Improve urban passenger transport management by rationally forecasting traffic congestion probability
A Bayesian network (BN) approach is proposed in this study to analyse the overall traffic congestion probability of an urban road network in consideration of the influence of applying various transport policies. The continually expanding urbanised region of Beijing has been chosen as the study area...
Ausführliche Beschreibung
Autor*in: |
Feng, Xuesong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2015 Informa UK Limited, trading as Taylor & Francis Group 2015 |
---|
Schlagwörter: |
urban transport operation management probabilistic forecast modelling traffic congestion probability |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of production research - London : Taylor & Francis, 1961, 54(2016), 12, Seite 3465-10 |
---|---|
Übergeordnetes Werk: |
volume:54 ; year:2016 ; number:12 ; pages:3465-10 |
Links: |
---|
DOI / URN: |
10.1080/00207543.2015.1062570 |
---|
Katalog-ID: |
OLC1977020771 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1977020771 | ||
003 | DE-627 | ||
005 | 20220221044803.0 | ||
007 | tu | ||
008 | 160719s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/00207543.2015.1062570 |2 doi | |
028 | 5 | 2 | |a PQ20160719 |
035 | |a (DE-627)OLC1977020771 | ||
035 | |a (DE-599)GBVOLC1977020771 | ||
035 | |a (PRQ)c1901-7e53e5748a9b2a14dd335ce7f25707823b0a54bc4aa4aaef9ce6cc96efffc1470 | ||
035 | |a (KEY)0019873020160000054001203465improveurbanpassengertransportmanagementbyrational | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |a 620 |a 330 |q DNB |
084 | |a 85.35 |2 bkl | ||
084 | |a 52.70 |2 bkl | ||
100 | 1 | |a Feng, Xuesong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improve urban passenger transport management by rationally forecasting traffic congestion probability |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A Bayesian network (BN) approach is proposed in this study to analyse the overall traffic congestion probability of an urban road network in consideration of the influence of applying various transport policies. The continually expanding urbanised region of Beijing has been chosen as the study area because of its rapid expansion and motorisation, which lead to the severe traffic congestion occurring nearly every day. It is demonstrated that the proposed BN approach is able to rationally predict the probability of the overall traffic congestion that will take place given a certain transport policy. It is also proven that increasing the number of buses providing convenient passenger transport service in the urbanised region of Beijing will most effectively reduce the probability of the traffic congestion in this area, especially when the newly constructed roads in the same region are put into use. | ||
540 | |a Nutzungsrecht: © 2015 Informa UK Limited, trading as Taylor & Francis Group 2015 | ||
650 | 4 | |a urban transport operation management | |
650 | 4 | |a probabilistic forecast modelling | |
650 | 4 | |a traffic congestion probability | |
650 | 4 | |a Bayesian network | |
650 | 4 | |a policy application effect analysis | |
650 | 4 | |a Traffic congestion | |
650 | 4 | |a Probability | |
650 | 4 | |a Roads & highways | |
700 | 1 | |a Saito, Mitsuru |4 oth | |
700 | 1 | |a Liu, Yi |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal of production research |d London : Taylor & Francis, 1961 |g 54(2016), 12, Seite 3465-10 |w (DE-627)129358835 |w (DE-600)160477-6 |w (DE-576)014731150 |x 0020-7543 |7 nnns |
773 | 1 | 8 | |g volume:54 |g year:2016 |g number:12 |g pages:3465-10 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/00207543.2015.1062570 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1062570 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1780983824 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4126 | ||
936 | b | k | |a 85.35 |q AVZ |
936 | b | k | |a 52.70 |q AVZ |
951 | |a AR | ||
952 | |d 54 |j 2016 |e 12 |h 3465-10 |
author_variant |
x f xf |
---|---|
matchkey_str |
article:00207543:2016----::mrvubnasnetasotaaeetyainlyoeatnta |
hierarchy_sort_str |
2016 |
bklnumber |
85.35 52.70 |
publishDate |
2016 |
allfields |
10.1080/00207543.2015.1062570 doi PQ20160719 (DE-627)OLC1977020771 (DE-599)GBVOLC1977020771 (PRQ)c1901-7e53e5748a9b2a14dd335ce7f25707823b0a54bc4aa4aaef9ce6cc96efffc1470 (KEY)0019873020160000054001203465improveurbanpassengertransportmanagementbyrational DE-627 ger DE-627 rakwb eng 600 620 330 DNB 85.35 bkl 52.70 bkl Feng, Xuesong verfasserin aut Improve urban passenger transport management by rationally forecasting traffic congestion probability 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A Bayesian network (BN) approach is proposed in this study to analyse the overall traffic congestion probability of an urban road network in consideration of the influence of applying various transport policies. The continually expanding urbanised region of Beijing has been chosen as the study area because of its rapid expansion and motorisation, which lead to the severe traffic congestion occurring nearly every day. It is demonstrated that the proposed BN approach is able to rationally predict the probability of the overall traffic congestion that will take place given a certain transport policy. It is also proven that increasing the number of buses providing convenient passenger transport service in the urbanised region of Beijing will most effectively reduce the probability of the traffic congestion in this area, especially when the newly constructed roads in the same region are put into use. Nutzungsrecht: © 2015 Informa UK Limited, trading as Taylor & Francis Group 2015 urban transport operation management probabilistic forecast modelling traffic congestion probability Bayesian network policy application effect analysis Traffic congestion Probability Roads & highways Saito, Mitsuru oth Liu, Yi oth Enthalten in International journal of production research London : Taylor & Francis, 1961 54(2016), 12, Seite 3465-10 (DE-627)129358835 (DE-600)160477-6 (DE-576)014731150 0020-7543 nnns volume:54 year:2016 number:12 pages:3465-10 http://dx.doi.org/10.1080/00207543.2015.1062570 Volltext http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1062570 http://search.proquest.com/docview/1780983824 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4126 85.35 AVZ 52.70 AVZ AR 54 2016 12 3465-10 |
spelling |
10.1080/00207543.2015.1062570 doi PQ20160719 (DE-627)OLC1977020771 (DE-599)GBVOLC1977020771 (PRQ)c1901-7e53e5748a9b2a14dd335ce7f25707823b0a54bc4aa4aaef9ce6cc96efffc1470 (KEY)0019873020160000054001203465improveurbanpassengertransportmanagementbyrational DE-627 ger DE-627 rakwb eng 600 620 330 DNB 85.35 bkl 52.70 bkl Feng, Xuesong verfasserin aut Improve urban passenger transport management by rationally forecasting traffic congestion probability 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A Bayesian network (BN) approach is proposed in this study to analyse the overall traffic congestion probability of an urban road network in consideration of the influence of applying various transport policies. The continually expanding urbanised region of Beijing has been chosen as the study area because of its rapid expansion and motorisation, which lead to the severe traffic congestion occurring nearly every day. It is demonstrated that the proposed BN approach is able to rationally predict the probability of the overall traffic congestion that will take place given a certain transport policy. It is also proven that increasing the number of buses providing convenient passenger transport service in the urbanised region of Beijing will most effectively reduce the probability of the traffic congestion in this area, especially when the newly constructed roads in the same region are put into use. Nutzungsrecht: © 2015 Informa UK Limited, trading as Taylor & Francis Group 2015 urban transport operation management probabilistic forecast modelling traffic congestion probability Bayesian network policy application effect analysis Traffic congestion Probability Roads & highways Saito, Mitsuru oth Liu, Yi oth Enthalten in International journal of production research London : Taylor & Francis, 1961 54(2016), 12, Seite 3465-10 (DE-627)129358835 (DE-600)160477-6 (DE-576)014731150 0020-7543 nnns volume:54 year:2016 number:12 pages:3465-10 http://dx.doi.org/10.1080/00207543.2015.1062570 Volltext http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1062570 http://search.proquest.com/docview/1780983824 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4126 85.35 AVZ 52.70 AVZ AR 54 2016 12 3465-10 |
allfields_unstemmed |
10.1080/00207543.2015.1062570 doi PQ20160719 (DE-627)OLC1977020771 (DE-599)GBVOLC1977020771 (PRQ)c1901-7e53e5748a9b2a14dd335ce7f25707823b0a54bc4aa4aaef9ce6cc96efffc1470 (KEY)0019873020160000054001203465improveurbanpassengertransportmanagementbyrational DE-627 ger DE-627 rakwb eng 600 620 330 DNB 85.35 bkl 52.70 bkl Feng, Xuesong verfasserin aut Improve urban passenger transport management by rationally forecasting traffic congestion probability 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A Bayesian network (BN) approach is proposed in this study to analyse the overall traffic congestion probability of an urban road network in consideration of the influence of applying various transport policies. The continually expanding urbanised region of Beijing has been chosen as the study area because of its rapid expansion and motorisation, which lead to the severe traffic congestion occurring nearly every day. It is demonstrated that the proposed BN approach is able to rationally predict the probability of the overall traffic congestion that will take place given a certain transport policy. It is also proven that increasing the number of buses providing convenient passenger transport service in the urbanised region of Beijing will most effectively reduce the probability of the traffic congestion in this area, especially when the newly constructed roads in the same region are put into use. Nutzungsrecht: © 2015 Informa UK Limited, trading as Taylor & Francis Group 2015 urban transport operation management probabilistic forecast modelling traffic congestion probability Bayesian network policy application effect analysis Traffic congestion Probability Roads & highways Saito, Mitsuru oth Liu, Yi oth Enthalten in International journal of production research London : Taylor & Francis, 1961 54(2016), 12, Seite 3465-10 (DE-627)129358835 (DE-600)160477-6 (DE-576)014731150 0020-7543 nnns volume:54 year:2016 number:12 pages:3465-10 http://dx.doi.org/10.1080/00207543.2015.1062570 Volltext http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1062570 http://search.proquest.com/docview/1780983824 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4126 85.35 AVZ 52.70 AVZ AR 54 2016 12 3465-10 |
allfieldsGer |
10.1080/00207543.2015.1062570 doi PQ20160719 (DE-627)OLC1977020771 (DE-599)GBVOLC1977020771 (PRQ)c1901-7e53e5748a9b2a14dd335ce7f25707823b0a54bc4aa4aaef9ce6cc96efffc1470 (KEY)0019873020160000054001203465improveurbanpassengertransportmanagementbyrational DE-627 ger DE-627 rakwb eng 600 620 330 DNB 85.35 bkl 52.70 bkl Feng, Xuesong verfasserin aut Improve urban passenger transport management by rationally forecasting traffic congestion probability 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A Bayesian network (BN) approach is proposed in this study to analyse the overall traffic congestion probability of an urban road network in consideration of the influence of applying various transport policies. The continually expanding urbanised region of Beijing has been chosen as the study area because of its rapid expansion and motorisation, which lead to the severe traffic congestion occurring nearly every day. It is demonstrated that the proposed BN approach is able to rationally predict the probability of the overall traffic congestion that will take place given a certain transport policy. It is also proven that increasing the number of buses providing convenient passenger transport service in the urbanised region of Beijing will most effectively reduce the probability of the traffic congestion in this area, especially when the newly constructed roads in the same region are put into use. Nutzungsrecht: © 2015 Informa UK Limited, trading as Taylor & Francis Group 2015 urban transport operation management probabilistic forecast modelling traffic congestion probability Bayesian network policy application effect analysis Traffic congestion Probability Roads & highways Saito, Mitsuru oth Liu, Yi oth Enthalten in International journal of production research London : Taylor & Francis, 1961 54(2016), 12, Seite 3465-10 (DE-627)129358835 (DE-600)160477-6 (DE-576)014731150 0020-7543 nnns volume:54 year:2016 number:12 pages:3465-10 http://dx.doi.org/10.1080/00207543.2015.1062570 Volltext http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1062570 http://search.proquest.com/docview/1780983824 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4126 85.35 AVZ 52.70 AVZ AR 54 2016 12 3465-10 |
allfieldsSound |
10.1080/00207543.2015.1062570 doi PQ20160719 (DE-627)OLC1977020771 (DE-599)GBVOLC1977020771 (PRQ)c1901-7e53e5748a9b2a14dd335ce7f25707823b0a54bc4aa4aaef9ce6cc96efffc1470 (KEY)0019873020160000054001203465improveurbanpassengertransportmanagementbyrational DE-627 ger DE-627 rakwb eng 600 620 330 DNB 85.35 bkl 52.70 bkl Feng, Xuesong verfasserin aut Improve urban passenger transport management by rationally forecasting traffic congestion probability 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A Bayesian network (BN) approach is proposed in this study to analyse the overall traffic congestion probability of an urban road network in consideration of the influence of applying various transport policies. The continually expanding urbanised region of Beijing has been chosen as the study area because of its rapid expansion and motorisation, which lead to the severe traffic congestion occurring nearly every day. It is demonstrated that the proposed BN approach is able to rationally predict the probability of the overall traffic congestion that will take place given a certain transport policy. It is also proven that increasing the number of buses providing convenient passenger transport service in the urbanised region of Beijing will most effectively reduce the probability of the traffic congestion in this area, especially when the newly constructed roads in the same region are put into use. Nutzungsrecht: © 2015 Informa UK Limited, trading as Taylor & Francis Group 2015 urban transport operation management probabilistic forecast modelling traffic congestion probability Bayesian network policy application effect analysis Traffic congestion Probability Roads & highways Saito, Mitsuru oth Liu, Yi oth Enthalten in International journal of production research London : Taylor & Francis, 1961 54(2016), 12, Seite 3465-10 (DE-627)129358835 (DE-600)160477-6 (DE-576)014731150 0020-7543 nnns volume:54 year:2016 number:12 pages:3465-10 http://dx.doi.org/10.1080/00207543.2015.1062570 Volltext http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1062570 http://search.proquest.com/docview/1780983824 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4126 85.35 AVZ 52.70 AVZ AR 54 2016 12 3465-10 |
language |
English |
source |
Enthalten in International journal of production research 54(2016), 12, Seite 3465-10 volume:54 year:2016 number:12 pages:3465-10 |
sourceStr |
Enthalten in International journal of production research 54(2016), 12, Seite 3465-10 volume:54 year:2016 number:12 pages:3465-10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
urban transport operation management probabilistic forecast modelling traffic congestion probability Bayesian network policy application effect analysis Traffic congestion Probability Roads & highways |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
International journal of production research |
authorswithroles_txt_mv |
Feng, Xuesong @@aut@@ Saito, Mitsuru @@oth@@ Liu, Yi @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129358835 |
dewey-sort |
3600 |
id |
OLC1977020771 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1977020771</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221044803.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/00207543.2015.1062570</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1977020771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1977020771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1901-7e53e5748a9b2a14dd335ce7f25707823b0a54bc4aa4aaef9ce6cc96efffc1470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0019873020160000054001203465improveurbanpassengertransportmanagementbyrational</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="a">330</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Xuesong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improve urban passenger transport management by rationally forecasting traffic congestion probability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A Bayesian network (BN) approach is proposed in this study to analyse the overall traffic congestion probability of an urban road network in consideration of the influence of applying various transport policies. The continually expanding urbanised region of Beijing has been chosen as the study area because of its rapid expansion and motorisation, which lead to the severe traffic congestion occurring nearly every day. It is demonstrated that the proposed BN approach is able to rationally predict the probability of the overall traffic congestion that will take place given a certain transport policy. It is also proven that increasing the number of buses providing convenient passenger transport service in the urbanised region of Beijing will most effectively reduce the probability of the traffic congestion in this area, especially when the newly constructed roads in the same region are put into use.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 Informa UK Limited, trading as Taylor & Francis Group 2015</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">urban transport operation management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">probabilistic forecast modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traffic congestion probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">policy application effect analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traffic congestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roads & highways</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saito, Mitsuru</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of production research</subfield><subfield code="d">London : Taylor & Francis, 1961</subfield><subfield code="g">54(2016), 12, Seite 3465-10</subfield><subfield code="w">(DE-627)129358835</subfield><subfield code="w">(DE-600)160477-6</subfield><subfield code="w">(DE-576)014731150</subfield><subfield code="x">0020-7543</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:3465-10</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/00207543.2015.1062570</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1062570</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1780983824</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2016</subfield><subfield code="e">12</subfield><subfield code="h">3465-10</subfield></datafield></record></collection>
|
author |
Feng, Xuesong |
spellingShingle |
Feng, Xuesong ddc 600 bkl 85.35 bkl 52.70 misc urban transport operation management misc probabilistic forecast modelling misc traffic congestion probability misc Bayesian network misc policy application effect analysis misc Traffic congestion misc Probability misc Roads & highways Improve urban passenger transport management by rationally forecasting traffic congestion probability |
authorStr |
Feng, Xuesong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129358835 |
format |
Article |
dewey-ones |
600 - Technology 620 - Engineering & allied operations 330 - Economics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-7543 |
topic_title |
600 620 330 DNB 85.35 bkl 52.70 bkl Improve urban passenger transport management by rationally forecasting traffic congestion probability urban transport operation management probabilistic forecast modelling traffic congestion probability Bayesian network policy application effect analysis Traffic congestion Probability Roads & highways |
topic |
ddc 600 bkl 85.35 bkl 52.70 misc urban transport operation management misc probabilistic forecast modelling misc traffic congestion probability misc Bayesian network misc policy application effect analysis misc Traffic congestion misc Probability misc Roads & highways |
topic_unstemmed |
ddc 600 bkl 85.35 bkl 52.70 misc urban transport operation management misc probabilistic forecast modelling misc traffic congestion probability misc Bayesian network misc policy application effect analysis misc Traffic congestion misc Probability misc Roads & highways |
topic_browse |
ddc 600 bkl 85.35 bkl 52.70 misc urban transport operation management misc probabilistic forecast modelling misc traffic congestion probability misc Bayesian network misc policy application effect analysis misc Traffic congestion misc Probability misc Roads & highways |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m s ms y l yl |
hierarchy_parent_title |
International journal of production research |
hierarchy_parent_id |
129358835 |
dewey-tens |
600 - Technology 620 - Engineering 330 - Economics |
hierarchy_top_title |
International journal of production research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129358835 (DE-600)160477-6 (DE-576)014731150 |
title |
Improve urban passenger transport management by rationally forecasting traffic congestion probability |
ctrlnum |
(DE-627)OLC1977020771 (DE-599)GBVOLC1977020771 (PRQ)c1901-7e53e5748a9b2a14dd335ce7f25707823b0a54bc4aa4aaef9ce6cc96efffc1470 (KEY)0019873020160000054001203465improveurbanpassengertransportmanagementbyrational |
title_full |
Improve urban passenger transport management by rationally forecasting traffic congestion probability |
author_sort |
Feng, Xuesong |
journal |
International journal of production research |
journalStr |
International journal of production research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
3465 |
author_browse |
Feng, Xuesong |
container_volume |
54 |
class |
600 620 330 DNB 85.35 bkl 52.70 bkl |
format_se |
Aufsätze |
author-letter |
Feng, Xuesong |
doi_str_mv |
10.1080/00207543.2015.1062570 |
dewey-full |
600 620 330 |
title_sort |
improve urban passenger transport management by rationally forecasting traffic congestion probability |
title_auth |
Improve urban passenger transport management by rationally forecasting traffic congestion probability |
abstract |
A Bayesian network (BN) approach is proposed in this study to analyse the overall traffic congestion probability of an urban road network in consideration of the influence of applying various transport policies. The continually expanding urbanised region of Beijing has been chosen as the study area because of its rapid expansion and motorisation, which lead to the severe traffic congestion occurring nearly every day. It is demonstrated that the proposed BN approach is able to rationally predict the probability of the overall traffic congestion that will take place given a certain transport policy. It is also proven that increasing the number of buses providing convenient passenger transport service in the urbanised region of Beijing will most effectively reduce the probability of the traffic congestion in this area, especially when the newly constructed roads in the same region are put into use. |
abstractGer |
A Bayesian network (BN) approach is proposed in this study to analyse the overall traffic congestion probability of an urban road network in consideration of the influence of applying various transport policies. The continually expanding urbanised region of Beijing has been chosen as the study area because of its rapid expansion and motorisation, which lead to the severe traffic congestion occurring nearly every day. It is demonstrated that the proposed BN approach is able to rationally predict the probability of the overall traffic congestion that will take place given a certain transport policy. It is also proven that increasing the number of buses providing convenient passenger transport service in the urbanised region of Beijing will most effectively reduce the probability of the traffic congestion in this area, especially when the newly constructed roads in the same region are put into use. |
abstract_unstemmed |
A Bayesian network (BN) approach is proposed in this study to analyse the overall traffic congestion probability of an urban road network in consideration of the influence of applying various transport policies. The continually expanding urbanised region of Beijing has been chosen as the study area because of its rapid expansion and motorisation, which lead to the severe traffic congestion occurring nearly every day. It is demonstrated that the proposed BN approach is able to rationally predict the probability of the overall traffic congestion that will take place given a certain transport policy. It is also proven that increasing the number of buses providing convenient passenger transport service in the urbanised region of Beijing will most effectively reduce the probability of the traffic congestion in this area, especially when the newly constructed roads in the same region are put into use. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_70 GBV_ILN_4126 |
container_issue |
12 |
title_short |
Improve urban passenger transport management by rationally forecasting traffic congestion probability |
url |
http://dx.doi.org/10.1080/00207543.2015.1062570 http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1062570 http://search.proquest.com/docview/1780983824 |
remote_bool |
false |
author2 |
Saito, Mitsuru Liu, Yi |
author2Str |
Saito, Mitsuru Liu, Yi |
ppnlink |
129358835 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1080/00207543.2015.1062570 |
up_date |
2024-07-03T17:10:05.314Z |
_version_ |
1803578617695830016 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1977020771</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221044803.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/00207543.2015.1062570</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1977020771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1977020771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1901-7e53e5748a9b2a14dd335ce7f25707823b0a54bc4aa4aaef9ce6cc96efffc1470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0019873020160000054001203465improveurbanpassengertransportmanagementbyrational</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="a">330</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Xuesong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improve urban passenger transport management by rationally forecasting traffic congestion probability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A Bayesian network (BN) approach is proposed in this study to analyse the overall traffic congestion probability of an urban road network in consideration of the influence of applying various transport policies. The continually expanding urbanised region of Beijing has been chosen as the study area because of its rapid expansion and motorisation, which lead to the severe traffic congestion occurring nearly every day. It is demonstrated that the proposed BN approach is able to rationally predict the probability of the overall traffic congestion that will take place given a certain transport policy. It is also proven that increasing the number of buses providing convenient passenger transport service in the urbanised region of Beijing will most effectively reduce the probability of the traffic congestion in this area, especially when the newly constructed roads in the same region are put into use.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 Informa UK Limited, trading as Taylor & Francis Group 2015</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">urban transport operation management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">probabilistic forecast modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traffic congestion probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">policy application effect analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traffic congestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roads & highways</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saito, Mitsuru</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of production research</subfield><subfield code="d">London : Taylor & Francis, 1961</subfield><subfield code="g">54(2016), 12, Seite 3465-10</subfield><subfield code="w">(DE-627)129358835</subfield><subfield code="w">(DE-600)160477-6</subfield><subfield code="w">(DE-576)014731150</subfield><subfield code="x">0020-7543</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:3465-10</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/00207543.2015.1062570</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/00207543.2015.1062570</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1780983824</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2016</subfield><subfield code="e">12</subfield><subfield code="h">3465-10</subfield></datafield></record></collection>
|
score |
7.400194 |