A statistical representation of the cosmological constant from finite size effects at the apparent horizon
In this paper we present a statistical description of the cosmological constant in terms of massless bosons (gravitons). To this purpose, we use our recent results implying a non vanishing temperature $${T_{\Lambda }}$$ T Λ for the cosmological constant. In particular, we found that a non vanishing...
Ausführliche Beschreibung
Autor*in: |
Viaggiu, Stefano [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © Springer Science+Business Media New York 2016 |
---|
Schlagwörter: |
Classical and Quantum Gravitation, Relativity Theory Theoretical, Mathematical and Computational Physics Astronomy, Astrophysics and Cosmology Cosmology and Nongalactic Astrophysics |
---|
Übergeordnetes Werk: |
Enthalten in: General relativity and gravitation - Dordrecht [u.a.] : Springer, 1970, 48(2016), 7, Seite 1-12 |
---|---|
Übergeordnetes Werk: |
volume:48 ; year:2016 ; number:7 ; pages:1-12 |
Links: |
---|
DOI / URN: |
10.1007/s10714-016-2095-5 |
---|
Katalog-ID: |
OLC1976514959 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1976514959 | ||
003 | DE-627 | ||
005 | 20220220072455.0 | ||
007 | tu | ||
008 | 160719s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10714-016-2095-5 |2 doi | |
028 | 5 | 2 | |a PQ20161012 |
035 | |a (DE-627)OLC1976514959 | ||
035 | |a (DE-599)GBVOLC1976514959 | ||
035 | |a (PRQ)a1778-dd48d52d7b97c15ec298b01ef14423e409585d7349633174cceeeee1205b4e570 | ||
035 | |a (KEY)0004197120160000048000700001statisticalrepresentationofthecosmologicalconstant | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 33.21 |2 bkl | ||
084 | |a 39.30 |2 bkl | ||
100 | 1 | |a Viaggiu, Stefano |e verfasserin |4 aut | |
245 | 1 | 2 | |a A statistical representation of the cosmological constant from finite size effects at the apparent horizon |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper we present a statistical description of the cosmological constant in terms of massless bosons (gravitons). To this purpose, we use our recent results implying a non vanishing temperature $${T_{\Lambda }}$$ T Λ for the cosmological constant. In particular, we found that a non vanishing $$T_{\Lambda }$$ T Λ allows us to depict the cosmological constant $$\Lambda $$ Λ as composed of elementary oscillations of massless bosons of energy $$\hbar \omega $$ ħ ω by means of the Bose–Einstein distribution. In this context, as happens for photons in a medium, the effective phase velocity $$v_g$$ v g of these massless excitations is not given by the speed of light c but it is suppressed by a factor depending on the number of quanta present in the universe at the apparent horizon. We found interesting formulas relating the cosmological constant, the number of quanta N and the mean value $$\overline{\lambda }$$ λ ¯ of the wavelength of the gravitons. In this context, we study the possibility to look to the gravitons system so obtained as being very near to be a Bose–Einstein condensate. Finally, an attempt is done to write down the Friedmann flat equations in terms of N and $$\overline{\lambda }$$ λ ¯ . | ||
540 | |a Nutzungsrecht: © Springer Science+Business Media New York 2016 | ||
650 | 4 | |a Bose–Einstein condensation | |
650 | 4 | |a Physics | |
650 | 4 | |a Classical and Quantum Gravitation, Relativity Theory | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Astronomy, Astrophysics and Cosmology | |
650 | 4 | |a Gravitons | |
650 | 4 | |a Cosmological constant | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Apparent horizon | |
650 | 4 | |a Cosmology and Nongalactic Astrophysics | |
650 | 4 | |a High Energy Physics | |
650 | 4 | |a Astrophysics | |
650 | 4 | |a General Relativity and Quantum Cosmology | |
650 | 4 | |a Theory | |
773 | 0 | 8 | |i Enthalten in |t General relativity and gravitation |d Dordrecht [u.a.] : Springer, 1970 |g 48(2016), 7, Seite 1-12 |w (DE-627)129605735 |w (DE-600)242130-6 |w (DE-576)015100022 |x 0001-7701 |7 nnns |
773 | 1 | 8 | |g volume:48 |g year:2016 |g number:7 |g pages:1-12 |
856 | 4 | 1 | |u http://dx.doi.org/10.1007/s10714-016-2095-5 |3 Volltext |
856 | 4 | 2 | |u http://arxiv.org/abs/1606.08588 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-AST | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2409 | ||
936 | b | k | |a 33.21 |q AVZ |
936 | b | k | |a 39.30 |q AVZ |
951 | |a AR | ||
952 | |d 48 |j 2016 |e 7 |h 1-12 |
author_variant |
s v sv |
---|---|
matchkey_str |
article:00017701:2016----::saitclersnainfhcsooiacntnfofntszef |
hierarchy_sort_str |
2016 |
bklnumber |
33.21 39.30 |
publishDate |
2016 |
allfields |
10.1007/s10714-016-2095-5 doi PQ20161012 (DE-627)OLC1976514959 (DE-599)GBVOLC1976514959 (PRQ)a1778-dd48d52d7b97c15ec298b01ef14423e409585d7349633174cceeeee1205b4e570 (KEY)0004197120160000048000700001statisticalrepresentationofthecosmologicalconstant DE-627 ger DE-627 rakwb eng 530 DE-600 33.21 bkl 39.30 bkl Viaggiu, Stefano verfasserin aut A statistical representation of the cosmological constant from finite size effects at the apparent horizon 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper we present a statistical description of the cosmological constant in terms of massless bosons (gravitons). To this purpose, we use our recent results implying a non vanishing temperature $${T_{\Lambda }}$$ T Λ for the cosmological constant. In particular, we found that a non vanishing $$T_{\Lambda }$$ T Λ allows us to depict the cosmological constant $$\Lambda $$ Λ as composed of elementary oscillations of massless bosons of energy $$\hbar \omega $$ ħ ω by means of the Bose–Einstein distribution. In this context, as happens for photons in a medium, the effective phase velocity $$v_g$$ v g of these massless excitations is not given by the speed of light c but it is suppressed by a factor depending on the number of quanta present in the universe at the apparent horizon. We found interesting formulas relating the cosmological constant, the number of quanta N and the mean value $$\overline{\lambda }$$ λ ¯ of the wavelength of the gravitons. In this context, we study the possibility to look to the gravitons system so obtained as being very near to be a Bose–Einstein condensate. Finally, an attempt is done to write down the Friedmann flat equations in terms of N and $$\overline{\lambda }$$ λ ¯ . Nutzungsrecht: © Springer Science+Business Media New York 2016 Bose–Einstein condensation Physics Classical and Quantum Gravitation, Relativity Theory Theoretical, Mathematical and Computational Physics Astronomy, Astrophysics and Cosmology Gravitons Cosmological constant Quantum Physics Differential Geometry Apparent horizon Cosmology and Nongalactic Astrophysics High Energy Physics Astrophysics General Relativity and Quantum Cosmology Theory Enthalten in General relativity and gravitation Dordrecht [u.a.] : Springer, 1970 48(2016), 7, Seite 1-12 (DE-627)129605735 (DE-600)242130-6 (DE-576)015100022 0001-7701 nnns volume:48 year:2016 number:7 pages:1-12 http://dx.doi.org/10.1007/s10714-016-2095-5 Volltext http://arxiv.org/abs/1606.08588 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_70 GBV_ILN_2409 33.21 AVZ 39.30 AVZ AR 48 2016 7 1-12 |
spelling |
10.1007/s10714-016-2095-5 doi PQ20161012 (DE-627)OLC1976514959 (DE-599)GBVOLC1976514959 (PRQ)a1778-dd48d52d7b97c15ec298b01ef14423e409585d7349633174cceeeee1205b4e570 (KEY)0004197120160000048000700001statisticalrepresentationofthecosmologicalconstant DE-627 ger DE-627 rakwb eng 530 DE-600 33.21 bkl 39.30 bkl Viaggiu, Stefano verfasserin aut A statistical representation of the cosmological constant from finite size effects at the apparent horizon 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper we present a statistical description of the cosmological constant in terms of massless bosons (gravitons). To this purpose, we use our recent results implying a non vanishing temperature $${T_{\Lambda }}$$ T Λ for the cosmological constant. In particular, we found that a non vanishing $$T_{\Lambda }$$ T Λ allows us to depict the cosmological constant $$\Lambda $$ Λ as composed of elementary oscillations of massless bosons of energy $$\hbar \omega $$ ħ ω by means of the Bose–Einstein distribution. In this context, as happens for photons in a medium, the effective phase velocity $$v_g$$ v g of these massless excitations is not given by the speed of light c but it is suppressed by a factor depending on the number of quanta present in the universe at the apparent horizon. We found interesting formulas relating the cosmological constant, the number of quanta N and the mean value $$\overline{\lambda }$$ λ ¯ of the wavelength of the gravitons. In this context, we study the possibility to look to the gravitons system so obtained as being very near to be a Bose–Einstein condensate. Finally, an attempt is done to write down the Friedmann flat equations in terms of N and $$\overline{\lambda }$$ λ ¯ . Nutzungsrecht: © Springer Science+Business Media New York 2016 Bose–Einstein condensation Physics Classical and Quantum Gravitation, Relativity Theory Theoretical, Mathematical and Computational Physics Astronomy, Astrophysics and Cosmology Gravitons Cosmological constant Quantum Physics Differential Geometry Apparent horizon Cosmology and Nongalactic Astrophysics High Energy Physics Astrophysics General Relativity and Quantum Cosmology Theory Enthalten in General relativity and gravitation Dordrecht [u.a.] : Springer, 1970 48(2016), 7, Seite 1-12 (DE-627)129605735 (DE-600)242130-6 (DE-576)015100022 0001-7701 nnns volume:48 year:2016 number:7 pages:1-12 http://dx.doi.org/10.1007/s10714-016-2095-5 Volltext http://arxiv.org/abs/1606.08588 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_70 GBV_ILN_2409 33.21 AVZ 39.30 AVZ AR 48 2016 7 1-12 |
allfields_unstemmed |
10.1007/s10714-016-2095-5 doi PQ20161012 (DE-627)OLC1976514959 (DE-599)GBVOLC1976514959 (PRQ)a1778-dd48d52d7b97c15ec298b01ef14423e409585d7349633174cceeeee1205b4e570 (KEY)0004197120160000048000700001statisticalrepresentationofthecosmologicalconstant DE-627 ger DE-627 rakwb eng 530 DE-600 33.21 bkl 39.30 bkl Viaggiu, Stefano verfasserin aut A statistical representation of the cosmological constant from finite size effects at the apparent horizon 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper we present a statistical description of the cosmological constant in terms of massless bosons (gravitons). To this purpose, we use our recent results implying a non vanishing temperature $${T_{\Lambda }}$$ T Λ for the cosmological constant. In particular, we found that a non vanishing $$T_{\Lambda }$$ T Λ allows us to depict the cosmological constant $$\Lambda $$ Λ as composed of elementary oscillations of massless bosons of energy $$\hbar \omega $$ ħ ω by means of the Bose–Einstein distribution. In this context, as happens for photons in a medium, the effective phase velocity $$v_g$$ v g of these massless excitations is not given by the speed of light c but it is suppressed by a factor depending on the number of quanta present in the universe at the apparent horizon. We found interesting formulas relating the cosmological constant, the number of quanta N and the mean value $$\overline{\lambda }$$ λ ¯ of the wavelength of the gravitons. In this context, we study the possibility to look to the gravitons system so obtained as being very near to be a Bose–Einstein condensate. Finally, an attempt is done to write down the Friedmann flat equations in terms of N and $$\overline{\lambda }$$ λ ¯ . Nutzungsrecht: © Springer Science+Business Media New York 2016 Bose–Einstein condensation Physics Classical and Quantum Gravitation, Relativity Theory Theoretical, Mathematical and Computational Physics Astronomy, Astrophysics and Cosmology Gravitons Cosmological constant Quantum Physics Differential Geometry Apparent horizon Cosmology and Nongalactic Astrophysics High Energy Physics Astrophysics General Relativity and Quantum Cosmology Theory Enthalten in General relativity and gravitation Dordrecht [u.a.] : Springer, 1970 48(2016), 7, Seite 1-12 (DE-627)129605735 (DE-600)242130-6 (DE-576)015100022 0001-7701 nnns volume:48 year:2016 number:7 pages:1-12 http://dx.doi.org/10.1007/s10714-016-2095-5 Volltext http://arxiv.org/abs/1606.08588 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_70 GBV_ILN_2409 33.21 AVZ 39.30 AVZ AR 48 2016 7 1-12 |
allfieldsGer |
10.1007/s10714-016-2095-5 doi PQ20161012 (DE-627)OLC1976514959 (DE-599)GBVOLC1976514959 (PRQ)a1778-dd48d52d7b97c15ec298b01ef14423e409585d7349633174cceeeee1205b4e570 (KEY)0004197120160000048000700001statisticalrepresentationofthecosmologicalconstant DE-627 ger DE-627 rakwb eng 530 DE-600 33.21 bkl 39.30 bkl Viaggiu, Stefano verfasserin aut A statistical representation of the cosmological constant from finite size effects at the apparent horizon 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper we present a statistical description of the cosmological constant in terms of massless bosons (gravitons). To this purpose, we use our recent results implying a non vanishing temperature $${T_{\Lambda }}$$ T Λ for the cosmological constant. In particular, we found that a non vanishing $$T_{\Lambda }$$ T Λ allows us to depict the cosmological constant $$\Lambda $$ Λ as composed of elementary oscillations of massless bosons of energy $$\hbar \omega $$ ħ ω by means of the Bose–Einstein distribution. In this context, as happens for photons in a medium, the effective phase velocity $$v_g$$ v g of these massless excitations is not given by the speed of light c but it is suppressed by a factor depending on the number of quanta present in the universe at the apparent horizon. We found interesting formulas relating the cosmological constant, the number of quanta N and the mean value $$\overline{\lambda }$$ λ ¯ of the wavelength of the gravitons. In this context, we study the possibility to look to the gravitons system so obtained as being very near to be a Bose–Einstein condensate. Finally, an attempt is done to write down the Friedmann flat equations in terms of N and $$\overline{\lambda }$$ λ ¯ . Nutzungsrecht: © Springer Science+Business Media New York 2016 Bose–Einstein condensation Physics Classical and Quantum Gravitation, Relativity Theory Theoretical, Mathematical and Computational Physics Astronomy, Astrophysics and Cosmology Gravitons Cosmological constant Quantum Physics Differential Geometry Apparent horizon Cosmology and Nongalactic Astrophysics High Energy Physics Astrophysics General Relativity and Quantum Cosmology Theory Enthalten in General relativity and gravitation Dordrecht [u.a.] : Springer, 1970 48(2016), 7, Seite 1-12 (DE-627)129605735 (DE-600)242130-6 (DE-576)015100022 0001-7701 nnns volume:48 year:2016 number:7 pages:1-12 http://dx.doi.org/10.1007/s10714-016-2095-5 Volltext http://arxiv.org/abs/1606.08588 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_70 GBV_ILN_2409 33.21 AVZ 39.30 AVZ AR 48 2016 7 1-12 |
allfieldsSound |
10.1007/s10714-016-2095-5 doi PQ20161012 (DE-627)OLC1976514959 (DE-599)GBVOLC1976514959 (PRQ)a1778-dd48d52d7b97c15ec298b01ef14423e409585d7349633174cceeeee1205b4e570 (KEY)0004197120160000048000700001statisticalrepresentationofthecosmologicalconstant DE-627 ger DE-627 rakwb eng 530 DE-600 33.21 bkl 39.30 bkl Viaggiu, Stefano verfasserin aut A statistical representation of the cosmological constant from finite size effects at the apparent horizon 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper we present a statistical description of the cosmological constant in terms of massless bosons (gravitons). To this purpose, we use our recent results implying a non vanishing temperature $${T_{\Lambda }}$$ T Λ for the cosmological constant. In particular, we found that a non vanishing $$T_{\Lambda }$$ T Λ allows us to depict the cosmological constant $$\Lambda $$ Λ as composed of elementary oscillations of massless bosons of energy $$\hbar \omega $$ ħ ω by means of the Bose–Einstein distribution. In this context, as happens for photons in a medium, the effective phase velocity $$v_g$$ v g of these massless excitations is not given by the speed of light c but it is suppressed by a factor depending on the number of quanta present in the universe at the apparent horizon. We found interesting formulas relating the cosmological constant, the number of quanta N and the mean value $$\overline{\lambda }$$ λ ¯ of the wavelength of the gravitons. In this context, we study the possibility to look to the gravitons system so obtained as being very near to be a Bose–Einstein condensate. Finally, an attempt is done to write down the Friedmann flat equations in terms of N and $$\overline{\lambda }$$ λ ¯ . Nutzungsrecht: © Springer Science+Business Media New York 2016 Bose–Einstein condensation Physics Classical and Quantum Gravitation, Relativity Theory Theoretical, Mathematical and Computational Physics Astronomy, Astrophysics and Cosmology Gravitons Cosmological constant Quantum Physics Differential Geometry Apparent horizon Cosmology and Nongalactic Astrophysics High Energy Physics Astrophysics General Relativity and Quantum Cosmology Theory Enthalten in General relativity and gravitation Dordrecht [u.a.] : Springer, 1970 48(2016), 7, Seite 1-12 (DE-627)129605735 (DE-600)242130-6 (DE-576)015100022 0001-7701 nnns volume:48 year:2016 number:7 pages:1-12 http://dx.doi.org/10.1007/s10714-016-2095-5 Volltext http://arxiv.org/abs/1606.08588 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_70 GBV_ILN_2409 33.21 AVZ 39.30 AVZ AR 48 2016 7 1-12 |
language |
English |
source |
Enthalten in General relativity and gravitation 48(2016), 7, Seite 1-12 volume:48 year:2016 number:7 pages:1-12 |
sourceStr |
Enthalten in General relativity and gravitation 48(2016), 7, Seite 1-12 volume:48 year:2016 number:7 pages:1-12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bose–Einstein condensation Physics Classical and Quantum Gravitation, Relativity Theory Theoretical, Mathematical and Computational Physics Astronomy, Astrophysics and Cosmology Gravitons Cosmological constant Quantum Physics Differential Geometry Apparent horizon Cosmology and Nongalactic Astrophysics High Energy Physics Astrophysics General Relativity and Quantum Cosmology Theory |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
General relativity and gravitation |
authorswithroles_txt_mv |
Viaggiu, Stefano @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129605735 |
dewey-sort |
3530 |
id |
OLC1976514959 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1976514959</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220072455.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10714-016-2095-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1976514959</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1976514959</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1778-dd48d52d7b97c15ec298b01ef14423e409585d7349633174cceeeee1205b4e570</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0004197120160000048000700001statisticalrepresentationofthecosmologicalconstant</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Viaggiu, Stefano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A statistical representation of the cosmological constant from finite size effects at the apparent horizon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper we present a statistical description of the cosmological constant in terms of massless bosons (gravitons). To this purpose, we use our recent results implying a non vanishing temperature $${T_{\Lambda }}$$ T Λ for the cosmological constant. In particular, we found that a non vanishing $$T_{\Lambda }$$ T Λ allows us to depict the cosmological constant $$\Lambda $$ Λ as composed of elementary oscillations of massless bosons of energy $$\hbar \omega $$ ħ ω by means of the Bose–Einstein distribution. In this context, as happens for photons in a medium, the effective phase velocity $$v_g$$ v g of these massless excitations is not given by the speed of light c but it is suppressed by a factor depending on the number of quanta present in the universe at the apparent horizon. We found interesting formulas relating the cosmological constant, the number of quanta N and the mean value $$\overline{\lambda }$$ λ ¯ of the wavelength of the gravitons. In this context, we study the possibility to look to the gravitons system so obtained as being very near to be a Bose–Einstein condensate. Finally, an attempt is done to write down the Friedmann flat equations in terms of N and $$\overline{\lambda }$$ λ ¯ .</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bose–Einstein condensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classical and Quantum Gravitation, Relativity Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astronomy, Astrophysics and Cosmology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gravitons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmological constant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apparent horizon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmology and Nongalactic Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Energy Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">General Relativity and Quantum Cosmology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">General relativity and gravitation</subfield><subfield code="d">Dordrecht [u.a.] : Springer, 1970</subfield><subfield code="g">48(2016), 7, Seite 1-12</subfield><subfield code="w">(DE-627)129605735</subfield><subfield code="w">(DE-600)242130-6</subfield><subfield code="w">(DE-576)015100022</subfield><subfield code="x">0001-7701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:1-12</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1007/s10714-016-2095-5</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1606.08588</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.21</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.30</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2016</subfield><subfield code="e">7</subfield><subfield code="h">1-12</subfield></datafield></record></collection>
|
author |
Viaggiu, Stefano |
spellingShingle |
Viaggiu, Stefano ddc 530 bkl 33.21 bkl 39.30 misc Bose–Einstein condensation misc Physics misc Classical and Quantum Gravitation, Relativity Theory misc Theoretical, Mathematical and Computational Physics misc Astronomy, Astrophysics and Cosmology misc Gravitons misc Cosmological constant misc Quantum Physics misc Differential Geometry misc Apparent horizon misc Cosmology and Nongalactic Astrophysics misc High Energy Physics misc Astrophysics misc General Relativity and Quantum Cosmology misc Theory A statistical representation of the cosmological constant from finite size effects at the apparent horizon |
authorStr |
Viaggiu, Stefano |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129605735 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-7701 |
topic_title |
530 DE-600 33.21 bkl 39.30 bkl A statistical representation of the cosmological constant from finite size effects at the apparent horizon Bose–Einstein condensation Physics Classical and Quantum Gravitation, Relativity Theory Theoretical, Mathematical and Computational Physics Astronomy, Astrophysics and Cosmology Gravitons Cosmological constant Quantum Physics Differential Geometry Apparent horizon Cosmology and Nongalactic Astrophysics High Energy Physics Astrophysics General Relativity and Quantum Cosmology Theory |
topic |
ddc 530 bkl 33.21 bkl 39.30 misc Bose–Einstein condensation misc Physics misc Classical and Quantum Gravitation, Relativity Theory misc Theoretical, Mathematical and Computational Physics misc Astronomy, Astrophysics and Cosmology misc Gravitons misc Cosmological constant misc Quantum Physics misc Differential Geometry misc Apparent horizon misc Cosmology and Nongalactic Astrophysics misc High Energy Physics misc Astrophysics misc General Relativity and Quantum Cosmology misc Theory |
topic_unstemmed |
ddc 530 bkl 33.21 bkl 39.30 misc Bose–Einstein condensation misc Physics misc Classical and Quantum Gravitation, Relativity Theory misc Theoretical, Mathematical and Computational Physics misc Astronomy, Astrophysics and Cosmology misc Gravitons misc Cosmological constant misc Quantum Physics misc Differential Geometry misc Apparent horizon misc Cosmology and Nongalactic Astrophysics misc High Energy Physics misc Astrophysics misc General Relativity and Quantum Cosmology misc Theory |
topic_browse |
ddc 530 bkl 33.21 bkl 39.30 misc Bose–Einstein condensation misc Physics misc Classical and Quantum Gravitation, Relativity Theory misc Theoretical, Mathematical and Computational Physics misc Astronomy, Astrophysics and Cosmology misc Gravitons misc Cosmological constant misc Quantum Physics misc Differential Geometry misc Apparent horizon misc Cosmology and Nongalactic Astrophysics misc High Energy Physics misc Astrophysics misc General Relativity and Quantum Cosmology misc Theory |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
General relativity and gravitation |
hierarchy_parent_id |
129605735 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
General relativity and gravitation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129605735 (DE-600)242130-6 (DE-576)015100022 |
title |
A statistical representation of the cosmological constant from finite size effects at the apparent horizon |
ctrlnum |
(DE-627)OLC1976514959 (DE-599)GBVOLC1976514959 (PRQ)a1778-dd48d52d7b97c15ec298b01ef14423e409585d7349633174cceeeee1205b4e570 (KEY)0004197120160000048000700001statisticalrepresentationofthecosmologicalconstant |
title_full |
A statistical representation of the cosmological constant from finite size effects at the apparent horizon |
author_sort |
Viaggiu, Stefano |
journal |
General relativity and gravitation |
journalStr |
General relativity and gravitation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Viaggiu, Stefano |
container_volume |
48 |
class |
530 DE-600 33.21 bkl 39.30 bkl |
format_se |
Aufsätze |
author-letter |
Viaggiu, Stefano |
doi_str_mv |
10.1007/s10714-016-2095-5 |
dewey-full |
530 |
title_sort |
statistical representation of the cosmological constant from finite size effects at the apparent horizon |
title_auth |
A statistical representation of the cosmological constant from finite size effects at the apparent horizon |
abstract |
In this paper we present a statistical description of the cosmological constant in terms of massless bosons (gravitons). To this purpose, we use our recent results implying a non vanishing temperature $${T_{\Lambda }}$$ T Λ for the cosmological constant. In particular, we found that a non vanishing $$T_{\Lambda }$$ T Λ allows us to depict the cosmological constant $$\Lambda $$ Λ as composed of elementary oscillations of massless bosons of energy $$\hbar \omega $$ ħ ω by means of the Bose–Einstein distribution. In this context, as happens for photons in a medium, the effective phase velocity $$v_g$$ v g of these massless excitations is not given by the speed of light c but it is suppressed by a factor depending on the number of quanta present in the universe at the apparent horizon. We found interesting formulas relating the cosmological constant, the number of quanta N and the mean value $$\overline{\lambda }$$ λ ¯ of the wavelength of the gravitons. In this context, we study the possibility to look to the gravitons system so obtained as being very near to be a Bose–Einstein condensate. Finally, an attempt is done to write down the Friedmann flat equations in terms of N and $$\overline{\lambda }$$ λ ¯ . |
abstractGer |
In this paper we present a statistical description of the cosmological constant in terms of massless bosons (gravitons). To this purpose, we use our recent results implying a non vanishing temperature $${T_{\Lambda }}$$ T Λ for the cosmological constant. In particular, we found that a non vanishing $$T_{\Lambda }$$ T Λ allows us to depict the cosmological constant $$\Lambda $$ Λ as composed of elementary oscillations of massless bosons of energy $$\hbar \omega $$ ħ ω by means of the Bose–Einstein distribution. In this context, as happens for photons in a medium, the effective phase velocity $$v_g$$ v g of these massless excitations is not given by the speed of light c but it is suppressed by a factor depending on the number of quanta present in the universe at the apparent horizon. We found interesting formulas relating the cosmological constant, the number of quanta N and the mean value $$\overline{\lambda }$$ λ ¯ of the wavelength of the gravitons. In this context, we study the possibility to look to the gravitons system so obtained as being very near to be a Bose–Einstein condensate. Finally, an attempt is done to write down the Friedmann flat equations in terms of N and $$\overline{\lambda }$$ λ ¯ . |
abstract_unstemmed |
In this paper we present a statistical description of the cosmological constant in terms of massless bosons (gravitons). To this purpose, we use our recent results implying a non vanishing temperature $${T_{\Lambda }}$$ T Λ for the cosmological constant. In particular, we found that a non vanishing $$T_{\Lambda }$$ T Λ allows us to depict the cosmological constant $$\Lambda $$ Λ as composed of elementary oscillations of massless bosons of energy $$\hbar \omega $$ ħ ω by means of the Bose–Einstein distribution. In this context, as happens for photons in a medium, the effective phase velocity $$v_g$$ v g of these massless excitations is not given by the speed of light c but it is suppressed by a factor depending on the number of quanta present in the universe at the apparent horizon. We found interesting formulas relating the cosmological constant, the number of quanta N and the mean value $$\overline{\lambda }$$ λ ¯ of the wavelength of the gravitons. In this context, we study the possibility to look to the gravitons system so obtained as being very near to be a Bose–Einstein condensate. Finally, an attempt is done to write down the Friedmann flat equations in terms of N and $$\overline{\lambda }$$ λ ¯ . |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_70 GBV_ILN_2409 |
container_issue |
7 |
title_short |
A statistical representation of the cosmological constant from finite size effects at the apparent horizon |
url |
http://dx.doi.org/10.1007/s10714-016-2095-5 http://arxiv.org/abs/1606.08588 |
remote_bool |
false |
ppnlink |
129605735 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10714-016-2095-5 |
up_date |
2024-07-03T15:58:52.725Z |
_version_ |
1803574137562595329 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1976514959</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220072455.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10714-016-2095-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1976514959</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1976514959</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1778-dd48d52d7b97c15ec298b01ef14423e409585d7349633174cceeeee1205b4e570</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0004197120160000048000700001statisticalrepresentationofthecosmologicalconstant</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Viaggiu, Stefano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A statistical representation of the cosmological constant from finite size effects at the apparent horizon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper we present a statistical description of the cosmological constant in terms of massless bosons (gravitons). To this purpose, we use our recent results implying a non vanishing temperature $${T_{\Lambda }}$$ T Λ for the cosmological constant. In particular, we found that a non vanishing $$T_{\Lambda }$$ T Λ allows us to depict the cosmological constant $$\Lambda $$ Λ as composed of elementary oscillations of massless bosons of energy $$\hbar \omega $$ ħ ω by means of the Bose–Einstein distribution. In this context, as happens for photons in a medium, the effective phase velocity $$v_g$$ v g of these massless excitations is not given by the speed of light c but it is suppressed by a factor depending on the number of quanta present in the universe at the apparent horizon. We found interesting formulas relating the cosmological constant, the number of quanta N and the mean value $$\overline{\lambda }$$ λ ¯ of the wavelength of the gravitons. In this context, we study the possibility to look to the gravitons system so obtained as being very near to be a Bose–Einstein condensate. Finally, an attempt is done to write down the Friedmann flat equations in terms of N and $$\overline{\lambda }$$ λ ¯ .</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bose–Einstein condensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classical and Quantum Gravitation, Relativity Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astronomy, Astrophysics and Cosmology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gravitons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmological constant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apparent horizon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmology and Nongalactic Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Energy Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">General Relativity and Quantum Cosmology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">General relativity and gravitation</subfield><subfield code="d">Dordrecht [u.a.] : Springer, 1970</subfield><subfield code="g">48(2016), 7, Seite 1-12</subfield><subfield code="w">(DE-627)129605735</subfield><subfield code="w">(DE-600)242130-6</subfield><subfield code="w">(DE-576)015100022</subfield><subfield code="x">0001-7701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:1-12</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1007/s10714-016-2095-5</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1606.08588</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.21</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.30</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2016</subfield><subfield code="e">7</subfield><subfield code="h">1-12</subfield></datafield></record></collection>
|
score |
7.4000053 |