Robust Energy-Efficient MIMO Transmission for Cognitive Vehicular Networks
This work investigates a robust energy-efficient solution for multiple-input-multiple-output (MIMO) transmissions in cognitive vehicular networks. Our goal is to design an optimal MIMO beamforming for secondary users (SUs), considering imperfect interference channel-state information (CSI). Specific...
Ausführliche Beschreibung
Autor*in: |
Tian, Daxin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on vehicular technology - New York, NY : IEEE, 1967, 65(2016), 6, Seite 3845-3859 |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:2016 ; number:6 ; pages:3845-3859 |
Links: |
---|
DOI / URN: |
10.1109/TVT.2016.2567062 |
---|
Katalog-ID: |
OLC1977330223 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1977330223 | ||
003 | DE-627 | ||
005 | 20220221062825.0 | ||
007 | tu | ||
008 | 160719s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TVT.2016.2567062 |2 doi | |
028 | 5 | 2 | |a PQ20160719 |
035 | |a (DE-627)OLC1977330223 | ||
035 | |a (DE-599)GBVOLC1977330223 | ||
035 | |a (PRQ)c70b-e337ffac334528cd06599c393f52bc1d646f13b7a8f32c2771c4a935c22e62ba0 | ||
035 | |a (KEY)0030991520160000065000603845robustenergyefficientmimotransmissionforcognitivev | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 53.70 |2 bkl | ||
084 | |a 53.74 |2 bkl | ||
100 | 1 | |a Tian, Daxin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Robust Energy-Efficient MIMO Transmission for Cognitive Vehicular Networks |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This work investigates a robust energy-efficient solution for multiple-input-multiple-output (MIMO) transmissions in cognitive vehicular networks. Our goal is to design an optimal MIMO beamforming for secondary users (SUs), considering imperfect interference channel-state information (CSI). Specifically, we optimize the energy efficiency (EE) of SUs, given that the transmission power constraint, the robust interference power constraint, and the minimum transmission rate are satisfied. To solve the optimization problem, we first characterize the uncertainty of CSI by bounding it in a Frobenius-norm-based region and then equivalently convert the robust interference constraint to a linear matrix inequality (LMI). Furthermore, a feasible ascent direction approach is proposed to reduce the optimization problem into a sequential linearly constrained semidefinite program, which leads to a distributed iterative optimization algorithm for deriving the robust and optimal beamforming. The feasibility and convergence of the proposed algorithm is theoretically validated, and the final experimental results are also supplemented to show the strength of the proposed algorithm over some conventional schemes in terms of the achieved EE performance and robustness. | ||
650 | 4 | |a Vehicular communications | |
650 | 4 | |a MIMO transmissions | |
650 | 4 | |a cognitive radio | |
650 | 4 | |a Array signal processing | |
650 | 4 | |a MIMO | |
650 | 4 | |a Vehicles | |
650 | 4 | |a Mathematical model | |
650 | 4 | |a Robustness | |
650 | 4 | |a Interference | |
650 | 4 | |a Optimization | |
650 | 4 | |a energy efficiency | |
700 | 1 | |a Zhou, Jianshan |4 oth | |
700 | 1 | |a Sheng, Zhengguo |4 oth | |
700 | 1 | |a Leung, Victor C. M |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on vehicular technology |d New York, NY : IEEE, 1967 |g 65(2016), 6, Seite 3845-3859 |w (DE-627)129358584 |w (DE-600)160444-2 |w (DE-576)014730871 |x 0018-9545 |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:2016 |g number:6 |g pages:3845-3859 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TVT.2016.2567062 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7468546 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2061 | ||
936 | b | k | |a 53.70 |q AVZ |
936 | b | k | |a 53.74 |q AVZ |
951 | |a AR | ||
952 | |d 65 |j 2016 |e 6 |h 3845-3859 |
author_variant |
d t dt |
---|---|
matchkey_str |
article:00189545:2016----::outnryfiinmmtasisofrontv |
hierarchy_sort_str |
2016 |
bklnumber |
53.70 53.74 |
publishDate |
2016 |
allfields |
10.1109/TVT.2016.2567062 doi PQ20160719 (DE-627)OLC1977330223 (DE-599)GBVOLC1977330223 (PRQ)c70b-e337ffac334528cd06599c393f52bc1d646f13b7a8f32c2771c4a935c22e62ba0 (KEY)0030991520160000065000603845robustenergyefficientmimotransmissionforcognitivev DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.74 bkl Tian, Daxin verfasserin aut Robust Energy-Efficient MIMO Transmission for Cognitive Vehicular Networks 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This work investigates a robust energy-efficient solution for multiple-input-multiple-output (MIMO) transmissions in cognitive vehicular networks. Our goal is to design an optimal MIMO beamforming for secondary users (SUs), considering imperfect interference channel-state information (CSI). Specifically, we optimize the energy efficiency (EE) of SUs, given that the transmission power constraint, the robust interference power constraint, and the minimum transmission rate are satisfied. To solve the optimization problem, we first characterize the uncertainty of CSI by bounding it in a Frobenius-norm-based region and then equivalently convert the robust interference constraint to a linear matrix inequality (LMI). Furthermore, a feasible ascent direction approach is proposed to reduce the optimization problem into a sequential linearly constrained semidefinite program, which leads to a distributed iterative optimization algorithm for deriving the robust and optimal beamforming. The feasibility and convergence of the proposed algorithm is theoretically validated, and the final experimental results are also supplemented to show the strength of the proposed algorithm over some conventional schemes in terms of the achieved EE performance and robustness. Vehicular communications MIMO transmissions cognitive radio Array signal processing MIMO Vehicles Mathematical model Robustness Interference Optimization energy efficiency Zhou, Jianshan oth Sheng, Zhengguo oth Leung, Victor C. M oth Enthalten in IEEE transactions on vehicular technology New York, NY : IEEE, 1967 65(2016), 6, Seite 3845-3859 (DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 0018-9545 nnns volume:65 year:2016 number:6 pages:3845-3859 http://dx.doi.org/10.1109/TVT.2016.2567062 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7468546 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 53.70 AVZ 53.74 AVZ AR 65 2016 6 3845-3859 |
spelling |
10.1109/TVT.2016.2567062 doi PQ20160719 (DE-627)OLC1977330223 (DE-599)GBVOLC1977330223 (PRQ)c70b-e337ffac334528cd06599c393f52bc1d646f13b7a8f32c2771c4a935c22e62ba0 (KEY)0030991520160000065000603845robustenergyefficientmimotransmissionforcognitivev DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.74 bkl Tian, Daxin verfasserin aut Robust Energy-Efficient MIMO Transmission for Cognitive Vehicular Networks 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This work investigates a robust energy-efficient solution for multiple-input-multiple-output (MIMO) transmissions in cognitive vehicular networks. Our goal is to design an optimal MIMO beamforming for secondary users (SUs), considering imperfect interference channel-state information (CSI). Specifically, we optimize the energy efficiency (EE) of SUs, given that the transmission power constraint, the robust interference power constraint, and the minimum transmission rate are satisfied. To solve the optimization problem, we first characterize the uncertainty of CSI by bounding it in a Frobenius-norm-based region and then equivalently convert the robust interference constraint to a linear matrix inequality (LMI). Furthermore, a feasible ascent direction approach is proposed to reduce the optimization problem into a sequential linearly constrained semidefinite program, which leads to a distributed iterative optimization algorithm for deriving the robust and optimal beamforming. The feasibility and convergence of the proposed algorithm is theoretically validated, and the final experimental results are also supplemented to show the strength of the proposed algorithm over some conventional schemes in terms of the achieved EE performance and robustness. Vehicular communications MIMO transmissions cognitive radio Array signal processing MIMO Vehicles Mathematical model Robustness Interference Optimization energy efficiency Zhou, Jianshan oth Sheng, Zhengguo oth Leung, Victor C. M oth Enthalten in IEEE transactions on vehicular technology New York, NY : IEEE, 1967 65(2016), 6, Seite 3845-3859 (DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 0018-9545 nnns volume:65 year:2016 number:6 pages:3845-3859 http://dx.doi.org/10.1109/TVT.2016.2567062 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7468546 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 53.70 AVZ 53.74 AVZ AR 65 2016 6 3845-3859 |
allfields_unstemmed |
10.1109/TVT.2016.2567062 doi PQ20160719 (DE-627)OLC1977330223 (DE-599)GBVOLC1977330223 (PRQ)c70b-e337ffac334528cd06599c393f52bc1d646f13b7a8f32c2771c4a935c22e62ba0 (KEY)0030991520160000065000603845robustenergyefficientmimotransmissionforcognitivev DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.74 bkl Tian, Daxin verfasserin aut Robust Energy-Efficient MIMO Transmission for Cognitive Vehicular Networks 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This work investigates a robust energy-efficient solution for multiple-input-multiple-output (MIMO) transmissions in cognitive vehicular networks. Our goal is to design an optimal MIMO beamforming for secondary users (SUs), considering imperfect interference channel-state information (CSI). Specifically, we optimize the energy efficiency (EE) of SUs, given that the transmission power constraint, the robust interference power constraint, and the minimum transmission rate are satisfied. To solve the optimization problem, we first characterize the uncertainty of CSI by bounding it in a Frobenius-norm-based region and then equivalently convert the robust interference constraint to a linear matrix inequality (LMI). Furthermore, a feasible ascent direction approach is proposed to reduce the optimization problem into a sequential linearly constrained semidefinite program, which leads to a distributed iterative optimization algorithm for deriving the robust and optimal beamforming. The feasibility and convergence of the proposed algorithm is theoretically validated, and the final experimental results are also supplemented to show the strength of the proposed algorithm over some conventional schemes in terms of the achieved EE performance and robustness. Vehicular communications MIMO transmissions cognitive radio Array signal processing MIMO Vehicles Mathematical model Robustness Interference Optimization energy efficiency Zhou, Jianshan oth Sheng, Zhengguo oth Leung, Victor C. M oth Enthalten in IEEE transactions on vehicular technology New York, NY : IEEE, 1967 65(2016), 6, Seite 3845-3859 (DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 0018-9545 nnns volume:65 year:2016 number:6 pages:3845-3859 http://dx.doi.org/10.1109/TVT.2016.2567062 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7468546 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 53.70 AVZ 53.74 AVZ AR 65 2016 6 3845-3859 |
allfieldsGer |
10.1109/TVT.2016.2567062 doi PQ20160719 (DE-627)OLC1977330223 (DE-599)GBVOLC1977330223 (PRQ)c70b-e337ffac334528cd06599c393f52bc1d646f13b7a8f32c2771c4a935c22e62ba0 (KEY)0030991520160000065000603845robustenergyefficientmimotransmissionforcognitivev DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.74 bkl Tian, Daxin verfasserin aut Robust Energy-Efficient MIMO Transmission for Cognitive Vehicular Networks 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This work investigates a robust energy-efficient solution for multiple-input-multiple-output (MIMO) transmissions in cognitive vehicular networks. Our goal is to design an optimal MIMO beamforming for secondary users (SUs), considering imperfect interference channel-state information (CSI). Specifically, we optimize the energy efficiency (EE) of SUs, given that the transmission power constraint, the robust interference power constraint, and the minimum transmission rate are satisfied. To solve the optimization problem, we first characterize the uncertainty of CSI by bounding it in a Frobenius-norm-based region and then equivalently convert the robust interference constraint to a linear matrix inequality (LMI). Furthermore, a feasible ascent direction approach is proposed to reduce the optimization problem into a sequential linearly constrained semidefinite program, which leads to a distributed iterative optimization algorithm for deriving the robust and optimal beamforming. The feasibility and convergence of the proposed algorithm is theoretically validated, and the final experimental results are also supplemented to show the strength of the proposed algorithm over some conventional schemes in terms of the achieved EE performance and robustness. Vehicular communications MIMO transmissions cognitive radio Array signal processing MIMO Vehicles Mathematical model Robustness Interference Optimization energy efficiency Zhou, Jianshan oth Sheng, Zhengguo oth Leung, Victor C. M oth Enthalten in IEEE transactions on vehicular technology New York, NY : IEEE, 1967 65(2016), 6, Seite 3845-3859 (DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 0018-9545 nnns volume:65 year:2016 number:6 pages:3845-3859 http://dx.doi.org/10.1109/TVT.2016.2567062 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7468546 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 53.70 AVZ 53.74 AVZ AR 65 2016 6 3845-3859 |
allfieldsSound |
10.1109/TVT.2016.2567062 doi PQ20160719 (DE-627)OLC1977330223 (DE-599)GBVOLC1977330223 (PRQ)c70b-e337ffac334528cd06599c393f52bc1d646f13b7a8f32c2771c4a935c22e62ba0 (KEY)0030991520160000065000603845robustenergyefficientmimotransmissionforcognitivev DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.74 bkl Tian, Daxin verfasserin aut Robust Energy-Efficient MIMO Transmission for Cognitive Vehicular Networks 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This work investigates a robust energy-efficient solution for multiple-input-multiple-output (MIMO) transmissions in cognitive vehicular networks. Our goal is to design an optimal MIMO beamforming for secondary users (SUs), considering imperfect interference channel-state information (CSI). Specifically, we optimize the energy efficiency (EE) of SUs, given that the transmission power constraint, the robust interference power constraint, and the minimum transmission rate are satisfied. To solve the optimization problem, we first characterize the uncertainty of CSI by bounding it in a Frobenius-norm-based region and then equivalently convert the robust interference constraint to a linear matrix inequality (LMI). Furthermore, a feasible ascent direction approach is proposed to reduce the optimization problem into a sequential linearly constrained semidefinite program, which leads to a distributed iterative optimization algorithm for deriving the robust and optimal beamforming. The feasibility and convergence of the proposed algorithm is theoretically validated, and the final experimental results are also supplemented to show the strength of the proposed algorithm over some conventional schemes in terms of the achieved EE performance and robustness. Vehicular communications MIMO transmissions cognitive radio Array signal processing MIMO Vehicles Mathematical model Robustness Interference Optimization energy efficiency Zhou, Jianshan oth Sheng, Zhengguo oth Leung, Victor C. M oth Enthalten in IEEE transactions on vehicular technology New York, NY : IEEE, 1967 65(2016), 6, Seite 3845-3859 (DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 0018-9545 nnns volume:65 year:2016 number:6 pages:3845-3859 http://dx.doi.org/10.1109/TVT.2016.2567062 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7468546 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 53.70 AVZ 53.74 AVZ AR 65 2016 6 3845-3859 |
language |
English |
source |
Enthalten in IEEE transactions on vehicular technology 65(2016), 6, Seite 3845-3859 volume:65 year:2016 number:6 pages:3845-3859 |
sourceStr |
Enthalten in IEEE transactions on vehicular technology 65(2016), 6, Seite 3845-3859 volume:65 year:2016 number:6 pages:3845-3859 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Vehicular communications MIMO transmissions cognitive radio Array signal processing MIMO Vehicles Mathematical model Robustness Interference Optimization energy efficiency |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on vehicular technology |
authorswithroles_txt_mv |
Tian, Daxin @@aut@@ Zhou, Jianshan @@oth@@ Sheng, Zhengguo @@oth@@ Leung, Victor C. M @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129358584 |
dewey-sort |
3620 |
id |
OLC1977330223 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1977330223</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221062825.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TVT.2016.2567062</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1977330223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1977330223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c70b-e337ffac334528cd06599c393f52bc1d646f13b7a8f32c2771c4a935c22e62ba0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0030991520160000065000603845robustenergyefficientmimotransmissionforcognitivev</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, Daxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust Energy-Efficient MIMO Transmission for Cognitive Vehicular Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work investigates a robust energy-efficient solution for multiple-input-multiple-output (MIMO) transmissions in cognitive vehicular networks. Our goal is to design an optimal MIMO beamforming for secondary users (SUs), considering imperfect interference channel-state information (CSI). Specifically, we optimize the energy efficiency (EE) of SUs, given that the transmission power constraint, the robust interference power constraint, and the minimum transmission rate are satisfied. To solve the optimization problem, we first characterize the uncertainty of CSI by bounding it in a Frobenius-norm-based region and then equivalently convert the robust interference constraint to a linear matrix inequality (LMI). Furthermore, a feasible ascent direction approach is proposed to reduce the optimization problem into a sequential linearly constrained semidefinite program, which leads to a distributed iterative optimization algorithm for deriving the robust and optimal beamforming. The feasibility and convergence of the proposed algorithm is theoretically validated, and the final experimental results are also supplemented to show the strength of the proposed algorithm over some conventional schemes in terms of the achieved EE performance and robustness.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vehicular communications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MIMO transmissions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cognitive radio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Array signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MIMO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robustness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy efficiency</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Jianshan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sheng, Zhengguo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leung, Victor C. M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on vehicular technology</subfield><subfield code="d">New York, NY : IEEE, 1967</subfield><subfield code="g">65(2016), 6, Seite 3845-3859</subfield><subfield code="w">(DE-627)129358584</subfield><subfield code="w">(DE-600)160444-2</subfield><subfield code="w">(DE-576)014730871</subfield><subfield code="x">0018-9545</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:3845-3859</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TVT.2016.2567062</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7468546</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.74</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="h">3845-3859</subfield></datafield></record></collection>
|
author |
Tian, Daxin |
spellingShingle |
Tian, Daxin ddc 620 bkl 53.70 bkl 53.74 misc Vehicular communications misc MIMO transmissions misc cognitive radio misc Array signal processing misc MIMO misc Vehicles misc Mathematical model misc Robustness misc Interference misc Optimization misc energy efficiency Robust Energy-Efficient MIMO Transmission for Cognitive Vehicular Networks |
authorStr |
Tian, Daxin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129358584 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9545 |
topic_title |
620 DNB 53.70 bkl 53.74 bkl Robust Energy-Efficient MIMO Transmission for Cognitive Vehicular Networks Vehicular communications MIMO transmissions cognitive radio Array signal processing MIMO Vehicles Mathematical model Robustness Interference Optimization energy efficiency |
topic |
ddc 620 bkl 53.70 bkl 53.74 misc Vehicular communications misc MIMO transmissions misc cognitive radio misc Array signal processing misc MIMO misc Vehicles misc Mathematical model misc Robustness misc Interference misc Optimization misc energy efficiency |
topic_unstemmed |
ddc 620 bkl 53.70 bkl 53.74 misc Vehicular communications misc MIMO transmissions misc cognitive radio misc Array signal processing misc MIMO misc Vehicles misc Mathematical model misc Robustness misc Interference misc Optimization misc energy efficiency |
topic_browse |
ddc 620 bkl 53.70 bkl 53.74 misc Vehicular communications misc MIMO transmissions misc cognitive radio misc Array signal processing misc MIMO misc Vehicles misc Mathematical model misc Robustness misc Interference misc Optimization misc energy efficiency |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j z jz z s zs v c m l vcm vcml |
hierarchy_parent_title |
IEEE transactions on vehicular technology |
hierarchy_parent_id |
129358584 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on vehicular technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 |
title |
Robust Energy-Efficient MIMO Transmission for Cognitive Vehicular Networks |
ctrlnum |
(DE-627)OLC1977330223 (DE-599)GBVOLC1977330223 (PRQ)c70b-e337ffac334528cd06599c393f52bc1d646f13b7a8f32c2771c4a935c22e62ba0 (KEY)0030991520160000065000603845robustenergyefficientmimotransmissionforcognitivev |
title_full |
Robust Energy-Efficient MIMO Transmission for Cognitive Vehicular Networks |
author_sort |
Tian, Daxin |
journal |
IEEE transactions on vehicular technology |
journalStr |
IEEE transactions on vehicular technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
3845 |
author_browse |
Tian, Daxin |
container_volume |
65 |
class |
620 DNB 53.70 bkl 53.74 bkl |
format_se |
Aufsätze |
author-letter |
Tian, Daxin |
doi_str_mv |
10.1109/TVT.2016.2567062 |
dewey-full |
620 |
title_sort |
robust energy-efficient mimo transmission for cognitive vehicular networks |
title_auth |
Robust Energy-Efficient MIMO Transmission for Cognitive Vehicular Networks |
abstract |
This work investigates a robust energy-efficient solution for multiple-input-multiple-output (MIMO) transmissions in cognitive vehicular networks. Our goal is to design an optimal MIMO beamforming for secondary users (SUs), considering imperfect interference channel-state information (CSI). Specifically, we optimize the energy efficiency (EE) of SUs, given that the transmission power constraint, the robust interference power constraint, and the minimum transmission rate are satisfied. To solve the optimization problem, we first characterize the uncertainty of CSI by bounding it in a Frobenius-norm-based region and then equivalently convert the robust interference constraint to a linear matrix inequality (LMI). Furthermore, a feasible ascent direction approach is proposed to reduce the optimization problem into a sequential linearly constrained semidefinite program, which leads to a distributed iterative optimization algorithm for deriving the robust and optimal beamforming. The feasibility and convergence of the proposed algorithm is theoretically validated, and the final experimental results are also supplemented to show the strength of the proposed algorithm over some conventional schemes in terms of the achieved EE performance and robustness. |
abstractGer |
This work investigates a robust energy-efficient solution for multiple-input-multiple-output (MIMO) transmissions in cognitive vehicular networks. Our goal is to design an optimal MIMO beamforming for secondary users (SUs), considering imperfect interference channel-state information (CSI). Specifically, we optimize the energy efficiency (EE) of SUs, given that the transmission power constraint, the robust interference power constraint, and the minimum transmission rate are satisfied. To solve the optimization problem, we first characterize the uncertainty of CSI by bounding it in a Frobenius-norm-based region and then equivalently convert the robust interference constraint to a linear matrix inequality (LMI). Furthermore, a feasible ascent direction approach is proposed to reduce the optimization problem into a sequential linearly constrained semidefinite program, which leads to a distributed iterative optimization algorithm for deriving the robust and optimal beamforming. The feasibility and convergence of the proposed algorithm is theoretically validated, and the final experimental results are also supplemented to show the strength of the proposed algorithm over some conventional schemes in terms of the achieved EE performance and robustness. |
abstract_unstemmed |
This work investigates a robust energy-efficient solution for multiple-input-multiple-output (MIMO) transmissions in cognitive vehicular networks. Our goal is to design an optimal MIMO beamforming for secondary users (SUs), considering imperfect interference channel-state information (CSI). Specifically, we optimize the energy efficiency (EE) of SUs, given that the transmission power constraint, the robust interference power constraint, and the minimum transmission rate are satisfied. To solve the optimization problem, we first characterize the uncertainty of CSI by bounding it in a Frobenius-norm-based region and then equivalently convert the robust interference constraint to a linear matrix inequality (LMI). Furthermore, a feasible ascent direction approach is proposed to reduce the optimization problem into a sequential linearly constrained semidefinite program, which leads to a distributed iterative optimization algorithm for deriving the robust and optimal beamforming. The feasibility and convergence of the proposed algorithm is theoretically validated, and the final experimental results are also supplemented to show the strength of the proposed algorithm over some conventional schemes in terms of the achieved EE performance and robustness. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 |
container_issue |
6 |
title_short |
Robust Energy-Efficient MIMO Transmission for Cognitive Vehicular Networks |
url |
http://dx.doi.org/10.1109/TVT.2016.2567062 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7468546 |
remote_bool |
false |
author2 |
Zhou, Jianshan Sheng, Zhengguo Leung, Victor C. M |
author2Str |
Zhou, Jianshan Sheng, Zhengguo Leung, Victor C. M |
ppnlink |
129358584 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/TVT.2016.2567062 |
up_date |
2024-07-03T17:54:51.451Z |
_version_ |
1803581434311475200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1977330223</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221062825.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TVT.2016.2567062</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1977330223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1977330223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c70b-e337ffac334528cd06599c393f52bc1d646f13b7a8f32c2771c4a935c22e62ba0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0030991520160000065000603845robustenergyefficientmimotransmissionforcognitivev</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, Daxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust Energy-Efficient MIMO Transmission for Cognitive Vehicular Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work investigates a robust energy-efficient solution for multiple-input-multiple-output (MIMO) transmissions in cognitive vehicular networks. Our goal is to design an optimal MIMO beamforming for secondary users (SUs), considering imperfect interference channel-state information (CSI). Specifically, we optimize the energy efficiency (EE) of SUs, given that the transmission power constraint, the robust interference power constraint, and the minimum transmission rate are satisfied. To solve the optimization problem, we first characterize the uncertainty of CSI by bounding it in a Frobenius-norm-based region and then equivalently convert the robust interference constraint to a linear matrix inequality (LMI). Furthermore, a feasible ascent direction approach is proposed to reduce the optimization problem into a sequential linearly constrained semidefinite program, which leads to a distributed iterative optimization algorithm for deriving the robust and optimal beamforming. The feasibility and convergence of the proposed algorithm is theoretically validated, and the final experimental results are also supplemented to show the strength of the proposed algorithm over some conventional schemes in terms of the achieved EE performance and robustness.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vehicular communications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MIMO transmissions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cognitive radio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Array signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MIMO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robustness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy efficiency</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Jianshan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sheng, Zhengguo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leung, Victor C. M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on vehicular technology</subfield><subfield code="d">New York, NY : IEEE, 1967</subfield><subfield code="g">65(2016), 6, Seite 3845-3859</subfield><subfield code="w">(DE-627)129358584</subfield><subfield code="w">(DE-600)160444-2</subfield><subfield code="w">(DE-576)014730871</subfield><subfield code="x">0018-9545</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:3845-3859</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TVT.2016.2567062</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7468546</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.74</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="h">3845-3859</subfield></datafield></record></collection>
|
score |
7.4015217 |