Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy
This paper presents a new control scheme for longitudinal collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of longitudinal CA systems. The first contribution is a new safety distance mo...
Ausführliche Beschreibung
Autor*in: |
Lian, Yufeng [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
longitudinal collision avoidance system constrained regenerative braking strength continuity |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on vehicular technology - New York, NY : IEEE, 1967, 65(2016), 6, Seite 4079-4094 |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:2016 ; number:6 ; pages:4079-4094 |
Links: |
---|
DOI / URN: |
10.1109/TVT.2015.2498949 |
---|
Katalog-ID: |
OLC197733041X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC197733041X | ||
003 | DE-627 | ||
005 | 20220221062826.0 | ||
007 | tu | ||
008 | 160719s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TVT.2015.2498949 |2 doi | |
028 | 5 | 2 | |a PQ20160719 |
035 | |a (DE-627)OLC197733041X | ||
035 | |a (DE-599)GBVOLC197733041X | ||
035 | |a (PRQ)c707-7fc12226ad0043d78f700350bbeb645c044672ff96b70ad7dc32b33b88c4e5f30 | ||
035 | |a (KEY)0030991520160000065000604079longitudinalcollisionavoidancecontrolofelectricveh | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 53.70 |2 bkl | ||
084 | |a 53.74 |2 bkl | ||
100 | 1 | |a Lian, Yufeng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper presents a new control scheme for longitudinal collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of longitudinal CA systems. The first contribution is a new safety distance model to make vehicle adapt to different driving roads with an adhesive coefficient between tire and road and to conform to drivers' characteristics with a driving intention parameter. The second contribution is a new braking force distribution strategy based on constrained regenerative braking strength continuity (CRBSC). By optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, the safety-brake range could be linearized to simplify the calculation of braking force distribution on the premise of ensuring braking safety. Furthermore, it is the constraint conditions that could solve the coexistence problem of positive and negative braking forces based on regenerative braking strength continuity (RBSC) to conform to actual requirements. The feasibility, effectiveness, and practicality of the proposed safety distance model and braking force distribution strategy are, respectively, verified by computer simulation experiments. Rapid control prototyping (RCP) and hardware-in-the-loop (HIL) simulation experiments using dSPACE are carried out to demonstrate the effectiveness in the control scheme, simplicity in structure, and flexibility in implementation for the proposed longitudinal CA system. | ||
650 | 4 | |a Distribution strategy | |
650 | 4 | |a Force | |
650 | 4 | |a longitudinal collision avoidance system | |
650 | 4 | |a Roads | |
650 | 4 | |a constrained regenerative braking strength continuity | |
650 | 4 | |a safety distance model | |
650 | 4 | |a Tires | |
650 | 4 | |a Braking force distribution strategy | |
650 | 4 | |a Safety | |
650 | 4 | |a Wheels | |
650 | 4 | |a Vehicles | |
650 | 4 | |a four-in-wheel-motor-driven electric vehicles | |
700 | 1 | |a Zhao, Yun |4 oth | |
700 | 1 | |a Hu, Leilei |4 oth | |
700 | 1 | |a Tian, Yantao |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on vehicular technology |d New York, NY : IEEE, 1967 |g 65(2016), 6, Seite 4079-4094 |w (DE-627)129358584 |w (DE-600)160444-2 |w (DE-576)014730871 |x 0018-9545 |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:2016 |g number:6 |g pages:4079-4094 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TVT.2015.2498949 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7322289 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2061 | ||
936 | b | k | |a 53.70 |q AVZ |
936 | b | k | |a 53.74 |q AVZ |
951 | |a AR | ||
952 | |d 65 |j 2016 |e 6 |h 4079-4094 |
author_variant |
y l yl |
---|---|
matchkey_str |
article:00189545:2016----::ogtdnlolsoaodneotooeetivhcebsdnnwaeyitneoeadosriergnrtvbaigtegh |
hierarchy_sort_str |
2016 |
bklnumber |
53.70 53.74 |
publishDate |
2016 |
allfields |
10.1109/TVT.2015.2498949 doi PQ20160719 (DE-627)OLC197733041X (DE-599)GBVOLC197733041X (PRQ)c707-7fc12226ad0043d78f700350bbeb645c044672ff96b70ad7dc32b33b88c4e5f30 (KEY)0030991520160000065000604079longitudinalcollisionavoidancecontrolofelectricveh DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.74 bkl Lian, Yufeng verfasserin aut Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper presents a new control scheme for longitudinal collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of longitudinal CA systems. The first contribution is a new safety distance model to make vehicle adapt to different driving roads with an adhesive coefficient between tire and road and to conform to drivers' characteristics with a driving intention parameter. The second contribution is a new braking force distribution strategy based on constrained regenerative braking strength continuity (CRBSC). By optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, the safety-brake range could be linearized to simplify the calculation of braking force distribution on the premise of ensuring braking safety. Furthermore, it is the constraint conditions that could solve the coexistence problem of positive and negative braking forces based on regenerative braking strength continuity (RBSC) to conform to actual requirements. The feasibility, effectiveness, and practicality of the proposed safety distance model and braking force distribution strategy are, respectively, verified by computer simulation experiments. Rapid control prototyping (RCP) and hardware-in-the-loop (HIL) simulation experiments using dSPACE are carried out to demonstrate the effectiveness in the control scheme, simplicity in structure, and flexibility in implementation for the proposed longitudinal CA system. Distribution strategy Force longitudinal collision avoidance system Roads constrained regenerative braking strength continuity safety distance model Tires Braking force distribution strategy Safety Wheels Vehicles four-in-wheel-motor-driven electric vehicles Zhao, Yun oth Hu, Leilei oth Tian, Yantao oth Enthalten in IEEE transactions on vehicular technology New York, NY : IEEE, 1967 65(2016), 6, Seite 4079-4094 (DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 0018-9545 nnns volume:65 year:2016 number:6 pages:4079-4094 http://dx.doi.org/10.1109/TVT.2015.2498949 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7322289 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 53.70 AVZ 53.74 AVZ AR 65 2016 6 4079-4094 |
spelling |
10.1109/TVT.2015.2498949 doi PQ20160719 (DE-627)OLC197733041X (DE-599)GBVOLC197733041X (PRQ)c707-7fc12226ad0043d78f700350bbeb645c044672ff96b70ad7dc32b33b88c4e5f30 (KEY)0030991520160000065000604079longitudinalcollisionavoidancecontrolofelectricveh DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.74 bkl Lian, Yufeng verfasserin aut Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper presents a new control scheme for longitudinal collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of longitudinal CA systems. The first contribution is a new safety distance model to make vehicle adapt to different driving roads with an adhesive coefficient between tire and road and to conform to drivers' characteristics with a driving intention parameter. The second contribution is a new braking force distribution strategy based on constrained regenerative braking strength continuity (CRBSC). By optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, the safety-brake range could be linearized to simplify the calculation of braking force distribution on the premise of ensuring braking safety. Furthermore, it is the constraint conditions that could solve the coexistence problem of positive and negative braking forces based on regenerative braking strength continuity (RBSC) to conform to actual requirements. The feasibility, effectiveness, and practicality of the proposed safety distance model and braking force distribution strategy are, respectively, verified by computer simulation experiments. Rapid control prototyping (RCP) and hardware-in-the-loop (HIL) simulation experiments using dSPACE are carried out to demonstrate the effectiveness in the control scheme, simplicity in structure, and flexibility in implementation for the proposed longitudinal CA system. Distribution strategy Force longitudinal collision avoidance system Roads constrained regenerative braking strength continuity safety distance model Tires Braking force distribution strategy Safety Wheels Vehicles four-in-wheel-motor-driven electric vehicles Zhao, Yun oth Hu, Leilei oth Tian, Yantao oth Enthalten in IEEE transactions on vehicular technology New York, NY : IEEE, 1967 65(2016), 6, Seite 4079-4094 (DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 0018-9545 nnns volume:65 year:2016 number:6 pages:4079-4094 http://dx.doi.org/10.1109/TVT.2015.2498949 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7322289 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 53.70 AVZ 53.74 AVZ AR 65 2016 6 4079-4094 |
allfields_unstemmed |
10.1109/TVT.2015.2498949 doi PQ20160719 (DE-627)OLC197733041X (DE-599)GBVOLC197733041X (PRQ)c707-7fc12226ad0043d78f700350bbeb645c044672ff96b70ad7dc32b33b88c4e5f30 (KEY)0030991520160000065000604079longitudinalcollisionavoidancecontrolofelectricveh DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.74 bkl Lian, Yufeng verfasserin aut Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper presents a new control scheme for longitudinal collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of longitudinal CA systems. The first contribution is a new safety distance model to make vehicle adapt to different driving roads with an adhesive coefficient between tire and road and to conform to drivers' characteristics with a driving intention parameter. The second contribution is a new braking force distribution strategy based on constrained regenerative braking strength continuity (CRBSC). By optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, the safety-brake range could be linearized to simplify the calculation of braking force distribution on the premise of ensuring braking safety. Furthermore, it is the constraint conditions that could solve the coexistence problem of positive and negative braking forces based on regenerative braking strength continuity (RBSC) to conform to actual requirements. The feasibility, effectiveness, and practicality of the proposed safety distance model and braking force distribution strategy are, respectively, verified by computer simulation experiments. Rapid control prototyping (RCP) and hardware-in-the-loop (HIL) simulation experiments using dSPACE are carried out to demonstrate the effectiveness in the control scheme, simplicity in structure, and flexibility in implementation for the proposed longitudinal CA system. Distribution strategy Force longitudinal collision avoidance system Roads constrained regenerative braking strength continuity safety distance model Tires Braking force distribution strategy Safety Wheels Vehicles four-in-wheel-motor-driven electric vehicles Zhao, Yun oth Hu, Leilei oth Tian, Yantao oth Enthalten in IEEE transactions on vehicular technology New York, NY : IEEE, 1967 65(2016), 6, Seite 4079-4094 (DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 0018-9545 nnns volume:65 year:2016 number:6 pages:4079-4094 http://dx.doi.org/10.1109/TVT.2015.2498949 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7322289 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 53.70 AVZ 53.74 AVZ AR 65 2016 6 4079-4094 |
allfieldsGer |
10.1109/TVT.2015.2498949 doi PQ20160719 (DE-627)OLC197733041X (DE-599)GBVOLC197733041X (PRQ)c707-7fc12226ad0043d78f700350bbeb645c044672ff96b70ad7dc32b33b88c4e5f30 (KEY)0030991520160000065000604079longitudinalcollisionavoidancecontrolofelectricveh DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.74 bkl Lian, Yufeng verfasserin aut Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper presents a new control scheme for longitudinal collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of longitudinal CA systems. The first contribution is a new safety distance model to make vehicle adapt to different driving roads with an adhesive coefficient between tire and road and to conform to drivers' characteristics with a driving intention parameter. The second contribution is a new braking force distribution strategy based on constrained regenerative braking strength continuity (CRBSC). By optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, the safety-brake range could be linearized to simplify the calculation of braking force distribution on the premise of ensuring braking safety. Furthermore, it is the constraint conditions that could solve the coexistence problem of positive and negative braking forces based on regenerative braking strength continuity (RBSC) to conform to actual requirements. The feasibility, effectiveness, and practicality of the proposed safety distance model and braking force distribution strategy are, respectively, verified by computer simulation experiments. Rapid control prototyping (RCP) and hardware-in-the-loop (HIL) simulation experiments using dSPACE are carried out to demonstrate the effectiveness in the control scheme, simplicity in structure, and flexibility in implementation for the proposed longitudinal CA system. Distribution strategy Force longitudinal collision avoidance system Roads constrained regenerative braking strength continuity safety distance model Tires Braking force distribution strategy Safety Wheels Vehicles four-in-wheel-motor-driven electric vehicles Zhao, Yun oth Hu, Leilei oth Tian, Yantao oth Enthalten in IEEE transactions on vehicular technology New York, NY : IEEE, 1967 65(2016), 6, Seite 4079-4094 (DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 0018-9545 nnns volume:65 year:2016 number:6 pages:4079-4094 http://dx.doi.org/10.1109/TVT.2015.2498949 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7322289 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 53.70 AVZ 53.74 AVZ AR 65 2016 6 4079-4094 |
allfieldsSound |
10.1109/TVT.2015.2498949 doi PQ20160719 (DE-627)OLC197733041X (DE-599)GBVOLC197733041X (PRQ)c707-7fc12226ad0043d78f700350bbeb645c044672ff96b70ad7dc32b33b88c4e5f30 (KEY)0030991520160000065000604079longitudinalcollisionavoidancecontrolofelectricveh DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.74 bkl Lian, Yufeng verfasserin aut Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper presents a new control scheme for longitudinal collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of longitudinal CA systems. The first contribution is a new safety distance model to make vehicle adapt to different driving roads with an adhesive coefficient between tire and road and to conform to drivers' characteristics with a driving intention parameter. The second contribution is a new braking force distribution strategy based on constrained regenerative braking strength continuity (CRBSC). By optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, the safety-brake range could be linearized to simplify the calculation of braking force distribution on the premise of ensuring braking safety. Furthermore, it is the constraint conditions that could solve the coexistence problem of positive and negative braking forces based on regenerative braking strength continuity (RBSC) to conform to actual requirements. The feasibility, effectiveness, and practicality of the proposed safety distance model and braking force distribution strategy are, respectively, verified by computer simulation experiments. Rapid control prototyping (RCP) and hardware-in-the-loop (HIL) simulation experiments using dSPACE are carried out to demonstrate the effectiveness in the control scheme, simplicity in structure, and flexibility in implementation for the proposed longitudinal CA system. Distribution strategy Force longitudinal collision avoidance system Roads constrained regenerative braking strength continuity safety distance model Tires Braking force distribution strategy Safety Wheels Vehicles four-in-wheel-motor-driven electric vehicles Zhao, Yun oth Hu, Leilei oth Tian, Yantao oth Enthalten in IEEE transactions on vehicular technology New York, NY : IEEE, 1967 65(2016), 6, Seite 4079-4094 (DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 0018-9545 nnns volume:65 year:2016 number:6 pages:4079-4094 http://dx.doi.org/10.1109/TVT.2015.2498949 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7322289 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 53.70 AVZ 53.74 AVZ AR 65 2016 6 4079-4094 |
language |
English |
source |
Enthalten in IEEE transactions on vehicular technology 65(2016), 6, Seite 4079-4094 volume:65 year:2016 number:6 pages:4079-4094 |
sourceStr |
Enthalten in IEEE transactions on vehicular technology 65(2016), 6, Seite 4079-4094 volume:65 year:2016 number:6 pages:4079-4094 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Distribution strategy Force longitudinal collision avoidance system Roads constrained regenerative braking strength continuity safety distance model Tires Braking force distribution strategy Safety Wheels Vehicles four-in-wheel-motor-driven electric vehicles |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on vehicular technology |
authorswithroles_txt_mv |
Lian, Yufeng @@aut@@ Zhao, Yun @@oth@@ Hu, Leilei @@oth@@ Tian, Yantao @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129358584 |
dewey-sort |
3620 |
id |
OLC197733041X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC197733041X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221062826.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TVT.2015.2498949</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC197733041X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC197733041X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c707-7fc12226ad0043d78f700350bbeb645c044672ff96b70ad7dc32b33b88c4e5f30</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0030991520160000065000604079longitudinalcollisionavoidancecontrolofelectricveh</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lian, Yufeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a new control scheme for longitudinal collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of longitudinal CA systems. The first contribution is a new safety distance model to make vehicle adapt to different driving roads with an adhesive coefficient between tire and road and to conform to drivers' characteristics with a driving intention parameter. The second contribution is a new braking force distribution strategy based on constrained regenerative braking strength continuity (CRBSC). By optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, the safety-brake range could be linearized to simplify the calculation of braking force distribution on the premise of ensuring braking safety. Furthermore, it is the constraint conditions that could solve the coexistence problem of positive and negative braking forces based on regenerative braking strength continuity (RBSC) to conform to actual requirements. The feasibility, effectiveness, and practicality of the proposed safety distance model and braking force distribution strategy are, respectively, verified by computer simulation experiments. Rapid control prototyping (RCP) and hardware-in-the-loop (HIL) simulation experiments using dSPACE are carried out to demonstrate the effectiveness in the control scheme, simplicity in structure, and flexibility in implementation for the proposed longitudinal CA system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">longitudinal collision avoidance system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roads</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">constrained regenerative braking strength continuity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">safety distance model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Braking force distribution strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Safety</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wheels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">four-in-wheel-motor-driven electric vehicles</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Leilei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Yantao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on vehicular technology</subfield><subfield code="d">New York, NY : IEEE, 1967</subfield><subfield code="g">65(2016), 6, Seite 4079-4094</subfield><subfield code="w">(DE-627)129358584</subfield><subfield code="w">(DE-600)160444-2</subfield><subfield code="w">(DE-576)014730871</subfield><subfield code="x">0018-9545</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:4079-4094</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TVT.2015.2498949</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7322289</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.74</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="h">4079-4094</subfield></datafield></record></collection>
|
author |
Lian, Yufeng |
spellingShingle |
Lian, Yufeng ddc 620 bkl 53.70 bkl 53.74 misc Distribution strategy misc Force misc longitudinal collision avoidance system misc Roads misc constrained regenerative braking strength continuity misc safety distance model misc Tires misc Braking force distribution strategy misc Safety misc Wheels misc Vehicles misc four-in-wheel-motor-driven electric vehicles Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy |
authorStr |
Lian, Yufeng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129358584 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9545 |
topic_title |
620 DNB 53.70 bkl 53.74 bkl Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy Distribution strategy Force longitudinal collision avoidance system Roads constrained regenerative braking strength continuity safety distance model Tires Braking force distribution strategy Safety Wheels Vehicles four-in-wheel-motor-driven electric vehicles |
topic |
ddc 620 bkl 53.70 bkl 53.74 misc Distribution strategy misc Force misc longitudinal collision avoidance system misc Roads misc constrained regenerative braking strength continuity misc safety distance model misc Tires misc Braking force distribution strategy misc Safety misc Wheels misc Vehicles misc four-in-wheel-motor-driven electric vehicles |
topic_unstemmed |
ddc 620 bkl 53.70 bkl 53.74 misc Distribution strategy misc Force misc longitudinal collision avoidance system misc Roads misc constrained regenerative braking strength continuity misc safety distance model misc Tires misc Braking force distribution strategy misc Safety misc Wheels misc Vehicles misc four-in-wheel-motor-driven electric vehicles |
topic_browse |
ddc 620 bkl 53.70 bkl 53.74 misc Distribution strategy misc Force misc longitudinal collision avoidance system misc Roads misc constrained regenerative braking strength continuity misc safety distance model misc Tires misc Braking force distribution strategy misc Safety misc Wheels misc Vehicles misc four-in-wheel-motor-driven electric vehicles |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
y z yz l h lh y t yt |
hierarchy_parent_title |
IEEE transactions on vehicular technology |
hierarchy_parent_id |
129358584 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on vehicular technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 |
title |
Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy |
ctrlnum |
(DE-627)OLC197733041X (DE-599)GBVOLC197733041X (PRQ)c707-7fc12226ad0043d78f700350bbeb645c044672ff96b70ad7dc32b33b88c4e5f30 (KEY)0030991520160000065000604079longitudinalcollisionavoidancecontrolofelectricveh |
title_full |
Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy |
author_sort |
Lian, Yufeng |
journal |
IEEE transactions on vehicular technology |
journalStr |
IEEE transactions on vehicular technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
4079 |
author_browse |
Lian, Yufeng |
container_volume |
65 |
class |
620 DNB 53.70 bkl 53.74 bkl |
format_se |
Aufsätze |
author-letter |
Lian, Yufeng |
doi_str_mv |
10.1109/TVT.2015.2498949 |
dewey-full |
620 |
title_sort |
longitudinal collision avoidance control of electric vehicles based on a new safety distance model and constrained-regenerative-braking-strength-continuity braking force distribution strategy |
title_auth |
Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy |
abstract |
This paper presents a new control scheme for longitudinal collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of longitudinal CA systems. The first contribution is a new safety distance model to make vehicle adapt to different driving roads with an adhesive coefficient between tire and road and to conform to drivers' characteristics with a driving intention parameter. The second contribution is a new braking force distribution strategy based on constrained regenerative braking strength continuity (CRBSC). By optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, the safety-brake range could be linearized to simplify the calculation of braking force distribution on the premise of ensuring braking safety. Furthermore, it is the constraint conditions that could solve the coexistence problem of positive and negative braking forces based on regenerative braking strength continuity (RBSC) to conform to actual requirements. The feasibility, effectiveness, and practicality of the proposed safety distance model and braking force distribution strategy are, respectively, verified by computer simulation experiments. Rapid control prototyping (RCP) and hardware-in-the-loop (HIL) simulation experiments using dSPACE are carried out to demonstrate the effectiveness in the control scheme, simplicity in structure, and flexibility in implementation for the proposed longitudinal CA system. |
abstractGer |
This paper presents a new control scheme for longitudinal collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of longitudinal CA systems. The first contribution is a new safety distance model to make vehicle adapt to different driving roads with an adhesive coefficient between tire and road and to conform to drivers' characteristics with a driving intention parameter. The second contribution is a new braking force distribution strategy based on constrained regenerative braking strength continuity (CRBSC). By optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, the safety-brake range could be linearized to simplify the calculation of braking force distribution on the premise of ensuring braking safety. Furthermore, it is the constraint conditions that could solve the coexistence problem of positive and negative braking forces based on regenerative braking strength continuity (RBSC) to conform to actual requirements. The feasibility, effectiveness, and practicality of the proposed safety distance model and braking force distribution strategy are, respectively, verified by computer simulation experiments. Rapid control prototyping (RCP) and hardware-in-the-loop (HIL) simulation experiments using dSPACE are carried out to demonstrate the effectiveness in the control scheme, simplicity in structure, and flexibility in implementation for the proposed longitudinal CA system. |
abstract_unstemmed |
This paper presents a new control scheme for longitudinal collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of longitudinal CA systems. The first contribution is a new safety distance model to make vehicle adapt to different driving roads with an adhesive coefficient between tire and road and to conform to drivers' characteristics with a driving intention parameter. The second contribution is a new braking force distribution strategy based on constrained regenerative braking strength continuity (CRBSC). By optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, the safety-brake range could be linearized to simplify the calculation of braking force distribution on the premise of ensuring braking safety. Furthermore, it is the constraint conditions that could solve the coexistence problem of positive and negative braking forces based on regenerative braking strength continuity (RBSC) to conform to actual requirements. The feasibility, effectiveness, and practicality of the proposed safety distance model and braking force distribution strategy are, respectively, verified by computer simulation experiments. Rapid control prototyping (RCP) and hardware-in-the-loop (HIL) simulation experiments using dSPACE are carried out to demonstrate the effectiveness in the control scheme, simplicity in structure, and flexibility in implementation for the proposed longitudinal CA system. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 |
container_issue |
6 |
title_short |
Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy |
url |
http://dx.doi.org/10.1109/TVT.2015.2498949 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7322289 |
remote_bool |
false |
author2 |
Zhao, Yun Hu, Leilei Tian, Yantao |
author2Str |
Zhao, Yun Hu, Leilei Tian, Yantao |
ppnlink |
129358584 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/TVT.2015.2498949 |
up_date |
2024-07-03T17:54:53.394Z |
_version_ |
1803581436355149824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC197733041X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221062826.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TVT.2015.2498949</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC197733041X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC197733041X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c707-7fc12226ad0043d78f700350bbeb645c044672ff96b70ad7dc32b33b88c4e5f30</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0030991520160000065000604079longitudinalcollisionavoidancecontrolofelectricveh</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lian, Yufeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Longitudinal Collision Avoidance Control of Electric Vehicles Based on a New Safety Distance Model and Constrained-Regenerative-Braking-Strength-Continuity Braking Force Distribution Strategy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a new control scheme for longitudinal collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of longitudinal CA systems. The first contribution is a new safety distance model to make vehicle adapt to different driving roads with an adhesive coefficient between tire and road and to conform to drivers' characteristics with a driving intention parameter. The second contribution is a new braking force distribution strategy based on constrained regenerative braking strength continuity (CRBSC). By optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, the safety-brake range could be linearized to simplify the calculation of braking force distribution on the premise of ensuring braking safety. Furthermore, it is the constraint conditions that could solve the coexistence problem of positive and negative braking forces based on regenerative braking strength continuity (RBSC) to conform to actual requirements. The feasibility, effectiveness, and practicality of the proposed safety distance model and braking force distribution strategy are, respectively, verified by computer simulation experiments. Rapid control prototyping (RCP) and hardware-in-the-loop (HIL) simulation experiments using dSPACE are carried out to demonstrate the effectiveness in the control scheme, simplicity in structure, and flexibility in implementation for the proposed longitudinal CA system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">longitudinal collision avoidance system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roads</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">constrained regenerative braking strength continuity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">safety distance model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Braking force distribution strategy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Safety</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wheels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">four-in-wheel-motor-driven electric vehicles</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Leilei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Yantao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on vehicular technology</subfield><subfield code="d">New York, NY : IEEE, 1967</subfield><subfield code="g">65(2016), 6, Seite 4079-4094</subfield><subfield code="w">(DE-627)129358584</subfield><subfield code="w">(DE-600)160444-2</subfield><subfield code="w">(DE-576)014730871</subfield><subfield code="x">0018-9545</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:4079-4094</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TVT.2015.2498949</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7322289</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.74</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="h">4079-4094</subfield></datafield></record></collection>
|
score |
7.401286 |