Autopsy Data Analysis for a Series System With Active Redundancy Under a Load-Sharing Model
The failure of any component within a series system results in the failure of the system. Incorporating active redundancy into a system generally improves its reliability and availability. This type of system does not belong to the category of coherent systems, and thus those results on coherent sys...
Ausführliche Beschreibung
Autor*in: |
Ling, Man Ho [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on reliability - New York, NY, 1963, 65(2016), 2, Seite 957-968 |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:2016 ; number:2 ; pages:957-968 |
Links: |
---|
DOI / URN: |
10.1109/TR.2016.2521766 |
---|
Katalog-ID: |
OLC1977605001 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1977605001 | ||
003 | DE-627 | ||
005 | 20210716104048.0 | ||
007 | tu | ||
008 | 160719s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TR.2016.2521766 |2 doi | |
028 | 5 | 2 | |a PQ20160719 |
035 | |a (DE-627)OLC1977605001 | ||
035 | |a (DE-599)GBVOLC1977605001 | ||
035 | |a (PRQ)c931-a3c8d0a1e15bc46fb36d06d130b4e7440235d892d8e06e68d4551a78b761f77b0 | ||
035 | |a (KEY)0062598120160000065000200957autopsydataanalysisforaseriessystemwithactiveredun | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
100 | 1 | |a Ling, Man Ho |e verfasserin |4 aut | |
245 | 1 | 0 | |a Autopsy Data Analysis for a Series System With Active Redundancy Under a Load-Sharing Model |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The failure of any component within a series system results in the failure of the system. Incorporating active redundancy into a system generally improves its reliability and availability. This type of system does not belong to the category of coherent systems, and thus those results on coherent systems are not applicable. Hence, it is of great interest to develop statistical methodologies that perform well for inference on reliability of redundancy systems. In a life-test for multicomponent systems, component lifetimes may not be observable, but one may observe a set of components that failed along with the system. The data available in this form are called autopsy data, and, in this case, lifetime information on some of the components is missing. In this paper, we consider an equal load-sharing model and develop an expectation-maximization algorithm for estimating system reliability characteristics based on such an autopsy data. The load-sharing parameter indicates whether incorporating active redundancy improves system reliability or induces rapid failure of the system. The performance of the proposed methodology is then evaluated through Monte Carlo simulations and then illustrated with two numerical examples. | ||
650 | 4 | |a cumulative exposure model | |
650 | 4 | |a Load modeling | |
650 | 4 | |a load-sharing model | |
650 | 4 | |a Autopsy | |
650 | 4 | |a autopsy data | |
650 | 4 | |a exponential distribution | |
650 | 4 | |a Redundancy | |
650 | 4 | |a Active redundancy | |
650 | 4 | |a Maximum likelihood estimation | |
650 | 4 | |a series system | |
650 | 4 | |a Analytical models | |
650 | 4 | |a Data models | |
700 | 1 | |a Ng, Hon Keung Tony |4 oth | |
700 | 1 | |a Chan, Ping Shing |4 oth | |
700 | 1 | |a Balakrishnan, Narayanaswamy |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on reliability |d New York, NY, 1963 |g 65(2016), 2, Seite 957-968 |w (DE-627)129602957 |w (DE-600)241637-2 |w (DE-576)015096769 |x 0018-9529 |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:2016 |g number:2 |g pages:957-968 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TR.2016.2521766 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7407428 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4310 | ||
951 | |a AR | ||
952 | |d 65 |j 2016 |e 2 |h 957-968 |
author_variant |
m h l mh mhl |
---|---|
matchkey_str |
article:00189529:2016----::uosdtaayifrsressewtatvrdnacu |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/TR.2016.2521766 doi PQ20160719 (DE-627)OLC1977605001 (DE-599)GBVOLC1977605001 (PRQ)c931-a3c8d0a1e15bc46fb36d06d130b4e7440235d892d8e06e68d4551a78b761f77b0 (KEY)0062598120160000065000200957autopsydataanalysisforaseriessystemwithactiveredun DE-627 ger DE-627 rakwb eng 620 DNB Ling, Man Ho verfasserin aut Autopsy Data Analysis for a Series System With Active Redundancy Under a Load-Sharing Model 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The failure of any component within a series system results in the failure of the system. Incorporating active redundancy into a system generally improves its reliability and availability. This type of system does not belong to the category of coherent systems, and thus those results on coherent systems are not applicable. Hence, it is of great interest to develop statistical methodologies that perform well for inference on reliability of redundancy systems. In a life-test for multicomponent systems, component lifetimes may not be observable, but one may observe a set of components that failed along with the system. The data available in this form are called autopsy data, and, in this case, lifetime information on some of the components is missing. In this paper, we consider an equal load-sharing model and develop an expectation-maximization algorithm for estimating system reliability characteristics based on such an autopsy data. The load-sharing parameter indicates whether incorporating active redundancy improves system reliability or induces rapid failure of the system. The performance of the proposed methodology is then evaluated through Monte Carlo simulations and then illustrated with two numerical examples. cumulative exposure model Load modeling load-sharing model Autopsy autopsy data exponential distribution Redundancy Active redundancy Maximum likelihood estimation series system Analytical models Data models Ng, Hon Keung Tony oth Chan, Ping Shing oth Balakrishnan, Narayanaswamy oth Enthalten in IEEE transactions on reliability New York, NY, 1963 65(2016), 2, Seite 957-968 (DE-627)129602957 (DE-600)241637-2 (DE-576)015096769 0018-9529 nnns volume:65 year:2016 number:2 pages:957-968 http://dx.doi.org/10.1109/TR.2016.2521766 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7407428 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 GBV_ILN_4310 AR 65 2016 2 957-968 |
spelling |
10.1109/TR.2016.2521766 doi PQ20160719 (DE-627)OLC1977605001 (DE-599)GBVOLC1977605001 (PRQ)c931-a3c8d0a1e15bc46fb36d06d130b4e7440235d892d8e06e68d4551a78b761f77b0 (KEY)0062598120160000065000200957autopsydataanalysisforaseriessystemwithactiveredun DE-627 ger DE-627 rakwb eng 620 DNB Ling, Man Ho verfasserin aut Autopsy Data Analysis for a Series System With Active Redundancy Under a Load-Sharing Model 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The failure of any component within a series system results in the failure of the system. Incorporating active redundancy into a system generally improves its reliability and availability. This type of system does not belong to the category of coherent systems, and thus those results on coherent systems are not applicable. Hence, it is of great interest to develop statistical methodologies that perform well for inference on reliability of redundancy systems. In a life-test for multicomponent systems, component lifetimes may not be observable, but one may observe a set of components that failed along with the system. The data available in this form are called autopsy data, and, in this case, lifetime information on some of the components is missing. In this paper, we consider an equal load-sharing model and develop an expectation-maximization algorithm for estimating system reliability characteristics based on such an autopsy data. The load-sharing parameter indicates whether incorporating active redundancy improves system reliability or induces rapid failure of the system. The performance of the proposed methodology is then evaluated through Monte Carlo simulations and then illustrated with two numerical examples. cumulative exposure model Load modeling load-sharing model Autopsy autopsy data exponential distribution Redundancy Active redundancy Maximum likelihood estimation series system Analytical models Data models Ng, Hon Keung Tony oth Chan, Ping Shing oth Balakrishnan, Narayanaswamy oth Enthalten in IEEE transactions on reliability New York, NY, 1963 65(2016), 2, Seite 957-968 (DE-627)129602957 (DE-600)241637-2 (DE-576)015096769 0018-9529 nnns volume:65 year:2016 number:2 pages:957-968 http://dx.doi.org/10.1109/TR.2016.2521766 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7407428 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 GBV_ILN_4310 AR 65 2016 2 957-968 |
allfields_unstemmed |
10.1109/TR.2016.2521766 doi PQ20160719 (DE-627)OLC1977605001 (DE-599)GBVOLC1977605001 (PRQ)c931-a3c8d0a1e15bc46fb36d06d130b4e7440235d892d8e06e68d4551a78b761f77b0 (KEY)0062598120160000065000200957autopsydataanalysisforaseriessystemwithactiveredun DE-627 ger DE-627 rakwb eng 620 DNB Ling, Man Ho verfasserin aut Autopsy Data Analysis for a Series System With Active Redundancy Under a Load-Sharing Model 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The failure of any component within a series system results in the failure of the system. Incorporating active redundancy into a system generally improves its reliability and availability. This type of system does not belong to the category of coherent systems, and thus those results on coherent systems are not applicable. Hence, it is of great interest to develop statistical methodologies that perform well for inference on reliability of redundancy systems. In a life-test for multicomponent systems, component lifetimes may not be observable, but one may observe a set of components that failed along with the system. The data available in this form are called autopsy data, and, in this case, lifetime information on some of the components is missing. In this paper, we consider an equal load-sharing model and develop an expectation-maximization algorithm for estimating system reliability characteristics based on such an autopsy data. The load-sharing parameter indicates whether incorporating active redundancy improves system reliability or induces rapid failure of the system. The performance of the proposed methodology is then evaluated through Monte Carlo simulations and then illustrated with two numerical examples. cumulative exposure model Load modeling load-sharing model Autopsy autopsy data exponential distribution Redundancy Active redundancy Maximum likelihood estimation series system Analytical models Data models Ng, Hon Keung Tony oth Chan, Ping Shing oth Balakrishnan, Narayanaswamy oth Enthalten in IEEE transactions on reliability New York, NY, 1963 65(2016), 2, Seite 957-968 (DE-627)129602957 (DE-600)241637-2 (DE-576)015096769 0018-9529 nnns volume:65 year:2016 number:2 pages:957-968 http://dx.doi.org/10.1109/TR.2016.2521766 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7407428 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 GBV_ILN_4310 AR 65 2016 2 957-968 |
allfieldsGer |
10.1109/TR.2016.2521766 doi PQ20160719 (DE-627)OLC1977605001 (DE-599)GBVOLC1977605001 (PRQ)c931-a3c8d0a1e15bc46fb36d06d130b4e7440235d892d8e06e68d4551a78b761f77b0 (KEY)0062598120160000065000200957autopsydataanalysisforaseriessystemwithactiveredun DE-627 ger DE-627 rakwb eng 620 DNB Ling, Man Ho verfasserin aut Autopsy Data Analysis for a Series System With Active Redundancy Under a Load-Sharing Model 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The failure of any component within a series system results in the failure of the system. Incorporating active redundancy into a system generally improves its reliability and availability. This type of system does not belong to the category of coherent systems, and thus those results on coherent systems are not applicable. Hence, it is of great interest to develop statistical methodologies that perform well for inference on reliability of redundancy systems. In a life-test for multicomponent systems, component lifetimes may not be observable, but one may observe a set of components that failed along with the system. The data available in this form are called autopsy data, and, in this case, lifetime information on some of the components is missing. In this paper, we consider an equal load-sharing model and develop an expectation-maximization algorithm for estimating system reliability characteristics based on such an autopsy data. The load-sharing parameter indicates whether incorporating active redundancy improves system reliability or induces rapid failure of the system. The performance of the proposed methodology is then evaluated through Monte Carlo simulations and then illustrated with two numerical examples. cumulative exposure model Load modeling load-sharing model Autopsy autopsy data exponential distribution Redundancy Active redundancy Maximum likelihood estimation series system Analytical models Data models Ng, Hon Keung Tony oth Chan, Ping Shing oth Balakrishnan, Narayanaswamy oth Enthalten in IEEE transactions on reliability New York, NY, 1963 65(2016), 2, Seite 957-968 (DE-627)129602957 (DE-600)241637-2 (DE-576)015096769 0018-9529 nnns volume:65 year:2016 number:2 pages:957-968 http://dx.doi.org/10.1109/TR.2016.2521766 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7407428 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 GBV_ILN_4310 AR 65 2016 2 957-968 |
allfieldsSound |
10.1109/TR.2016.2521766 doi PQ20160719 (DE-627)OLC1977605001 (DE-599)GBVOLC1977605001 (PRQ)c931-a3c8d0a1e15bc46fb36d06d130b4e7440235d892d8e06e68d4551a78b761f77b0 (KEY)0062598120160000065000200957autopsydataanalysisforaseriessystemwithactiveredun DE-627 ger DE-627 rakwb eng 620 DNB Ling, Man Ho verfasserin aut Autopsy Data Analysis for a Series System With Active Redundancy Under a Load-Sharing Model 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The failure of any component within a series system results in the failure of the system. Incorporating active redundancy into a system generally improves its reliability and availability. This type of system does not belong to the category of coherent systems, and thus those results on coherent systems are not applicable. Hence, it is of great interest to develop statistical methodologies that perform well for inference on reliability of redundancy systems. In a life-test for multicomponent systems, component lifetimes may not be observable, but one may observe a set of components that failed along with the system. The data available in this form are called autopsy data, and, in this case, lifetime information on some of the components is missing. In this paper, we consider an equal load-sharing model and develop an expectation-maximization algorithm for estimating system reliability characteristics based on such an autopsy data. The load-sharing parameter indicates whether incorporating active redundancy improves system reliability or induces rapid failure of the system. The performance of the proposed methodology is then evaluated through Monte Carlo simulations and then illustrated with two numerical examples. cumulative exposure model Load modeling load-sharing model Autopsy autopsy data exponential distribution Redundancy Active redundancy Maximum likelihood estimation series system Analytical models Data models Ng, Hon Keung Tony oth Chan, Ping Shing oth Balakrishnan, Narayanaswamy oth Enthalten in IEEE transactions on reliability New York, NY, 1963 65(2016), 2, Seite 957-968 (DE-627)129602957 (DE-600)241637-2 (DE-576)015096769 0018-9529 nnns volume:65 year:2016 number:2 pages:957-968 http://dx.doi.org/10.1109/TR.2016.2521766 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7407428 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 GBV_ILN_4310 AR 65 2016 2 957-968 |
language |
English |
source |
Enthalten in IEEE transactions on reliability 65(2016), 2, Seite 957-968 volume:65 year:2016 number:2 pages:957-968 |
sourceStr |
Enthalten in IEEE transactions on reliability 65(2016), 2, Seite 957-968 volume:65 year:2016 number:2 pages:957-968 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cumulative exposure model Load modeling load-sharing model Autopsy autopsy data exponential distribution Redundancy Active redundancy Maximum likelihood estimation series system Analytical models Data models |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on reliability |
authorswithroles_txt_mv |
Ling, Man Ho @@aut@@ Ng, Hon Keung Tony @@oth@@ Chan, Ping Shing @@oth@@ Balakrishnan, Narayanaswamy @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129602957 |
dewey-sort |
3620 |
id |
OLC1977605001 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1977605001</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716104048.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TR.2016.2521766</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1977605001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1977605001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c931-a3c8d0a1e15bc46fb36d06d130b4e7440235d892d8e06e68d4551a78b761f77b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0062598120160000065000200957autopsydataanalysisforaseriessystemwithactiveredun</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ling, Man Ho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Autopsy Data Analysis for a Series System With Active Redundancy Under a Load-Sharing Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The failure of any component within a series system results in the failure of the system. Incorporating active redundancy into a system generally improves its reliability and availability. This type of system does not belong to the category of coherent systems, and thus those results on coherent systems are not applicable. Hence, it is of great interest to develop statistical methodologies that perform well for inference on reliability of redundancy systems. In a life-test for multicomponent systems, component lifetimes may not be observable, but one may observe a set of components that failed along with the system. The data available in this form are called autopsy data, and, in this case, lifetime information on some of the components is missing. In this paper, we consider an equal load-sharing model and develop an expectation-maximization algorithm for estimating system reliability characteristics based on such an autopsy data. The load-sharing parameter indicates whether incorporating active redundancy improves system reliability or induces rapid failure of the system. The performance of the proposed methodology is then evaluated through Monte Carlo simulations and then illustrated with two numerical examples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cumulative exposure model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">load-sharing model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autopsy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autopsy data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exponential distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Redundancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Active redundancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum likelihood estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">series system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ng, Hon Keung Tony</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chan, Ping Shing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balakrishnan, Narayanaswamy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on reliability</subfield><subfield code="d">New York, NY, 1963</subfield><subfield code="g">65(2016), 2, Seite 957-968</subfield><subfield code="w">(DE-627)129602957</subfield><subfield code="w">(DE-600)241637-2</subfield><subfield code="w">(DE-576)015096769</subfield><subfield code="x">0018-9529</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:957-968</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TR.2016.2521766</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7407428</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="h">957-968</subfield></datafield></record></collection>
|
author |
Ling, Man Ho |
spellingShingle |
Ling, Man Ho ddc 620 misc cumulative exposure model misc Load modeling misc load-sharing model misc Autopsy misc autopsy data misc exponential distribution misc Redundancy misc Active redundancy misc Maximum likelihood estimation misc series system misc Analytical models misc Data models Autopsy Data Analysis for a Series System With Active Redundancy Under a Load-Sharing Model |
authorStr |
Ling, Man Ho |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129602957 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9529 |
topic_title |
620 DNB Autopsy Data Analysis for a Series System With Active Redundancy Under a Load-Sharing Model cumulative exposure model Load modeling load-sharing model Autopsy autopsy data exponential distribution Redundancy Active redundancy Maximum likelihood estimation series system Analytical models Data models |
topic |
ddc 620 misc cumulative exposure model misc Load modeling misc load-sharing model misc Autopsy misc autopsy data misc exponential distribution misc Redundancy misc Active redundancy misc Maximum likelihood estimation misc series system misc Analytical models misc Data models |
topic_unstemmed |
ddc 620 misc cumulative exposure model misc Load modeling misc load-sharing model misc Autopsy misc autopsy data misc exponential distribution misc Redundancy misc Active redundancy misc Maximum likelihood estimation misc series system misc Analytical models misc Data models |
topic_browse |
ddc 620 misc cumulative exposure model misc Load modeling misc load-sharing model misc Autopsy misc autopsy data misc exponential distribution misc Redundancy misc Active redundancy misc Maximum likelihood estimation misc series system misc Analytical models misc Data models |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
h k t n hkt hktn p s c ps psc n b nb |
hierarchy_parent_title |
IEEE transactions on reliability |
hierarchy_parent_id |
129602957 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on reliability |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129602957 (DE-600)241637-2 (DE-576)015096769 |
title |
Autopsy Data Analysis for a Series System With Active Redundancy Under a Load-Sharing Model |
ctrlnum |
(DE-627)OLC1977605001 (DE-599)GBVOLC1977605001 (PRQ)c931-a3c8d0a1e15bc46fb36d06d130b4e7440235d892d8e06e68d4551a78b761f77b0 (KEY)0062598120160000065000200957autopsydataanalysisforaseriessystemwithactiveredun |
title_full |
Autopsy Data Analysis for a Series System With Active Redundancy Under a Load-Sharing Model |
author_sort |
Ling, Man Ho |
journal |
IEEE transactions on reliability |
journalStr |
IEEE transactions on reliability |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
957 |
author_browse |
Ling, Man Ho |
container_volume |
65 |
class |
620 DNB |
format_se |
Aufsätze |
author-letter |
Ling, Man Ho |
doi_str_mv |
10.1109/TR.2016.2521766 |
dewey-full |
620 |
title_sort |
autopsy data analysis for a series system with active redundancy under a load-sharing model |
title_auth |
Autopsy Data Analysis for a Series System With Active Redundancy Under a Load-Sharing Model |
abstract |
The failure of any component within a series system results in the failure of the system. Incorporating active redundancy into a system generally improves its reliability and availability. This type of system does not belong to the category of coherent systems, and thus those results on coherent systems are not applicable. Hence, it is of great interest to develop statistical methodologies that perform well for inference on reliability of redundancy systems. In a life-test for multicomponent systems, component lifetimes may not be observable, but one may observe a set of components that failed along with the system. The data available in this form are called autopsy data, and, in this case, lifetime information on some of the components is missing. In this paper, we consider an equal load-sharing model and develop an expectation-maximization algorithm for estimating system reliability characteristics based on such an autopsy data. The load-sharing parameter indicates whether incorporating active redundancy improves system reliability or induces rapid failure of the system. The performance of the proposed methodology is then evaluated through Monte Carlo simulations and then illustrated with two numerical examples. |
abstractGer |
The failure of any component within a series system results in the failure of the system. Incorporating active redundancy into a system generally improves its reliability and availability. This type of system does not belong to the category of coherent systems, and thus those results on coherent systems are not applicable. Hence, it is of great interest to develop statistical methodologies that perform well for inference on reliability of redundancy systems. In a life-test for multicomponent systems, component lifetimes may not be observable, but one may observe a set of components that failed along with the system. The data available in this form are called autopsy data, and, in this case, lifetime information on some of the components is missing. In this paper, we consider an equal load-sharing model and develop an expectation-maximization algorithm for estimating system reliability characteristics based on such an autopsy data. The load-sharing parameter indicates whether incorporating active redundancy improves system reliability or induces rapid failure of the system. The performance of the proposed methodology is then evaluated through Monte Carlo simulations and then illustrated with two numerical examples. |
abstract_unstemmed |
The failure of any component within a series system results in the failure of the system. Incorporating active redundancy into a system generally improves its reliability and availability. This type of system does not belong to the category of coherent systems, and thus those results on coherent systems are not applicable. Hence, it is of great interest to develop statistical methodologies that perform well for inference on reliability of redundancy systems. In a life-test for multicomponent systems, component lifetimes may not be observable, but one may observe a set of components that failed along with the system. The data available in this form are called autopsy data, and, in this case, lifetime information on some of the components is missing. In this paper, we consider an equal load-sharing model and develop an expectation-maximization algorithm for estimating system reliability characteristics based on such an autopsy data. The load-sharing parameter indicates whether incorporating active redundancy improves system reliability or induces rapid failure of the system. The performance of the proposed methodology is then evaluated through Monte Carlo simulations and then illustrated with two numerical examples. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 GBV_ILN_4310 |
container_issue |
2 |
title_short |
Autopsy Data Analysis for a Series System With Active Redundancy Under a Load-Sharing Model |
url |
http://dx.doi.org/10.1109/TR.2016.2521766 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7407428 |
remote_bool |
false |
author2 |
Ng, Hon Keung Tony Chan, Ping Shing Balakrishnan, Narayanaswamy |
author2Str |
Ng, Hon Keung Tony Chan, Ping Shing Balakrishnan, Narayanaswamy |
ppnlink |
129602957 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/TR.2016.2521766 |
up_date |
2024-07-03T18:51:18.311Z |
_version_ |
1803584985694732288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1977605001</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716104048.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TR.2016.2521766</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1977605001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1977605001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c931-a3c8d0a1e15bc46fb36d06d130b4e7440235d892d8e06e68d4551a78b761f77b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0062598120160000065000200957autopsydataanalysisforaseriessystemwithactiveredun</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ling, Man Ho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Autopsy Data Analysis for a Series System With Active Redundancy Under a Load-Sharing Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The failure of any component within a series system results in the failure of the system. Incorporating active redundancy into a system generally improves its reliability and availability. This type of system does not belong to the category of coherent systems, and thus those results on coherent systems are not applicable. Hence, it is of great interest to develop statistical methodologies that perform well for inference on reliability of redundancy systems. In a life-test for multicomponent systems, component lifetimes may not be observable, but one may observe a set of components that failed along with the system. The data available in this form are called autopsy data, and, in this case, lifetime information on some of the components is missing. In this paper, we consider an equal load-sharing model and develop an expectation-maximization algorithm for estimating system reliability characteristics based on such an autopsy data. The load-sharing parameter indicates whether incorporating active redundancy improves system reliability or induces rapid failure of the system. The performance of the proposed methodology is then evaluated through Monte Carlo simulations and then illustrated with two numerical examples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cumulative exposure model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">load-sharing model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autopsy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autopsy data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exponential distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Redundancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Active redundancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum likelihood estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">series system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ng, Hon Keung Tony</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chan, Ping Shing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balakrishnan, Narayanaswamy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on reliability</subfield><subfield code="d">New York, NY, 1963</subfield><subfield code="g">65(2016), 2, Seite 957-968</subfield><subfield code="w">(DE-627)129602957</subfield><subfield code="w">(DE-600)241637-2</subfield><subfield code="w">(DE-576)015096769</subfield><subfield code="x">0018-9529</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:957-968</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TR.2016.2521766</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7407428</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="h">957-968</subfield></datafield></record></collection>
|
score |
7.4011316 |