Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan
Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE...
Ausführliche Beschreibung
Autor*in: |
Shibata, Mitsuhiro [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2016 Elsevier Ltd. All rights reserved. |
---|
Übergeordnetes Werk: |
Enthalten in: Carbohydrate polymers - Barking, Essex : Applied Science Publ., 1981, 144(2016), Seite 89-97 |
---|---|
Übergeordnetes Werk: |
volume:144 ; year:2016 ; pages:89-97 |
Links: |
---|
DOI / URN: |
10.1016/j.carbpol.2016.02.033 |
---|
Katalog-ID: |
OLC197790582X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC197790582X | ||
003 | DE-627 | ||
005 | 20230510122922.0 | ||
007 | tu | ||
008 | 160719s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.carbpol.2016.02.033 |2 doi | |
028 | 5 | 2 | |a PQ20160719 |
035 | |a (DE-627)OLC197790582X | ||
035 | |a (DE-599)GBVOLC197790582X | ||
035 | |a (PRQ)c1650-cfd0c54d564fbefce2cf17417a9b8b082c1ca589655fc78695bfab4d7d142ae0 | ||
035 | |a (KEY)0110347420160000144000000089biobasedepoxychitinnanofibercompositescuredwithami | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 660 |q DNB |
084 | |a 58.34 |2 bkl | ||
084 | |a 49.25 |2 bkl | ||
100 | 1 | |a Shibata, Mitsuhiro |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. | ||
540 | |a Nutzungsrecht: Copyright © 2016 Elsevier Ltd. All rights reserved. | ||
700 | 1 | |a Enjoji, Motohiro |4 oth | |
700 | 1 | |a Sakazume, Katsumi |4 oth | |
700 | 1 | |a Ifuku, Shinsuke |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Carbohydrate polymers |d Barking, Essex : Applied Science Publ., 1981 |g 144(2016), Seite 89-97 |w (DE-627)130549746 |w (DE-600)782631-X |w (DE-576)481341323 |x 0144-8617 |7 nnns |
773 | 1 | 8 | |g volume:144 |g year:2016 |g pages:89-97 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.carbpol.2016.02.033 |3 Volltext |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/27083797 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 58.34 |q AVZ |
936 | b | k | |a 49.25 |q AVZ |
951 | |a AR | ||
952 | |d 144 |j 2016 |h 89-97 |
author_variant |
m s ms |
---|---|
matchkey_str |
article:01448617:2016----::ibsdpxciinnfbropstsuewtaieyead |
hierarchy_sort_str |
2016 |
bklnumber |
58.34 49.25 |
publishDate |
2016 |
allfields |
10.1016/j.carbpol.2016.02.033 doi PQ20160719 (DE-627)OLC197790582X (DE-599)GBVOLC197790582X (PRQ)c1650-cfd0c54d564fbefce2cf17417a9b8b082c1ca589655fc78695bfab4d7d142ae0 (KEY)0110347420160000144000000089biobasedepoxychitinnanofibercompositescuredwithami DE-627 ger DE-627 rakwb eng 540 660 DNB 58.34 bkl 49.25 bkl Shibata, Mitsuhiro verfasserin aut Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. Nutzungsrecht: Copyright © 2016 Elsevier Ltd. All rights reserved. Enjoji, Motohiro oth Sakazume, Katsumi oth Ifuku, Shinsuke oth Enthalten in Carbohydrate polymers Barking, Essex : Applied Science Publ., 1981 144(2016), Seite 89-97 (DE-627)130549746 (DE-600)782631-X (DE-576)481341323 0144-8617 nnns volume:144 year:2016 pages:89-97 http://dx.doi.org/10.1016/j.carbpol.2016.02.033 Volltext http://www.ncbi.nlm.nih.gov/pubmed/27083797 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 58.34 AVZ 49.25 AVZ AR 144 2016 89-97 |
spelling |
10.1016/j.carbpol.2016.02.033 doi PQ20160719 (DE-627)OLC197790582X (DE-599)GBVOLC197790582X (PRQ)c1650-cfd0c54d564fbefce2cf17417a9b8b082c1ca589655fc78695bfab4d7d142ae0 (KEY)0110347420160000144000000089biobasedepoxychitinnanofibercompositescuredwithami DE-627 ger DE-627 rakwb eng 540 660 DNB 58.34 bkl 49.25 bkl Shibata, Mitsuhiro verfasserin aut Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. Nutzungsrecht: Copyright © 2016 Elsevier Ltd. All rights reserved. Enjoji, Motohiro oth Sakazume, Katsumi oth Ifuku, Shinsuke oth Enthalten in Carbohydrate polymers Barking, Essex : Applied Science Publ., 1981 144(2016), Seite 89-97 (DE-627)130549746 (DE-600)782631-X (DE-576)481341323 0144-8617 nnns volume:144 year:2016 pages:89-97 http://dx.doi.org/10.1016/j.carbpol.2016.02.033 Volltext http://www.ncbi.nlm.nih.gov/pubmed/27083797 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 58.34 AVZ 49.25 AVZ AR 144 2016 89-97 |
allfields_unstemmed |
10.1016/j.carbpol.2016.02.033 doi PQ20160719 (DE-627)OLC197790582X (DE-599)GBVOLC197790582X (PRQ)c1650-cfd0c54d564fbefce2cf17417a9b8b082c1ca589655fc78695bfab4d7d142ae0 (KEY)0110347420160000144000000089biobasedepoxychitinnanofibercompositescuredwithami DE-627 ger DE-627 rakwb eng 540 660 DNB 58.34 bkl 49.25 bkl Shibata, Mitsuhiro verfasserin aut Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. Nutzungsrecht: Copyright © 2016 Elsevier Ltd. All rights reserved. Enjoji, Motohiro oth Sakazume, Katsumi oth Ifuku, Shinsuke oth Enthalten in Carbohydrate polymers Barking, Essex : Applied Science Publ., 1981 144(2016), Seite 89-97 (DE-627)130549746 (DE-600)782631-X (DE-576)481341323 0144-8617 nnns volume:144 year:2016 pages:89-97 http://dx.doi.org/10.1016/j.carbpol.2016.02.033 Volltext http://www.ncbi.nlm.nih.gov/pubmed/27083797 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 58.34 AVZ 49.25 AVZ AR 144 2016 89-97 |
allfieldsGer |
10.1016/j.carbpol.2016.02.033 doi PQ20160719 (DE-627)OLC197790582X (DE-599)GBVOLC197790582X (PRQ)c1650-cfd0c54d564fbefce2cf17417a9b8b082c1ca589655fc78695bfab4d7d142ae0 (KEY)0110347420160000144000000089biobasedepoxychitinnanofibercompositescuredwithami DE-627 ger DE-627 rakwb eng 540 660 DNB 58.34 bkl 49.25 bkl Shibata, Mitsuhiro verfasserin aut Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. Nutzungsrecht: Copyright © 2016 Elsevier Ltd. All rights reserved. Enjoji, Motohiro oth Sakazume, Katsumi oth Ifuku, Shinsuke oth Enthalten in Carbohydrate polymers Barking, Essex : Applied Science Publ., 1981 144(2016), Seite 89-97 (DE-627)130549746 (DE-600)782631-X (DE-576)481341323 0144-8617 nnns volume:144 year:2016 pages:89-97 http://dx.doi.org/10.1016/j.carbpol.2016.02.033 Volltext http://www.ncbi.nlm.nih.gov/pubmed/27083797 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 58.34 AVZ 49.25 AVZ AR 144 2016 89-97 |
allfieldsSound |
10.1016/j.carbpol.2016.02.033 doi PQ20160719 (DE-627)OLC197790582X (DE-599)GBVOLC197790582X (PRQ)c1650-cfd0c54d564fbefce2cf17417a9b8b082c1ca589655fc78695bfab4d7d142ae0 (KEY)0110347420160000144000000089biobasedepoxychitinnanofibercompositescuredwithami DE-627 ger DE-627 rakwb eng 540 660 DNB 58.34 bkl 49.25 bkl Shibata, Mitsuhiro verfasserin aut Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. Nutzungsrecht: Copyright © 2016 Elsevier Ltd. All rights reserved. Enjoji, Motohiro oth Sakazume, Katsumi oth Ifuku, Shinsuke oth Enthalten in Carbohydrate polymers Barking, Essex : Applied Science Publ., 1981 144(2016), Seite 89-97 (DE-627)130549746 (DE-600)782631-X (DE-576)481341323 0144-8617 nnns volume:144 year:2016 pages:89-97 http://dx.doi.org/10.1016/j.carbpol.2016.02.033 Volltext http://www.ncbi.nlm.nih.gov/pubmed/27083797 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 58.34 AVZ 49.25 AVZ AR 144 2016 89-97 |
language |
English |
source |
Enthalten in Carbohydrate polymers 144(2016), Seite 89-97 volume:144 year:2016 pages:89-97 |
sourceStr |
Enthalten in Carbohydrate polymers 144(2016), Seite 89-97 volume:144 year:2016 pages:89-97 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Carbohydrate polymers |
authorswithroles_txt_mv |
Shibata, Mitsuhiro @@aut@@ Enjoji, Motohiro @@oth@@ Sakazume, Katsumi @@oth@@ Ifuku, Shinsuke @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130549746 |
dewey-sort |
3540 |
id |
OLC197790582X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC197790582X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510122922.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.carbpol.2016.02.033</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC197790582X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC197790582X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1650-cfd0c54d564fbefce2cf17417a9b8b082c1ca589655fc78695bfab4d7d142ae0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0110347420160000144000000089biobasedepoxychitinnanofibercompositescuredwithami</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.34</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shibata, Mitsuhiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 Elsevier Ltd. All rights reserved.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Enjoji, Motohiro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sakazume, Katsumi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ifuku, Shinsuke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Carbohydrate polymers</subfield><subfield code="d">Barking, Essex : Applied Science Publ., 1981</subfield><subfield code="g">144(2016), Seite 89-97</subfield><subfield code="w">(DE-627)130549746</subfield><subfield code="w">(DE-600)782631-X</subfield><subfield code="w">(DE-576)481341323</subfield><subfield code="x">0144-8617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:144</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:89-97</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.carbpol.2016.02.033</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/27083797</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.34</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">49.25</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">144</subfield><subfield code="j">2016</subfield><subfield code="h">89-97</subfield></datafield></record></collection>
|
author |
Shibata, Mitsuhiro |
spellingShingle |
Shibata, Mitsuhiro ddc 540 bkl 58.34 bkl 49.25 Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan |
authorStr |
Shibata, Mitsuhiro |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130549746 |
format |
Article |
dewey-ones |
540 - Chemistry & allied sciences 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0144-8617 |
topic_title |
540 660 DNB 58.34 bkl 49.25 bkl Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan |
topic |
ddc 540 bkl 58.34 bkl 49.25 |
topic_unstemmed |
ddc 540 bkl 58.34 bkl 49.25 |
topic_browse |
ddc 540 bkl 58.34 bkl 49.25 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m e me k s ks s i si |
hierarchy_parent_title |
Carbohydrate polymers |
hierarchy_parent_id |
130549746 |
dewey-tens |
540 - Chemistry 660 - Chemical engineering |
hierarchy_top_title |
Carbohydrate polymers |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130549746 (DE-600)782631-X (DE-576)481341323 |
title |
Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan |
ctrlnum |
(DE-627)OLC197790582X (DE-599)GBVOLC197790582X (PRQ)c1650-cfd0c54d564fbefce2cf17417a9b8b082c1ca589655fc78695bfab4d7d142ae0 (KEY)0110347420160000144000000089biobasedepoxychitinnanofibercompositescuredwithami |
title_full |
Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan |
author_sort |
Shibata, Mitsuhiro |
journal |
Carbohydrate polymers |
journalStr |
Carbohydrate polymers |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
89 |
author_browse |
Shibata, Mitsuhiro |
container_volume |
144 |
class |
540 660 DNB 58.34 bkl 49.25 bkl |
format_se |
Aufsätze |
author-letter |
Shibata, Mitsuhiro |
doi_str_mv |
10.1016/j.carbpol.2016.02.033 |
dewey-full |
540 660 |
title_sort |
bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan |
title_auth |
Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan |
abstract |
Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. |
abstractGer |
Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. |
abstract_unstemmed |
Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 |
title_short |
Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan |
url |
http://dx.doi.org/10.1016/j.carbpol.2016.02.033 http://www.ncbi.nlm.nih.gov/pubmed/27083797 |
remote_bool |
false |
author2 |
Enjoji, Motohiro Sakazume, Katsumi Ifuku, Shinsuke |
author2Str |
Enjoji, Motohiro Sakazume, Katsumi Ifuku, Shinsuke |
ppnlink |
130549746 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.carbpol.2016.02.033 |
up_date |
2024-07-03T19:56:28.798Z |
_version_ |
1803589086136500224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC197790582X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510122922.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160719s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.carbpol.2016.02.033</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC197790582X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC197790582X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1650-cfd0c54d564fbefce2cf17417a9b8b082c1ca589655fc78695bfab4d7d142ae0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0110347420160000144000000089biobasedepoxychitinnanofibercompositescuredwithami</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.34</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shibata, Mitsuhiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 Elsevier Ltd. All rights reserved.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Enjoji, Motohiro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sakazume, Katsumi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ifuku, Shinsuke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Carbohydrate polymers</subfield><subfield code="d">Barking, Essex : Applied Science Publ., 1981</subfield><subfield code="g">144(2016), Seite 89-97</subfield><subfield code="w">(DE-627)130549746</subfield><subfield code="w">(DE-600)782631-X</subfield><subfield code="w">(DE-576)481341323</subfield><subfield code="x">0144-8617</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:144</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:89-97</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.carbpol.2016.02.033</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/27083797</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.34</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">49.25</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">144</subfield><subfield code="j">2016</subfield><subfield code="h">89-97</subfield></datafield></record></collection>
|
score |
7.3997498 |