive filter which can incorporate constraints on the variables. The constraints can be in the form of lower and upper bounds on each entry of the filter, or norm bounds. We compare the proposed algorithm with the recently proposed normalized non-negative least-mean-squares (N-NLMS) and projected-gradient normalized LMS (PG-NLMS) filters, which also include inequality constraints in the variables. Indexes Upper bound inequality constraint Signal processing algorithms adaptive filter Approximation algorithms Hardware non-negativity Estimation box constraint RLS-DCD Complexity theory Zakharov, Yuriy V oth Enthalten in Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 IEEE signal processing letters New York, NY, 19XX 23(2016), 5, Seite 752-756 (DE-627)182273075 (DE-600)916964-7 1070-9908 nnns volume:23 year:2016 number:5 pages:752-756 http://dx.doi.org/10.1109/LSP.2016.2551468 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7448422 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 53.00 AVZ AR 23 2016 5 752-756 |
language |
English |
source |
Enthalten in IEEE signal processing letters 23(2016), 5, Seite 752-756 volume:23 year:2016 number:5 pages:752-756 |
sourceStr |
Enthalten in IEEE signal processing letters 23(2016), 5, Seite 752-756 volume:23 year:2016 number:5 pages:752-756 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Indexes Upper bound inequality constraint Signal processing algorithms adaptive filter Approximation algorithms Hardware non-negativity Estimation box constraint RLS-DCD Complexity theory |
isfreeaccess_bool |
false |
container_title |
IEEE signal processing letters |
authorswithroles_txt_mv |
Nascimento, Vitor H @@aut@@ Zakharov, Yuriy V @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
182273075 |
id |
OLC1975987675 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1975987675</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216211342.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/LSP.2016.2551468</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1975987675</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1975987675</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i534-561e90561f9794189fff7586744ffce20e10e6331e458d4c7945f972d0a169d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)02390256u20160000023000500752rlsadaptivefilterwithinequalityconstraints</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nascimento, Vitor H</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">RLS Adaptive Filter With Inequality Constraints</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In practical implementations of estimation algorithms, designers usually have information about the range in which the unknown variables must lie either due to physical constraints (such as power always being non-negative) or due to hardware constraints (such as in implementations using fixed-point arithmetic). In this letter, we propose a fast (i.e., whose complexity grows linearly with the filter length) version of the dichotomous coordinate descent recursive least-squares (RLS) adaptive filter which can incorporate constraints on the variables. The constraints can be in the form of lower and upper bounds on each entry of the filter, or norm bounds. We compare the proposed algorithm with the recently proposed normalized non-negative least-mean-squares (N-NLMS) and projected-gradient normalized LMS (PG-NLMS) filters, which also include inequality constraints in the variables.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Indexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Upper bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inequality constraint</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive filter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hardware</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-negativity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">box constraint</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RLS-DCD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complexity theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zakharov, Yuriy V</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5</subfield><subfield code="t">IEEE signal processing letters</subfield><subfield code="d">New York, NY, 19XX</subfield><subfield code="g">23(2016), 5, Seite 752-756</subfield><subfield code="w">(DE-627)182273075</subfield><subfield code="w">(DE-600)916964-7</subfield><subfield code="x">1070-9908</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:752-756</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/LSP.2016.2551468</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7448422</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">752-756</subfield></datafield></record></collection>
|
author |
Nascimento, Vitor H |
spellingShingle |
Nascimento, Vitor H bkl 53.00 misc Indexes misc Upper bound misc inequality constraint misc Signal processing algorithms misc adaptive filter misc Approximation algorithms misc Hardware misc non-negativity misc Estimation misc box constraint misc RLS-DCD misc Complexity theory RLS Adaptive Filter With Inequality Constraints |
authorStr |
Nascimento, Vitor H |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182273075 |
format |
Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1070-9908 |
topic_title |
53.00 bkl RLS Adaptive Filter With Inequality Constraints Indexes Upper bound inequality constraint Signal processing algorithms adaptive filter Approximation algorithms Hardware non-negativity Estimation box constraint RLS-DCD Complexity theory |
topic |
bkl 53.00 misc Indexes misc Upper bound misc inequality constraint misc Signal processing algorithms misc adaptive filter misc Approximation algorithms misc Hardware misc non-negativity misc Estimation misc box constraint misc RLS-DCD misc Complexity theory |
topic_unstemmed |
bkl 53.00 misc Indexes misc Upper bound misc inequality constraint misc Signal processing algorithms misc adaptive filter misc Approximation algorithms misc Hardware misc non-negativity misc Estimation misc box constraint misc RLS-DCD misc Complexity theory |
topic_browse |
bkl 53.00 misc Indexes misc Upper bound misc inequality constraint misc Signal processing algorithms misc adaptive filter misc Approximation algorithms misc Hardware misc non-negativity misc Estimation misc box constraint misc RLS-DCD misc Complexity theory |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
y v z yv yvz |
hierarchy_parent_title |
IEEE signal processing letters |
hierarchy_parent_id |
182273075 |
hierarchy_top_title |
IEEE signal processing letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182273075 (DE-600)916964-7 |
title |
RLS Adaptive Filter With Inequality Constraints |
ctrlnum |
(DE-627)OLC1975987675 (DE-599)GBVOLC1975987675 (PRQ)i534-561e90561f9794189fff7586744ffce20e10e6331e458d4c7945f972d0a169d0 (KEY)02390256u20160000023000500752rlsadaptivefilterwithinequalityconstraints |
title_full |
RLS Adaptive Filter With Inequality Constraints |
author_sort |
Nascimento, Vitor H |
journal |
IEEE signal processing letters |
journalStr |
IEEE signal processing letters |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
752 |
author_browse |
Nascimento, Vitor H |
container_volume |
23 |
class |
53.00 bkl |
format_se |
Aufsätze |
author-letter |
Nascimento, Vitor H |
doi_str_mv |
10.1109/LSP.2016.2551468 |
title_sort |
rls adaptive filter with inequality constraints |
title_auth |
RLS Adaptive Filter With Inequality Constraints |
abstract |
In practical implementations of estimation algorithms, designers usually have information about the range in which the unknown variables must lie either due to physical constraints (such as power always being non-negative) or due to hardware constraints (such as in implementations using fixed-point arithmetic). In this letter, we propose a fast (i.e., whose complexity grows linearly with the filter length) version of the dichotomous coordinate descent recursive least-squares (RLS) adaptive filter which can incorporate constraints on the variables. The constraints can be in the form of lower and upper bounds on each entry of the filter, or norm bounds. We compare the proposed algorithm with the recently proposed normalized non-negative least-mean-squares (N-NLMS) and projected-gradient normalized LMS (PG-NLMS) filters, which also include inequality constraints in the variables. |
abstractGer |
In practical implementations of estimation algorithms, designers usually have information about the range in which the unknown variables must lie either due to physical constraints (such as power always being non-negative) or due to hardware constraints (such as in implementations using fixed-point arithmetic). In this letter, we propose a fast (i.e., whose complexity grows linearly with the filter length) version of the dichotomous coordinate descent recursive least-squares (RLS) adaptive filter which can incorporate constraints on the variables. The constraints can be in the form of lower and upper bounds on each entry of the filter, or norm bounds. We compare the proposed algorithm with the recently proposed normalized non-negative least-mean-squares (N-NLMS) and projected-gradient normalized LMS (PG-NLMS) filters, which also include inequality constraints in the variables. |
abstract_unstemmed |
In practical implementations of estimation algorithms, designers usually have information about the range in which the unknown variables must lie either due to physical constraints (such as power always being non-negative) or due to hardware constraints (such as in implementations using fixed-point arithmetic). In this letter, we propose a fast (i.e., whose complexity grows linearly with the filter length) version of the dichotomous coordinate descent recursive least-squares (RLS) adaptive filter which can incorporate constraints on the variables. The constraints can be in the form of lower and upper bounds on each entry of the filter, or norm bounds. We compare the proposed algorithm with the recently proposed normalized non-negative least-mean-squares (N-NLMS) and projected-gradient normalized LMS (PG-NLMS) filters, which also include inequality constraints in the variables. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT |
container_issue |
5 |
title_short |
RLS Adaptive Filter With Inequality Constraints |
url |
http://dx.doi.org/10.1109/LSP.2016.2551468 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7448422 |
remote_bool |
false |
author2 |
Zakharov, Yuriy V |
author2Str |
Zakharov, Yuriy V |
ppnlink |
182273075 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/LSP.2016.2551468 |
up_date |
2024-07-03T14:18:17.496Z |
_version_ |
1803567809168408576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1975987675</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216211342.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/LSP.2016.2551468</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1975987675</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1975987675</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i534-561e90561f9794189fff7586744ffce20e10e6331e458d4c7945f972d0a169d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)02390256u20160000023000500752rlsadaptivefilterwithinequalityconstraints</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nascimento, Vitor H</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">RLS Adaptive Filter With Inequality Constraints</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In practical implementations of estimation algorithms, designers usually have information about the range in which the unknown variables must lie either due to physical constraints (such as power always being non-negative) or due to hardware constraints (such as in implementations using fixed-point arithmetic). In this letter, we propose a fast (i.e., whose complexity grows linearly with the filter length) version of the dichotomous coordinate descent recursive least-squares (RLS) adaptive filter which can incorporate constraints on the variables. The constraints can be in the form of lower and upper bounds on each entry of the filter, or norm bounds. We compare the proposed algorithm with the recently proposed normalized non-negative least-mean-squares (N-NLMS) and projected-gradient normalized LMS (PG-NLMS) filters, which also include inequality constraints in the variables.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Indexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Upper bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inequality constraint</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive filter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hardware</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-negativity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">box constraint</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RLS-DCD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complexity theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zakharov, Yuriy V</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5</subfield><subfield code="t">IEEE signal processing letters</subfield><subfield code="d">New York, NY, 19XX</subfield><subfield code="g">23(2016), 5, Seite 752-756</subfield><subfield code="w">(DE-627)182273075</subfield><subfield code="w">(DE-600)916964-7</subfield><subfield code="x">1070-9908</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:752-756</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/LSP.2016.2551468</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7448422</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">752-756</subfield></datafield></record></collection>
|
score |
7.401597 |