Frequency Comparison of ^}^+ Ion Optical Clocks at PTB and NPL via GPS PPP
We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math&...
Ausführliche Beschreibung
Autor*in: |
Leute, J [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on ultrasonics, ferroelectrics, and frequency control - New York, NY : IEEE, 1986, 63(2016), 7, Seite 981-985 |
---|---|
Übergeordnetes Werk: |
volume:63 ; year:2016 ; number:7 ; pages:981-985 |
Links: |
---|
DOI / URN: |
10.1109/TUFFC.2016.2524988 |
---|
Katalog-ID: |
OLC1978773471 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1978773471 | ||
003 | DE-627 | ||
005 | 20210716112107.0 | ||
007 | tu | ||
008 | 160720s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TUFFC.2016.2524988 |2 doi | |
028 | 5 | 2 | |a PQ20161012 |
035 | |a (DE-627)OLC1978773471 | ||
035 | |a (DE-599)GBVOLC1978773471 | ||
035 | |a (PRQ)i817-eaf74cd1599ff3107003c90f696015a2973e73d9c85acf96e2845f4db17613730 | ||
035 | |a (KEY)0013324820160000063000700981frequencycomparisonofionopticalclocksatptbandnplvi | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 520 |a 620 |a 530 |q DNB |
100 | 1 | |a Leute, J |e verfasserin |4 aut | |
245 | 1 | 0 | |a Frequency Comparison of ^}^+ Ion Optical Clocks at PTB and NPL via GPS PPP |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the <inline-formula><tex-math notation="LaTeX">{^2S_{1/2}(F=0)-{^2D_{3/2}}(F=2)}</tex-math></inline-formula> electric quadrupole transition in <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference <inline-formula><tex-math notation="LaTeX">y({\text {PTB}})-y({\text {NPL}})</tex-math></inline-formula> of <inline-formula><tex-math notation="LaTeX">-1.3\times 10^{-15}</tex-math></inline-formula> with a combined uncertainty of <inline-formula><tex-math notation="LaTeX">1.2\times 10^{-15}</tex-math></inline-formula> for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties. | ||
650 | 4 | |a Masers | |
650 | 4 | |a Frequency transfer | |
650 | 4 | |a Uncertainty | |
650 | 4 | |a Frequency measurement | |
650 | 4 | |a Global Positioning System | |
650 | 4 | |a Optical receivers | |
650 | 4 | |a Clocks | |
650 | 4 | |a GPS precise point positioning (PPP) | |
650 | 4 | |a optical clock | |
650 | 4 | |a Optical fiber communication | |
700 | 1 | |a Huntemann, N |4 oth | |
700 | 1 | |a Lipphardt, B |4 oth | |
700 | 1 | |a Tamm, Christian |4 oth | |
700 | 1 | |a Nisbet-Jones, P. B. R |4 oth | |
700 | 1 | |a King, S. A |4 oth | |
700 | 1 | |a Godun, R. M |4 oth | |
700 | 1 | |a Jones, J. M |4 oth | |
700 | 1 | |a Margolis, H. S |4 oth | |
700 | 1 | |a Whibberley, P. B |4 oth | |
700 | 1 | |a Wallin, A |4 oth | |
700 | 1 | |a Merimaa, M |4 oth | |
700 | 1 | |a Gill, P |4 oth | |
700 | 1 | |a Peik, E |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control |d New York, NY : IEEE, 1986 |g 63(2016), 7, Seite 981-985 |w (DE-627)129191442 |w (DE-600)53308-7 |w (DE-576)014456540 |x 0885-3010 |7 nnns |
773 | 1 | 8 | |g volume:63 |g year:2016 |g number:7 |g pages:981-985 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TUFFC.2016.2524988 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7398135 |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/26863657 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_95 | ||
951 | |a AR | ||
952 | |d 63 |j 2016 |e 7 |h 981-985 |
author_variant |
j l jl |
---|---|
matchkey_str |
article:08853010:2016----::rqeccmaiooinpiacokapb |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/TUFFC.2016.2524988 doi PQ20161012 (DE-627)OLC1978773471 (DE-599)GBVOLC1978773471 (PRQ)i817-eaf74cd1599ff3107003c90f696015a2973e73d9c85acf96e2845f4db17613730 (KEY)0013324820160000063000700981frequencycomparisonofionopticalclocksatptbandnplvi DE-627 ger DE-627 rakwb eng 520 620 530 DNB Leute, J verfasserin aut Frequency Comparison of ^}^+ Ion Optical Clocks at PTB and NPL via GPS PPP 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the <inline-formula><tex-math notation="LaTeX">{^2S_{1/2}(F=0)-{^2D_{3/2}}(F=2)}</tex-math></inline-formula> electric quadrupole transition in <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference <inline-formula><tex-math notation="LaTeX">y({\text {PTB}})-y({\text {NPL}})</tex-math></inline-formula> of <inline-formula><tex-math notation="LaTeX">-1.3\times 10^{-15}</tex-math></inline-formula> with a combined uncertainty of <inline-formula><tex-math notation="LaTeX">1.2\times 10^{-15}</tex-math></inline-formula> for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties. Masers Frequency transfer Uncertainty Frequency measurement Global Positioning System Optical receivers Clocks GPS precise point positioning (PPP) optical clock Optical fiber communication Huntemann, N oth Lipphardt, B oth Tamm, Christian oth Nisbet-Jones, P. B. R oth King, S. A oth Godun, R. M oth Jones, J. M oth Margolis, H. S oth Whibberley, P. B oth Wallin, A oth Merimaa, M oth Gill, P oth Peik, E oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 63(2016), 7, Seite 981-985 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:63 year:2016 number:7 pages:981-985 http://dx.doi.org/10.1109/TUFFC.2016.2524988 Volltext http://ieeexplore.ieee.org/document/7398135 http://www.ncbi.nlm.nih.gov/pubmed/26863657 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_95 AR 63 2016 7 981-985 |
spelling |
10.1109/TUFFC.2016.2524988 doi PQ20161012 (DE-627)OLC1978773471 (DE-599)GBVOLC1978773471 (PRQ)i817-eaf74cd1599ff3107003c90f696015a2973e73d9c85acf96e2845f4db17613730 (KEY)0013324820160000063000700981frequencycomparisonofionopticalclocksatptbandnplvi DE-627 ger DE-627 rakwb eng 520 620 530 DNB Leute, J verfasserin aut Frequency Comparison of ^}^+ Ion Optical Clocks at PTB and NPL via GPS PPP 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the <inline-formula><tex-math notation="LaTeX">{^2S_{1/2}(F=0)-{^2D_{3/2}}(F=2)}</tex-math></inline-formula> electric quadrupole transition in <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference <inline-formula><tex-math notation="LaTeX">y({\text {PTB}})-y({\text {NPL}})</tex-math></inline-formula> of <inline-formula><tex-math notation="LaTeX">-1.3\times 10^{-15}</tex-math></inline-formula> with a combined uncertainty of <inline-formula><tex-math notation="LaTeX">1.2\times 10^{-15}</tex-math></inline-formula> for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties. Masers Frequency transfer Uncertainty Frequency measurement Global Positioning System Optical receivers Clocks GPS precise point positioning (PPP) optical clock Optical fiber communication Huntemann, N oth Lipphardt, B oth Tamm, Christian oth Nisbet-Jones, P. B. R oth King, S. A oth Godun, R. M oth Jones, J. M oth Margolis, H. S oth Whibberley, P. B oth Wallin, A oth Merimaa, M oth Gill, P oth Peik, E oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 63(2016), 7, Seite 981-985 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:63 year:2016 number:7 pages:981-985 http://dx.doi.org/10.1109/TUFFC.2016.2524988 Volltext http://ieeexplore.ieee.org/document/7398135 http://www.ncbi.nlm.nih.gov/pubmed/26863657 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_95 AR 63 2016 7 981-985 |
allfields_unstemmed |
10.1109/TUFFC.2016.2524988 doi PQ20161012 (DE-627)OLC1978773471 (DE-599)GBVOLC1978773471 (PRQ)i817-eaf74cd1599ff3107003c90f696015a2973e73d9c85acf96e2845f4db17613730 (KEY)0013324820160000063000700981frequencycomparisonofionopticalclocksatptbandnplvi DE-627 ger DE-627 rakwb eng 520 620 530 DNB Leute, J verfasserin aut Frequency Comparison of ^}^+ Ion Optical Clocks at PTB and NPL via GPS PPP 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the <inline-formula><tex-math notation="LaTeX">{^2S_{1/2}(F=0)-{^2D_{3/2}}(F=2)}</tex-math></inline-formula> electric quadrupole transition in <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference <inline-formula><tex-math notation="LaTeX">y({\text {PTB}})-y({\text {NPL}})</tex-math></inline-formula> of <inline-formula><tex-math notation="LaTeX">-1.3\times 10^{-15}</tex-math></inline-formula> with a combined uncertainty of <inline-formula><tex-math notation="LaTeX">1.2\times 10^{-15}</tex-math></inline-formula> for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties. Masers Frequency transfer Uncertainty Frequency measurement Global Positioning System Optical receivers Clocks GPS precise point positioning (PPP) optical clock Optical fiber communication Huntemann, N oth Lipphardt, B oth Tamm, Christian oth Nisbet-Jones, P. B. R oth King, S. A oth Godun, R. M oth Jones, J. M oth Margolis, H. S oth Whibberley, P. B oth Wallin, A oth Merimaa, M oth Gill, P oth Peik, E oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 63(2016), 7, Seite 981-985 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:63 year:2016 number:7 pages:981-985 http://dx.doi.org/10.1109/TUFFC.2016.2524988 Volltext http://ieeexplore.ieee.org/document/7398135 http://www.ncbi.nlm.nih.gov/pubmed/26863657 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_95 AR 63 2016 7 981-985 |
allfieldsGer |
10.1109/TUFFC.2016.2524988 doi PQ20161012 (DE-627)OLC1978773471 (DE-599)GBVOLC1978773471 (PRQ)i817-eaf74cd1599ff3107003c90f696015a2973e73d9c85acf96e2845f4db17613730 (KEY)0013324820160000063000700981frequencycomparisonofionopticalclocksatptbandnplvi DE-627 ger DE-627 rakwb eng 520 620 530 DNB Leute, J verfasserin aut Frequency Comparison of ^}^+ Ion Optical Clocks at PTB and NPL via GPS PPP 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the <inline-formula><tex-math notation="LaTeX">{^2S_{1/2}(F=0)-{^2D_{3/2}}(F=2)}</tex-math></inline-formula> electric quadrupole transition in <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference <inline-formula><tex-math notation="LaTeX">y({\text {PTB}})-y({\text {NPL}})</tex-math></inline-formula> of <inline-formula><tex-math notation="LaTeX">-1.3\times 10^{-15}</tex-math></inline-formula> with a combined uncertainty of <inline-formula><tex-math notation="LaTeX">1.2\times 10^{-15}</tex-math></inline-formula> for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties. Masers Frequency transfer Uncertainty Frequency measurement Global Positioning System Optical receivers Clocks GPS precise point positioning (PPP) optical clock Optical fiber communication Huntemann, N oth Lipphardt, B oth Tamm, Christian oth Nisbet-Jones, P. B. R oth King, S. A oth Godun, R. M oth Jones, J. M oth Margolis, H. S oth Whibberley, P. B oth Wallin, A oth Merimaa, M oth Gill, P oth Peik, E oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 63(2016), 7, Seite 981-985 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:63 year:2016 number:7 pages:981-985 http://dx.doi.org/10.1109/TUFFC.2016.2524988 Volltext http://ieeexplore.ieee.org/document/7398135 http://www.ncbi.nlm.nih.gov/pubmed/26863657 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_95 AR 63 2016 7 981-985 |
allfieldsSound |
10.1109/TUFFC.2016.2524988 doi PQ20161012 (DE-627)OLC1978773471 (DE-599)GBVOLC1978773471 (PRQ)i817-eaf74cd1599ff3107003c90f696015a2973e73d9c85acf96e2845f4db17613730 (KEY)0013324820160000063000700981frequencycomparisonofionopticalclocksatptbandnplvi DE-627 ger DE-627 rakwb eng 520 620 530 DNB Leute, J verfasserin aut Frequency Comparison of ^}^+ Ion Optical Clocks at PTB and NPL via GPS PPP 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the <inline-formula><tex-math notation="LaTeX">{^2S_{1/2}(F=0)-{^2D_{3/2}}(F=2)}</tex-math></inline-formula> electric quadrupole transition in <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference <inline-formula><tex-math notation="LaTeX">y({\text {PTB}})-y({\text {NPL}})</tex-math></inline-formula> of <inline-formula><tex-math notation="LaTeX">-1.3\times 10^{-15}</tex-math></inline-formula> with a combined uncertainty of <inline-formula><tex-math notation="LaTeX">1.2\times 10^{-15}</tex-math></inline-formula> for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties. Masers Frequency transfer Uncertainty Frequency measurement Global Positioning System Optical receivers Clocks GPS precise point positioning (PPP) optical clock Optical fiber communication Huntemann, N oth Lipphardt, B oth Tamm, Christian oth Nisbet-Jones, P. B. R oth King, S. A oth Godun, R. M oth Jones, J. M oth Margolis, H. S oth Whibberley, P. B oth Wallin, A oth Merimaa, M oth Gill, P oth Peik, E oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 63(2016), 7, Seite 981-985 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:63 year:2016 number:7 pages:981-985 http://dx.doi.org/10.1109/TUFFC.2016.2524988 Volltext http://ieeexplore.ieee.org/document/7398135 http://www.ncbi.nlm.nih.gov/pubmed/26863657 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_95 AR 63 2016 7 981-985 |
language |
English |
source |
Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control 63(2016), 7, Seite 981-985 volume:63 year:2016 number:7 pages:981-985 |
sourceStr |
Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control 63(2016), 7, Seite 981-985 volume:63 year:2016 number:7 pages:981-985 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Masers Frequency transfer Uncertainty Frequency measurement Global Positioning System Optical receivers Clocks GPS precise point positioning (PPP) optical clock Optical fiber communication |
dewey-raw |
520 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
authorswithroles_txt_mv |
Leute, J @@aut@@ Huntemann, N @@oth@@ Lipphardt, B @@oth@@ Tamm, Christian @@oth@@ Nisbet-Jones, P. B. R @@oth@@ King, S. A @@oth@@ Godun, R. M @@oth@@ Jones, J. M @@oth@@ Margolis, H. S @@oth@@ Whibberley, P. B @@oth@@ Wallin, A @@oth@@ Merimaa, M @@oth@@ Gill, P @@oth@@ Peik, E @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129191442 |
dewey-sort |
3520 |
id |
OLC1978773471 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1978773471</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716112107.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160720s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TUFFC.2016.2524988</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1978773471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1978773471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i817-eaf74cd1599ff3107003c90f696015a2973e73d9c85acf96e2845f4db17613730</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0013324820160000063000700981frequencycomparisonofionopticalclocksatptbandnplvi</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leute, J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Frequency Comparison of ^}^+ Ion Optical Clocks at PTB and NPL via GPS PPP</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the <inline-formula><tex-math notation="LaTeX">{^2S_{1/2}(F=0)-{^2D_{3/2}}(F=2)}</tex-math></inline-formula> electric quadrupole transition in <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference <inline-formula><tex-math notation="LaTeX">y({\text {PTB}})-y({\text {NPL}})</tex-math></inline-formula> of <inline-formula><tex-math notation="LaTeX">-1.3\times 10^{-15}</tex-math></inline-formula> with a combined uncertainty of <inline-formula><tex-math notation="LaTeX">1.2\times 10^{-15}</tex-math></inline-formula> for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Masers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Positioning System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical receivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clocks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GPS precise point positioning (PPP)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical clock</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fiber communication</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huntemann, N</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lipphardt, B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tamm, Christian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nisbet-Jones, P. B. R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">King, S. A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Godun, R. M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jones, J. M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Margolis, H. S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Whibberley, P. B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wallin, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Merimaa, M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gill, P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peik, E</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on ultrasonics, ferroelectrics, and frequency control</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">63(2016), 7, Seite 981-985</subfield><subfield code="w">(DE-627)129191442</subfield><subfield code="w">(DE-600)53308-7</subfield><subfield code="w">(DE-576)014456540</subfield><subfield code="x">0885-3010</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:981-985</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TUFFC.2016.2524988</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7398135</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/26863657</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2016</subfield><subfield code="e">7</subfield><subfield code="h">981-985</subfield></datafield></record></collection>
|
author |
Leute, J |
spellingShingle |
Leute, J ddc 520 misc Masers misc Frequency transfer misc Uncertainty misc Frequency measurement misc Global Positioning System misc Optical receivers misc Clocks misc GPS precise point positioning (PPP) misc optical clock misc Optical fiber communication Frequency Comparison of ^}^+ Ion Optical Clocks at PTB and NPL via GPS PPP |
authorStr |
Leute, J |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129191442 |
format |
Article |
dewey-ones |
520 - Astronomy & allied sciences 620 - Engineering & allied operations 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0885-3010 |
topic_title |
520 620 530 DNB Frequency Comparison of ^}^+ Ion Optical Clocks at PTB and NPL via GPS PPP Masers Frequency transfer Uncertainty Frequency measurement Global Positioning System Optical receivers Clocks GPS precise point positioning (PPP) optical clock Optical fiber communication |
topic |
ddc 520 misc Masers misc Frequency transfer misc Uncertainty misc Frequency measurement misc Global Positioning System misc Optical receivers misc Clocks misc GPS precise point positioning (PPP) misc optical clock misc Optical fiber communication |
topic_unstemmed |
ddc 520 misc Masers misc Frequency transfer misc Uncertainty misc Frequency measurement misc Global Positioning System misc Optical receivers misc Clocks misc GPS precise point positioning (PPP) misc optical clock misc Optical fiber communication |
topic_browse |
ddc 520 misc Masers misc Frequency transfer misc Uncertainty misc Frequency measurement misc Global Positioning System misc Optical receivers misc Clocks misc GPS precise point positioning (PPP) misc optical clock misc Optical fiber communication |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
n h nh b l bl c t ct p b r n j pbrn pbrnj s a k sa sak r m g rm rmg j m j jm jmj h s m hs hsm p b w pb pbw a w aw m m mm p g pg e p ep |
hierarchy_parent_title |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
hierarchy_parent_id |
129191442 |
dewey-tens |
520 - Astronomy 620 - Engineering 530 - Physics |
hierarchy_top_title |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 |
title |
Frequency Comparison of ^}^+ Ion Optical Clocks at PTB and NPL via GPS PPP |
ctrlnum |
(DE-627)OLC1978773471 (DE-599)GBVOLC1978773471 (PRQ)i817-eaf74cd1599ff3107003c90f696015a2973e73d9c85acf96e2845f4db17613730 (KEY)0013324820160000063000700981frequencycomparisonofionopticalclocksatptbandnplvi |
title_full |
Frequency Comparison of ^}^+ Ion Optical Clocks at PTB and NPL via GPS PPP |
author_sort |
Leute, J |
journal |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
journalStr |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
981 |
author_browse |
Leute, J |
container_volume |
63 |
class |
520 620 530 DNB |
format_se |
Aufsätze |
author-letter |
Leute, J |
doi_str_mv |
10.1109/TUFFC.2016.2524988 |
dewey-full |
520 620 530 |
title_sort |
frequency comparison of ^}^+ ion optical clocks at ptb and npl via gps ppp |
title_auth |
Frequency Comparison of ^}^+ Ion Optical Clocks at PTB and NPL via GPS PPP |
abstract |
We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the <inline-formula><tex-math notation="LaTeX">{^2S_{1/2}(F=0)-{^2D_{3/2}}(F=2)}</tex-math></inline-formula> electric quadrupole transition in <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference <inline-formula><tex-math notation="LaTeX">y({\text {PTB}})-y({\text {NPL}})</tex-math></inline-formula> of <inline-formula><tex-math notation="LaTeX">-1.3\times 10^{-15}</tex-math></inline-formula> with a combined uncertainty of <inline-formula><tex-math notation="LaTeX">1.2\times 10^{-15}</tex-math></inline-formula> for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties. |
abstractGer |
We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the <inline-formula><tex-math notation="LaTeX">{^2S_{1/2}(F=0)-{^2D_{3/2}}(F=2)}</tex-math></inline-formula> electric quadrupole transition in <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference <inline-formula><tex-math notation="LaTeX">y({\text {PTB}})-y({\text {NPL}})</tex-math></inline-formula> of <inline-formula><tex-math notation="LaTeX">-1.3\times 10^{-15}</tex-math></inline-formula> with a combined uncertainty of <inline-formula><tex-math notation="LaTeX">1.2\times 10^{-15}</tex-math></inline-formula> for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties. |
abstract_unstemmed |
We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the <inline-formula><tex-math notation="LaTeX">{^2S_{1/2}(F=0)-{^2D_{3/2}}(F=2)}</tex-math></inline-formula> electric quadrupole transition in <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference <inline-formula><tex-math notation="LaTeX">y({\text {PTB}})-y({\text {NPL}})</tex-math></inline-formula> of <inline-formula><tex-math notation="LaTeX">-1.3\times 10^{-15}</tex-math></inline-formula> with a combined uncertainty of <inline-formula><tex-math notation="LaTeX">1.2\times 10^{-15}</tex-math></inline-formula> for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_95 |
container_issue |
7 |
title_short |
Frequency Comparison of ^}^+ Ion Optical Clocks at PTB and NPL via GPS PPP |
url |
http://dx.doi.org/10.1109/TUFFC.2016.2524988 http://ieeexplore.ieee.org/document/7398135 http://www.ncbi.nlm.nih.gov/pubmed/26863657 |
remote_bool |
false |
author2 |
Huntemann, N Lipphardt, B Tamm, Christian Nisbet-Jones, P. B. R King, S. A Godun, R. M Jones, J. M Margolis, H. S Whibberley, P. B Wallin, A Merimaa, M Gill, P Peik, E |
author2Str |
Huntemann, N Lipphardt, B Tamm, Christian Nisbet-Jones, P. B. R King, S. A Godun, R. M Jones, J. M Margolis, H. S Whibberley, P. B Wallin, A Merimaa, M Gill, P Peik, E |
ppnlink |
129191442 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1109/TUFFC.2016.2524988 |
up_date |
2024-07-03T22:48:58.320Z |
_version_ |
1803599938396880896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1978773471</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716112107.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160720s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TUFFC.2016.2524988</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1978773471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1978773471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i817-eaf74cd1599ff3107003c90f696015a2973e73d9c85acf96e2845f4db17613730</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0013324820160000063000700981frequencycomparisonofionopticalclocksatptbandnplvi</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leute, J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Frequency Comparison of ^}^+ Ion Optical Clocks at PTB and NPL via GPS PPP</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the <inline-formula><tex-math notation="LaTeX">{^2S_{1/2}(F=0)-{^2D_{3/2}}(F=2)}</tex-math></inline-formula> electric quadrupole transition in <inline-formula><tex-math notation="LaTeX">^{171} {\text {Yb}}^+</tex-math></inline-formula> via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference <inline-formula><tex-math notation="LaTeX">y({\text {PTB}})-y({\text {NPL}})</tex-math></inline-formula> of <inline-formula><tex-math notation="LaTeX">-1.3\times 10^{-15}</tex-math></inline-formula> with a combined uncertainty of <inline-formula><tex-math notation="LaTeX">1.2\times 10^{-15}</tex-math></inline-formula> for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Masers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Positioning System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical receivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clocks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GPS precise point positioning (PPP)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical clock</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fiber communication</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huntemann, N</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lipphardt, B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tamm, Christian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nisbet-Jones, P. B. R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">King, S. A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Godun, R. M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jones, J. M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Margolis, H. S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Whibberley, P. B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wallin, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Merimaa, M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gill, P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peik, E</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on ultrasonics, ferroelectrics, and frequency control</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">63(2016), 7, Seite 981-985</subfield><subfield code="w">(DE-627)129191442</subfield><subfield code="w">(DE-600)53308-7</subfield><subfield code="w">(DE-576)014456540</subfield><subfield code="x">0885-3010</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:981-985</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TUFFC.2016.2524988</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7398135</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/26863657</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2016</subfield><subfield code="e">7</subfield><subfield code="h">981-985</subfield></datafield></record></collection>
|
score |
7.399419 |