Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates
The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare earth nickelates as an archetype of comple...
Ausführliche Beschreibung
Autor*in: |
Middey, S [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Annual review of materials research - Palo Alto, Calif. : Annual Reviews, 2001, 46(2016), 1, Seite 305-334 |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2016 ; number:1 ; pages:305-334 |
Links: |
---|
DOI / URN: |
10.1146/annurev-matsci-070115-032057 |
---|
Katalog-ID: |
OLC1977787509 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1977787509 | ||
003 | DE-627 | ||
005 | 20220214105438.0 | ||
007 | tu | ||
008 | 160719s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1146/annurev-matsci-070115-032057 |2 doi | |
028 | 5 | 2 | |a PQ20160720 |
035 | |a (DE-627)OLC1977787509 | ||
035 | |a (DE-599)GBVOLC1977787509 | ||
035 | |a (PRQ)a917-f65c989cd82eea5fa63bca04f23f535dbc0240f0175308162ac2ea5b2c341fc10 | ||
035 | |a (KEY)0082659620160000046000100305physicsofultrathinfilmsandheterostructuresofrareea | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |q DNB |
084 | |a 51.00 |2 bkl | ||
100 | 1 | |a Middey, S |e verfasserin |4 aut | |
245 | 1 | 0 | |a Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high T_c cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultra-thin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review the present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. We conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultra-thin limit. | ||
650 | 4 | |a Condensed Matter | |
650 | 4 | |a Strongly Correlated Electrons | |
700 | 1 | |a Chakhalian, J |4 oth | |
700 | 1 | |a Mahadevan, P |4 oth | |
700 | 1 | |a Freeland, J.W |4 oth | |
700 | 1 | |a Millis, A.J |4 oth | |
700 | 1 | |a Sarma, D.D |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Annual review of materials research |d Palo Alto, Calif. : Annual Reviews, 2001 |g 46(2016), 1, Seite 305-334 |w (DE-627)335259057 |w (DE-600)2059154-8 |w (DE-576)095300376 |x 1531-7331 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2016 |g number:1 |g pages:305-334 |
856 | 4 | 1 | |u http://dx.doi.org/10.1146/annurev-matsci-070115-032057 |3 Volltext |
856 | 4 | 2 | |u http://arxiv.org/abs/1606.09291 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2240 | ||
912 | |a GBV_ILN_4012 | ||
936 | b | k | |a 51.00 |q AVZ |
951 | |a AR | ||
952 | |d 46 |j 2016 |e 1 |h 305-334 |
author_variant |
s m sm |
---|---|
matchkey_str |
article:15317331:2016----::hscoutahnimadeeotutrsf |
hierarchy_sort_str |
2016 |
bklnumber |
51.00 |
publishDate |
2016 |
allfields |
10.1146/annurev-matsci-070115-032057 doi PQ20160720 (DE-627)OLC1977787509 (DE-599)GBVOLC1977787509 (PRQ)a917-f65c989cd82eea5fa63bca04f23f535dbc0240f0175308162ac2ea5b2c341fc10 (KEY)0082659620160000046000100305physicsofultrathinfilmsandheterostructuresofrareea DE-627 ger DE-627 rakwb eng 500 DNB 51.00 bkl Middey, S verfasserin aut Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high T_c cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultra-thin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review the present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. We conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultra-thin limit. Condensed Matter Strongly Correlated Electrons Chakhalian, J oth Mahadevan, P oth Freeland, J.W oth Millis, A.J oth Sarma, D.D oth Enthalten in Annual review of materials research Palo Alto, Calif. : Annual Reviews, 2001 46(2016), 1, Seite 305-334 (DE-627)335259057 (DE-600)2059154-8 (DE-576)095300376 1531-7331 nnns volume:46 year:2016 number:1 pages:305-334 http://dx.doi.org/10.1146/annurev-matsci-070115-032057 Volltext http://arxiv.org/abs/1606.09291 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_170 GBV_ILN_2015 GBV_ILN_2240 GBV_ILN_4012 51.00 AVZ AR 46 2016 1 305-334 |
spelling |
10.1146/annurev-matsci-070115-032057 doi PQ20160720 (DE-627)OLC1977787509 (DE-599)GBVOLC1977787509 (PRQ)a917-f65c989cd82eea5fa63bca04f23f535dbc0240f0175308162ac2ea5b2c341fc10 (KEY)0082659620160000046000100305physicsofultrathinfilmsandheterostructuresofrareea DE-627 ger DE-627 rakwb eng 500 DNB 51.00 bkl Middey, S verfasserin aut Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high T_c cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultra-thin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review the present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. We conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultra-thin limit. Condensed Matter Strongly Correlated Electrons Chakhalian, J oth Mahadevan, P oth Freeland, J.W oth Millis, A.J oth Sarma, D.D oth Enthalten in Annual review of materials research Palo Alto, Calif. : Annual Reviews, 2001 46(2016), 1, Seite 305-334 (DE-627)335259057 (DE-600)2059154-8 (DE-576)095300376 1531-7331 nnns volume:46 year:2016 number:1 pages:305-334 http://dx.doi.org/10.1146/annurev-matsci-070115-032057 Volltext http://arxiv.org/abs/1606.09291 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_170 GBV_ILN_2015 GBV_ILN_2240 GBV_ILN_4012 51.00 AVZ AR 46 2016 1 305-334 |
allfields_unstemmed |
10.1146/annurev-matsci-070115-032057 doi PQ20160720 (DE-627)OLC1977787509 (DE-599)GBVOLC1977787509 (PRQ)a917-f65c989cd82eea5fa63bca04f23f535dbc0240f0175308162ac2ea5b2c341fc10 (KEY)0082659620160000046000100305physicsofultrathinfilmsandheterostructuresofrareea DE-627 ger DE-627 rakwb eng 500 DNB 51.00 bkl Middey, S verfasserin aut Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high T_c cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultra-thin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review the present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. We conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultra-thin limit. Condensed Matter Strongly Correlated Electrons Chakhalian, J oth Mahadevan, P oth Freeland, J.W oth Millis, A.J oth Sarma, D.D oth Enthalten in Annual review of materials research Palo Alto, Calif. : Annual Reviews, 2001 46(2016), 1, Seite 305-334 (DE-627)335259057 (DE-600)2059154-8 (DE-576)095300376 1531-7331 nnns volume:46 year:2016 number:1 pages:305-334 http://dx.doi.org/10.1146/annurev-matsci-070115-032057 Volltext http://arxiv.org/abs/1606.09291 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_170 GBV_ILN_2015 GBV_ILN_2240 GBV_ILN_4012 51.00 AVZ AR 46 2016 1 305-334 |
allfieldsGer |
10.1146/annurev-matsci-070115-032057 doi PQ20160720 (DE-627)OLC1977787509 (DE-599)GBVOLC1977787509 (PRQ)a917-f65c989cd82eea5fa63bca04f23f535dbc0240f0175308162ac2ea5b2c341fc10 (KEY)0082659620160000046000100305physicsofultrathinfilmsandheterostructuresofrareea DE-627 ger DE-627 rakwb eng 500 DNB 51.00 bkl Middey, S verfasserin aut Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high T_c cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultra-thin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review the present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. We conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultra-thin limit. Condensed Matter Strongly Correlated Electrons Chakhalian, J oth Mahadevan, P oth Freeland, J.W oth Millis, A.J oth Sarma, D.D oth Enthalten in Annual review of materials research Palo Alto, Calif. : Annual Reviews, 2001 46(2016), 1, Seite 305-334 (DE-627)335259057 (DE-600)2059154-8 (DE-576)095300376 1531-7331 nnns volume:46 year:2016 number:1 pages:305-334 http://dx.doi.org/10.1146/annurev-matsci-070115-032057 Volltext http://arxiv.org/abs/1606.09291 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_170 GBV_ILN_2015 GBV_ILN_2240 GBV_ILN_4012 51.00 AVZ AR 46 2016 1 305-334 |
allfieldsSound |
10.1146/annurev-matsci-070115-032057 doi PQ20160720 (DE-627)OLC1977787509 (DE-599)GBVOLC1977787509 (PRQ)a917-f65c989cd82eea5fa63bca04f23f535dbc0240f0175308162ac2ea5b2c341fc10 (KEY)0082659620160000046000100305physicsofultrathinfilmsandheterostructuresofrareea DE-627 ger DE-627 rakwb eng 500 DNB 51.00 bkl Middey, S verfasserin aut Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high T_c cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultra-thin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review the present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. We conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultra-thin limit. Condensed Matter Strongly Correlated Electrons Chakhalian, J oth Mahadevan, P oth Freeland, J.W oth Millis, A.J oth Sarma, D.D oth Enthalten in Annual review of materials research Palo Alto, Calif. : Annual Reviews, 2001 46(2016), 1, Seite 305-334 (DE-627)335259057 (DE-600)2059154-8 (DE-576)095300376 1531-7331 nnns volume:46 year:2016 number:1 pages:305-334 http://dx.doi.org/10.1146/annurev-matsci-070115-032057 Volltext http://arxiv.org/abs/1606.09291 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_170 GBV_ILN_2015 GBV_ILN_2240 GBV_ILN_4012 51.00 AVZ AR 46 2016 1 305-334 |
language |
English |
source |
Enthalten in Annual review of materials research 46(2016), 1, Seite 305-334 volume:46 year:2016 number:1 pages:305-334 |
sourceStr |
Enthalten in Annual review of materials research 46(2016), 1, Seite 305-334 volume:46 year:2016 number:1 pages:305-334 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Condensed Matter Strongly Correlated Electrons |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Annual review of materials research |
authorswithroles_txt_mv |
Middey, S @@aut@@ Chakhalian, J @@oth@@ Mahadevan, P @@oth@@ Freeland, J.W @@oth@@ Millis, A.J @@oth@@ Sarma, D.D @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
335259057 |
dewey-sort |
3500 |
id |
OLC1977787509 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1977787509</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220214105438.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1146/annurev-matsci-070115-032057</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160720</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1977787509</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1977787509</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a917-f65c989cd82eea5fa63bca04f23f535dbc0240f0175308162ac2ea5b2c341fc10</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0082659620160000046000100305physicsofultrathinfilmsandheterostructuresofrareea</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Middey, S</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high T_c cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultra-thin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review the present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. We conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultra-thin limit.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensed Matter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strongly Correlated Electrons</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakhalian, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahadevan, P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Freeland, J.W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Millis, A.J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sarma, D.D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annual review of materials research</subfield><subfield code="d">Palo Alto, Calif. : Annual Reviews, 2001</subfield><subfield code="g">46(2016), 1, Seite 305-334</subfield><subfield code="w">(DE-627)335259057</subfield><subfield code="w">(DE-600)2059154-8</subfield><subfield code="w">(DE-576)095300376</subfield><subfield code="x">1531-7331</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:305-334</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1146/annurev-matsci-070115-032057</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1606.09291</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2240</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">305-334</subfield></datafield></record></collection>
|
author |
Middey, S |
spellingShingle |
Middey, S ddc 500 bkl 51.00 misc Condensed Matter misc Strongly Correlated Electrons Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates |
authorStr |
Middey, S |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)335259057 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1531-7331 |
topic_title |
500 DNB 51.00 bkl Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates Condensed Matter Strongly Correlated Electrons |
topic |
ddc 500 bkl 51.00 misc Condensed Matter misc Strongly Correlated Electrons |
topic_unstemmed |
ddc 500 bkl 51.00 misc Condensed Matter misc Strongly Correlated Electrons |
topic_browse |
ddc 500 bkl 51.00 misc Condensed Matter misc Strongly Correlated Electrons |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j c jc p m pm j f jf a m am d s ds |
hierarchy_parent_title |
Annual review of materials research |
hierarchy_parent_id |
335259057 |
dewey-tens |
500 - Science |
hierarchy_top_title |
Annual review of materials research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)335259057 (DE-600)2059154-8 (DE-576)095300376 |
title |
Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates |
ctrlnum |
(DE-627)OLC1977787509 (DE-599)GBVOLC1977787509 (PRQ)a917-f65c989cd82eea5fa63bca04f23f535dbc0240f0175308162ac2ea5b2c341fc10 (KEY)0082659620160000046000100305physicsofultrathinfilmsandheterostructuresofrareea |
title_full |
Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates |
author_sort |
Middey, S |
journal |
Annual review of materials research |
journalStr |
Annual review of materials research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
305 |
author_browse |
Middey, S |
container_volume |
46 |
class |
500 DNB 51.00 bkl |
format_se |
Aufsätze |
author-letter |
Middey, S |
doi_str_mv |
10.1146/annurev-matsci-070115-032057 |
dewey-full |
500 |
title_sort |
physics of ultrathin films and heterostructures of rare-earth nickelates |
title_auth |
Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates |
abstract |
The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high T_c cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultra-thin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review the present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. We conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultra-thin limit. |
abstractGer |
The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high T_c cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultra-thin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review the present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. We conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultra-thin limit. |
abstract_unstemmed |
The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high T_c cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultra-thin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review the present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. We conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultra-thin limit. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_170 GBV_ILN_2015 GBV_ILN_2240 GBV_ILN_4012 |
container_issue |
1 |
title_short |
Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates |
url |
http://dx.doi.org/10.1146/annurev-matsci-070115-032057 http://arxiv.org/abs/1606.09291 |
remote_bool |
false |
author2 |
Chakhalian, J Mahadevan, P Freeland, J.W Millis, A.J Sarma, D.D |
author2Str |
Chakhalian, J Mahadevan, P Freeland, J.W Millis, A.J Sarma, D.D |
ppnlink |
335259057 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1146/annurev-matsci-070115-032057 |
up_date |
2024-07-03T19:31:45.834Z |
_version_ |
1803587531136040960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1977787509</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220214105438.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1146/annurev-matsci-070115-032057</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160720</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1977787509</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1977787509</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a917-f65c989cd82eea5fa63bca04f23f535dbc0240f0175308162ac2ea5b2c341fc10</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0082659620160000046000100305physicsofultrathinfilmsandheterostructuresofrareea</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Middey, S</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high T_c cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultra-thin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review the present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. We conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultra-thin limit.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensed Matter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strongly Correlated Electrons</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakhalian, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahadevan, P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Freeland, J.W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Millis, A.J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sarma, D.D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annual review of materials research</subfield><subfield code="d">Palo Alto, Calif. : Annual Reviews, 2001</subfield><subfield code="g">46(2016), 1, Seite 305-334</subfield><subfield code="w">(DE-627)335259057</subfield><subfield code="w">(DE-600)2059154-8</subfield><subfield code="w">(DE-576)095300376</subfield><subfield code="x">1531-7331</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:305-334</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1146/annurev-matsci-070115-032057</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1606.09291</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2240</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">305-334</subfield></datafield></record></collection>
|
score |
7.4032135 |