Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows
We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving r...
Ausführliche Beschreibung
Autor*in: |
Suttle, L G [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Physical review letters - Ridge, NY : American Physical Society, 1958, 116(2016), 22 |
---|---|
Übergeordnetes Werk: |
volume:116 ; year:2016 ; number:22 |
Links: |
---|
DOI / URN: |
10.1103/PhysRevLett.116.225001 |
---|
Katalog-ID: |
OLC1976633583 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1976633583 | ||
003 | DE-627 | ||
005 | 20220224042805.0 | ||
007 | tu | ||
008 | 160719s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1103/PhysRevLett.116.225001 |2 doi | |
028 | 5 | 2 | |a PQ20160719 |
035 | |a (DE-627)OLC1976633583 | ||
035 | |a (DE-599)GBVOLC1976633583 | ||
035 | |a (PRQ)c1303-33a6d703d88380798b46fd347c47bec2d6d89185f8548bdeb2d1b1ce42de71d20 | ||
035 | |a (KEY)0009201020160000116002200000structureofamagneticfluxannihilationlayerformedbyt | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a UA 1000 |q AVZ |2 rvk | ||
100 | 1 | |a Suttle, L G |e verfasserin |4 aut | |
245 | 1 | 0 | |a Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure-two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T_{i}∼Z[over ¯]T_{e}, with average ionization Z[over ¯]=7). Analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the inflowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities. | ||
700 | 1 | |a Hare, J D |4 oth | |
700 | 1 | |a Lebedev, S V |4 oth | |
700 | 1 | |a Swadling, G F |4 oth | |
700 | 1 | |a Burdiak, G C |4 oth | |
700 | 1 | |a Ciardi, A |4 oth | |
700 | 1 | |a Chittenden, J P |4 oth | |
700 | 1 | |a Loureiro, N F |4 oth | |
700 | 1 | |a Niasse, N |4 oth | |
700 | 1 | |a Suzuki-Vidal, F |4 oth | |
700 | 1 | |a Wu, J |4 oth | |
700 | 1 | |a Yang, Q |4 oth | |
700 | 1 | |a Clayson, T |4 oth | |
700 | 1 | |a Frank, A |4 oth | |
700 | 1 | |a Robinson, T S |4 oth | |
700 | 1 | |a Smith, R A |4 oth | |
700 | 1 | |a Stuart, N |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Physical review letters |d Ridge, NY : American Physical Society, 1958 |g 116(2016), 22 |w (DE-627)129503959 |w (DE-600)208853-8 |w (DE-576)014907267 |x 0031-9007 |7 nnns |
773 | 1 | 8 | |g volume:116 |g year:2016 |g number:22 |
856 | 4 | 1 | |u http://dx.doi.org/10.1103/PhysRevLett.116.225001 |3 Volltext |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/27314720 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_55 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2095 | ||
912 | |a GBV_ILN_2192 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2286 | ||
936 | r | v | |a UA 1000 |
951 | |a AR | ||
952 | |d 116 |j 2016 |e 22 |
author_variant |
l g s lg lgs |
---|---|
matchkey_str |
article:00319007:2016----::tutroaantclxniiainaefrebteolsoospr |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1103/PhysRevLett.116.225001 doi PQ20160719 (DE-627)OLC1976633583 (DE-599)GBVOLC1976633583 (PRQ)c1303-33a6d703d88380798b46fd347c47bec2d6d89185f8548bdeb2d1b1ce42de71d20 (KEY)0009201020160000116002200000structureofamagneticfluxannihilationlayerformedbyt DE-627 ger DE-627 rakwb eng 550 DNB UA 1000 AVZ rvk Suttle, L G verfasserin aut Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure-two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T_{i}∼Z[over ¯]T_{e}, with average ionization Z[over ¯]=7). Analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the inflowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities. Hare, J D oth Lebedev, S V oth Swadling, G F oth Burdiak, G C oth Ciardi, A oth Chittenden, J P oth Loureiro, N F oth Niasse, N oth Suzuki-Vidal, F oth Wu, J oth Yang, Q oth Clayson, T oth Frank, A oth Robinson, T S oth Smith, R A oth Stuart, N oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 116(2016), 22 (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns volume:116 year:2016 number:22 http://dx.doi.org/10.1103/PhysRevLett.116.225001 Volltext http://www.ncbi.nlm.nih.gov/pubmed/27314720 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 116 2016 22 |
spelling |
10.1103/PhysRevLett.116.225001 doi PQ20160719 (DE-627)OLC1976633583 (DE-599)GBVOLC1976633583 (PRQ)c1303-33a6d703d88380798b46fd347c47bec2d6d89185f8548bdeb2d1b1ce42de71d20 (KEY)0009201020160000116002200000structureofamagneticfluxannihilationlayerformedbyt DE-627 ger DE-627 rakwb eng 550 DNB UA 1000 AVZ rvk Suttle, L G verfasserin aut Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure-two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T_{i}∼Z[over ¯]T_{e}, with average ionization Z[over ¯]=7). Analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the inflowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities. Hare, J D oth Lebedev, S V oth Swadling, G F oth Burdiak, G C oth Ciardi, A oth Chittenden, J P oth Loureiro, N F oth Niasse, N oth Suzuki-Vidal, F oth Wu, J oth Yang, Q oth Clayson, T oth Frank, A oth Robinson, T S oth Smith, R A oth Stuart, N oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 116(2016), 22 (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns volume:116 year:2016 number:22 http://dx.doi.org/10.1103/PhysRevLett.116.225001 Volltext http://www.ncbi.nlm.nih.gov/pubmed/27314720 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 116 2016 22 |
allfields_unstemmed |
10.1103/PhysRevLett.116.225001 doi PQ20160719 (DE-627)OLC1976633583 (DE-599)GBVOLC1976633583 (PRQ)c1303-33a6d703d88380798b46fd347c47bec2d6d89185f8548bdeb2d1b1ce42de71d20 (KEY)0009201020160000116002200000structureofamagneticfluxannihilationlayerformedbyt DE-627 ger DE-627 rakwb eng 550 DNB UA 1000 AVZ rvk Suttle, L G verfasserin aut Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure-two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T_{i}∼Z[over ¯]T_{e}, with average ionization Z[over ¯]=7). Analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the inflowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities. Hare, J D oth Lebedev, S V oth Swadling, G F oth Burdiak, G C oth Ciardi, A oth Chittenden, J P oth Loureiro, N F oth Niasse, N oth Suzuki-Vidal, F oth Wu, J oth Yang, Q oth Clayson, T oth Frank, A oth Robinson, T S oth Smith, R A oth Stuart, N oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 116(2016), 22 (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns volume:116 year:2016 number:22 http://dx.doi.org/10.1103/PhysRevLett.116.225001 Volltext http://www.ncbi.nlm.nih.gov/pubmed/27314720 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 116 2016 22 |
allfieldsGer |
10.1103/PhysRevLett.116.225001 doi PQ20160719 (DE-627)OLC1976633583 (DE-599)GBVOLC1976633583 (PRQ)c1303-33a6d703d88380798b46fd347c47bec2d6d89185f8548bdeb2d1b1ce42de71d20 (KEY)0009201020160000116002200000structureofamagneticfluxannihilationlayerformedbyt DE-627 ger DE-627 rakwb eng 550 DNB UA 1000 AVZ rvk Suttle, L G verfasserin aut Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure-two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T_{i}∼Z[over ¯]T_{e}, with average ionization Z[over ¯]=7). Analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the inflowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities. Hare, J D oth Lebedev, S V oth Swadling, G F oth Burdiak, G C oth Ciardi, A oth Chittenden, J P oth Loureiro, N F oth Niasse, N oth Suzuki-Vidal, F oth Wu, J oth Yang, Q oth Clayson, T oth Frank, A oth Robinson, T S oth Smith, R A oth Stuart, N oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 116(2016), 22 (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns volume:116 year:2016 number:22 http://dx.doi.org/10.1103/PhysRevLett.116.225001 Volltext http://www.ncbi.nlm.nih.gov/pubmed/27314720 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 116 2016 22 |
allfieldsSound |
10.1103/PhysRevLett.116.225001 doi PQ20160719 (DE-627)OLC1976633583 (DE-599)GBVOLC1976633583 (PRQ)c1303-33a6d703d88380798b46fd347c47bec2d6d89185f8548bdeb2d1b1ce42de71d20 (KEY)0009201020160000116002200000structureofamagneticfluxannihilationlayerformedbyt DE-627 ger DE-627 rakwb eng 550 DNB UA 1000 AVZ rvk Suttle, L G verfasserin aut Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure-two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T_{i}∼Z[over ¯]T_{e}, with average ionization Z[over ¯]=7). Analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the inflowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities. Hare, J D oth Lebedev, S V oth Swadling, G F oth Burdiak, G C oth Ciardi, A oth Chittenden, J P oth Loureiro, N F oth Niasse, N oth Suzuki-Vidal, F oth Wu, J oth Yang, Q oth Clayson, T oth Frank, A oth Robinson, T S oth Smith, R A oth Stuart, N oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 116(2016), 22 (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns volume:116 year:2016 number:22 http://dx.doi.org/10.1103/PhysRevLett.116.225001 Volltext http://www.ncbi.nlm.nih.gov/pubmed/27314720 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 116 2016 22 |
language |
English |
source |
Enthalten in Physical review letters 116(2016), 22 volume:116 year:2016 number:22 |
sourceStr |
Enthalten in Physical review letters 116(2016), 22 volume:116 year:2016 number:22 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Physical review letters |
authorswithroles_txt_mv |
Suttle, L G @@aut@@ Hare, J D @@oth@@ Lebedev, S V @@oth@@ Swadling, G F @@oth@@ Burdiak, G C @@oth@@ Ciardi, A @@oth@@ Chittenden, J P @@oth@@ Loureiro, N F @@oth@@ Niasse, N @@oth@@ Suzuki-Vidal, F @@oth@@ Wu, J @@oth@@ Yang, Q @@oth@@ Clayson, T @@oth@@ Frank, A @@oth@@ Robinson, T S @@oth@@ Smith, R A @@oth@@ Stuart, N @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129503959 |
dewey-sort |
3550 |
id |
OLC1976633583 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1976633583</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220224042805.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevLett.116.225001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1976633583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1976633583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1303-33a6d703d88380798b46fd347c47bec2d6d89185f8548bdeb2d1b1ce42de71d20</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0009201020160000116002200000structureofamagneticfluxannihilationlayerformedbyt</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Suttle, L G</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure-two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T_{i}∼Z[over ¯]T_{e}, with average ionization Z[over ¯]=7). Analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the inflowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hare, J D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lebedev, S V</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Swadling, G F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burdiak, G C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ciardi, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chittenden, J P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Loureiro, N F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niasse, N</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suzuki-Vidal, F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Q</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clayson, T</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frank, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robinson, T S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, R A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stuart, N</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physical review letters</subfield><subfield code="d">Ridge, NY : American Physical Society, 1958</subfield><subfield code="g">116(2016), 22</subfield><subfield code="w">(DE-627)129503959</subfield><subfield code="w">(DE-600)208853-8</subfield><subfield code="w">(DE-576)014907267</subfield><subfield code="x">0031-9007</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:116</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:22</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1103/PhysRevLett.116.225001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/27314720</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">116</subfield><subfield code="j">2016</subfield><subfield code="e">22</subfield></datafield></record></collection>
|
author |
Suttle, L G |
spellingShingle |
Suttle, L G ddc 550 rvk UA 1000 Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows |
authorStr |
Suttle, L G |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129503959 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0031-9007 |
topic_title |
550 DNB UA 1000 AVZ rvk Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows |
topic |
ddc 550 rvk UA 1000 |
topic_unstemmed |
ddc 550 rvk UA 1000 |
topic_browse |
ddc 550 rvk UA 1000 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j d h jd jdh s v l sv svl g f s gf gfs g c b gc gcb a c ac j p c jp jpc n f l nf nfl n n nn f s v fsv j w jw q y qy t c tc a f af t s r ts tsr r a s ra ras n s ns |
hierarchy_parent_title |
Physical review letters |
hierarchy_parent_id |
129503959 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Physical review letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 |
title |
Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows |
ctrlnum |
(DE-627)OLC1976633583 (DE-599)GBVOLC1976633583 (PRQ)c1303-33a6d703d88380798b46fd347c47bec2d6d89185f8548bdeb2d1b1ce42de71d20 (KEY)0009201020160000116002200000structureofamagneticfluxannihilationlayerformedbyt |
title_full |
Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows |
author_sort |
Suttle, L G |
journal |
Physical review letters |
journalStr |
Physical review letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Suttle, L G |
container_volume |
116 |
class |
550 DNB UA 1000 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Suttle, L G |
doi_str_mv |
10.1103/PhysRevLett.116.225001 |
dewey-full |
550 |
title_sort |
structure of a magnetic flux annihilation layer formed by the collision of supersonic, magnetized plasma flows |
title_auth |
Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows |
abstract |
We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure-two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T_{i}∼Z[over ¯]T_{e}, with average ionization Z[over ¯]=7). Analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the inflowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities. |
abstractGer |
We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure-two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T_{i}∼Z[over ¯]T_{e}, with average ionization Z[over ¯]=7). Analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the inflowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities. |
abstract_unstemmed |
We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure-two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T_{i}∼Z[over ¯]T_{e}, with average ionization Z[over ¯]=7). Analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the inflowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 |
container_issue |
22 |
title_short |
Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows |
url |
http://dx.doi.org/10.1103/PhysRevLett.116.225001 http://www.ncbi.nlm.nih.gov/pubmed/27314720 |
remote_bool |
false |
author2 |
Hare, J D Lebedev, S V Swadling, G F Burdiak, G C Ciardi, A Chittenden, J P Loureiro, N F Niasse, N Suzuki-Vidal, F Wu, J Yang, Q Clayson, T Frank, A Robinson, T S Smith, R A Stuart, N |
author2Str |
Hare, J D Lebedev, S V Swadling, G F Burdiak, G C Ciardi, A Chittenden, J P Loureiro, N F Niasse, N Suzuki-Vidal, F Wu, J Yang, Q Clayson, T Frank, A Robinson, T S Smith, R A Stuart, N |
ppnlink |
129503959 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1103/PhysRevLett.116.225001 |
up_date |
2024-07-03T16:15:42.818Z |
_version_ |
1803575196722921473 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1976633583</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220224042805.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevLett.116.225001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1976633583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1976633583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1303-33a6d703d88380798b46fd347c47bec2d6d89185f8548bdeb2d1b1ce42de71d20</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0009201020160000116002200000structureofamagneticfluxannihilationlayerformedbyt</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Suttle, L G</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure-two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T_{i}∼Z[over ¯]T_{e}, with average ionization Z[over ¯]=7). Analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the inflowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hare, J D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lebedev, S V</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Swadling, G F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burdiak, G C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ciardi, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chittenden, J P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Loureiro, N F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niasse, N</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suzuki-Vidal, F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Q</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clayson, T</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frank, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robinson, T S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, R A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stuart, N</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physical review letters</subfield><subfield code="d">Ridge, NY : American Physical Society, 1958</subfield><subfield code="g">116(2016), 22</subfield><subfield code="w">(DE-627)129503959</subfield><subfield code="w">(DE-600)208853-8</subfield><subfield code="w">(DE-576)014907267</subfield><subfield code="x">0031-9007</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:116</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:22</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1103/PhysRevLett.116.225001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/27314720</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">116</subfield><subfield code="j">2016</subfield><subfield code="e">22</subfield></datafield></record></collection>
|
score |
7.401168 |