Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing
The objective of the NASA Soil Moisture Active Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sens...
Ausführliche Beschreibung
Autor*in: |
Montzka, Carsten [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on geoscience and remote sensing - New York, NY : IEEE, 1964, 54(2016), 7, Seite 3878-3889 |
---|---|
Übergeordnetes Werk: |
volume:54 ; year:2016 ; number:7 ; pages:3878-3889 |
Links: |
---|
DOI / URN: |
10.1109/TGRS.2016.2529659 |
---|
Katalog-ID: |
OLC1978947879 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1978947879 | ||
003 | DE-627 | ||
005 | 20230714202511.0 | ||
007 | tu | ||
008 | 160720s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TGRS.2016.2529659 |2 doi | |
028 | 5 | 2 | |a PQ20160720 |
035 | |a (DE-627)OLC1978947879 | ||
035 | |a (DE-599)GBVOLC1978947879 | ||
035 | |a (PRQ)c1312-259c067d38ee63e6e87b6eb6aba54dc0ae089197744fb1e9d3f5381a90ea12110 | ||
035 | |a (KEY)0048677920160000054000703878investigationofsmapfusionalgorithmswithairborneact | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 550 |q DNB |
100 | 1 | |a Montzka, Carsten |e verfasserin |4 aut | |
245 | 1 | 0 | |a Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The objective of the NASA Soil Moisture Active Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments are a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer and the active L-band system F-SAR of DLR were flown simultaneously on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e., the main land cover types and all experimental monitoring sites. Here, we used the obtained data sets as a test bed for the analysis of three active-passive fusion techniques: 1) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data; 2) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture; and 3) fusion of two single-source soil moisture products from radar and radiometer. Results indicate that the regression parameters <inline-formula> <tex-math notation="LaTeX">\beta</tex-math></inline-formula> are dependent on the radar vegetation index. The best performance was obtained by the fusion of radiometer brightness temperatures and radar backscatter, which was able to reach the same accuracy as single-source coarse-scale radiometer soil moisture retrieval but on a higher spatial resolution. | ||
650 | 4 | |a Microwave measurement | |
650 | 4 | |a Microwave radiometry | |
650 | 4 | |a Soil Moisture Active Passive (SMAP) | |
650 | 4 | |a Radar | |
650 | 4 | |a radiometer | |
650 | 4 | |a Active-passive fusion | |
650 | 4 | |a Soil measurements | |
650 | 4 | |a L-band | |
650 | 4 | |a Soil moisture | |
650 | 4 | |a L-band microwave | |
700 | 1 | |a Jagdhuber, Thomas |4 oth | |
700 | 1 | |a Horn, Ralf |4 oth | |
700 | 1 | |a Bogena, Heye R |4 oth | |
700 | 1 | |a Hajnsek, Irena |4 oth | |
700 | 1 | |a Reigber, Andreas |4 oth | |
700 | 1 | |a Vereecken, Harry |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on geoscience and remote sensing |d New York, NY : IEEE, 1964 |g 54(2016), 7, Seite 3878-3889 |w (DE-627)129601667 |w (DE-600)241439-9 |w (DE-576)015095282 |x 0196-2892 |7 nnns |
773 | 1 | 8 | |g volume:54 |g year:2016 |g number:7 |g pages:3878-3889 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TGRS.2016.2529659 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7426813 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 54 |j 2016 |e 7 |h 3878-3889 |
author_variant |
c m cm |
---|---|
matchkey_str |
article:01962892:2016----::netgtoosafsoagrtmwtaronatvadasvla |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/TGRS.2016.2529659 doi PQ20160720 (DE-627)OLC1978947879 (DE-599)GBVOLC1978947879 (PRQ)c1312-259c067d38ee63e6e87b6eb6aba54dc0ae089197744fb1e9d3f5381a90ea12110 (KEY)0048677920160000054000703878investigationofsmapfusionalgorithmswithairborneact DE-627 ger DE-627 rakwb eng 620 550 DNB Montzka, Carsten verfasserin aut Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The objective of the NASA Soil Moisture Active Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments are a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer and the active L-band system F-SAR of DLR were flown simultaneously on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e., the main land cover types and all experimental monitoring sites. Here, we used the obtained data sets as a test bed for the analysis of three active-passive fusion techniques: 1) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data; 2) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture; and 3) fusion of two single-source soil moisture products from radar and radiometer. Results indicate that the regression parameters <inline-formula> <tex-math notation="LaTeX">\beta</tex-math></inline-formula> are dependent on the radar vegetation index. The best performance was obtained by the fusion of radiometer brightness temperatures and radar backscatter, which was able to reach the same accuracy as single-source coarse-scale radiometer soil moisture retrieval but on a higher spatial resolution. Microwave measurement Microwave radiometry Soil Moisture Active Passive (SMAP) Radar radiometer Active-passive fusion Soil measurements L-band Soil moisture L-band microwave Jagdhuber, Thomas oth Horn, Ralf oth Bogena, Heye R oth Hajnsek, Irena oth Reigber, Andreas oth Vereecken, Harry oth Enthalten in IEEE transactions on geoscience and remote sensing New York, NY : IEEE, 1964 54(2016), 7, Seite 3878-3889 (DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 0196-2892 nnns volume:54 year:2016 number:7 pages:3878-3889 http://dx.doi.org/10.1109/TGRS.2016.2529659 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7426813 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 AR 54 2016 7 3878-3889 |
spelling |
10.1109/TGRS.2016.2529659 doi PQ20160720 (DE-627)OLC1978947879 (DE-599)GBVOLC1978947879 (PRQ)c1312-259c067d38ee63e6e87b6eb6aba54dc0ae089197744fb1e9d3f5381a90ea12110 (KEY)0048677920160000054000703878investigationofsmapfusionalgorithmswithairborneact DE-627 ger DE-627 rakwb eng 620 550 DNB Montzka, Carsten verfasserin aut Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The objective of the NASA Soil Moisture Active Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments are a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer and the active L-band system F-SAR of DLR were flown simultaneously on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e., the main land cover types and all experimental monitoring sites. Here, we used the obtained data sets as a test bed for the analysis of three active-passive fusion techniques: 1) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data; 2) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture; and 3) fusion of two single-source soil moisture products from radar and radiometer. Results indicate that the regression parameters <inline-formula> <tex-math notation="LaTeX">\beta</tex-math></inline-formula> are dependent on the radar vegetation index. The best performance was obtained by the fusion of radiometer brightness temperatures and radar backscatter, which was able to reach the same accuracy as single-source coarse-scale radiometer soil moisture retrieval but on a higher spatial resolution. Microwave measurement Microwave radiometry Soil Moisture Active Passive (SMAP) Radar radiometer Active-passive fusion Soil measurements L-band Soil moisture L-band microwave Jagdhuber, Thomas oth Horn, Ralf oth Bogena, Heye R oth Hajnsek, Irena oth Reigber, Andreas oth Vereecken, Harry oth Enthalten in IEEE transactions on geoscience and remote sensing New York, NY : IEEE, 1964 54(2016), 7, Seite 3878-3889 (DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 0196-2892 nnns volume:54 year:2016 number:7 pages:3878-3889 http://dx.doi.org/10.1109/TGRS.2016.2529659 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7426813 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 AR 54 2016 7 3878-3889 |
allfields_unstemmed |
10.1109/TGRS.2016.2529659 doi PQ20160720 (DE-627)OLC1978947879 (DE-599)GBVOLC1978947879 (PRQ)c1312-259c067d38ee63e6e87b6eb6aba54dc0ae089197744fb1e9d3f5381a90ea12110 (KEY)0048677920160000054000703878investigationofsmapfusionalgorithmswithairborneact DE-627 ger DE-627 rakwb eng 620 550 DNB Montzka, Carsten verfasserin aut Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The objective of the NASA Soil Moisture Active Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments are a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer and the active L-band system F-SAR of DLR were flown simultaneously on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e., the main land cover types and all experimental monitoring sites. Here, we used the obtained data sets as a test bed for the analysis of three active-passive fusion techniques: 1) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data; 2) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture; and 3) fusion of two single-source soil moisture products from radar and radiometer. Results indicate that the regression parameters <inline-formula> <tex-math notation="LaTeX">\beta</tex-math></inline-formula> are dependent on the radar vegetation index. The best performance was obtained by the fusion of radiometer brightness temperatures and radar backscatter, which was able to reach the same accuracy as single-source coarse-scale radiometer soil moisture retrieval but on a higher spatial resolution. Microwave measurement Microwave radiometry Soil Moisture Active Passive (SMAP) Radar radiometer Active-passive fusion Soil measurements L-band Soil moisture L-band microwave Jagdhuber, Thomas oth Horn, Ralf oth Bogena, Heye R oth Hajnsek, Irena oth Reigber, Andreas oth Vereecken, Harry oth Enthalten in IEEE transactions on geoscience and remote sensing New York, NY : IEEE, 1964 54(2016), 7, Seite 3878-3889 (DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 0196-2892 nnns volume:54 year:2016 number:7 pages:3878-3889 http://dx.doi.org/10.1109/TGRS.2016.2529659 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7426813 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 AR 54 2016 7 3878-3889 |
allfieldsGer |
10.1109/TGRS.2016.2529659 doi PQ20160720 (DE-627)OLC1978947879 (DE-599)GBVOLC1978947879 (PRQ)c1312-259c067d38ee63e6e87b6eb6aba54dc0ae089197744fb1e9d3f5381a90ea12110 (KEY)0048677920160000054000703878investigationofsmapfusionalgorithmswithairborneact DE-627 ger DE-627 rakwb eng 620 550 DNB Montzka, Carsten verfasserin aut Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The objective of the NASA Soil Moisture Active Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments are a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer and the active L-band system F-SAR of DLR were flown simultaneously on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e., the main land cover types and all experimental monitoring sites. Here, we used the obtained data sets as a test bed for the analysis of three active-passive fusion techniques: 1) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data; 2) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture; and 3) fusion of two single-source soil moisture products from radar and radiometer. Results indicate that the regression parameters <inline-formula> <tex-math notation="LaTeX">\beta</tex-math></inline-formula> are dependent on the radar vegetation index. The best performance was obtained by the fusion of radiometer brightness temperatures and radar backscatter, which was able to reach the same accuracy as single-source coarse-scale radiometer soil moisture retrieval but on a higher spatial resolution. Microwave measurement Microwave radiometry Soil Moisture Active Passive (SMAP) Radar radiometer Active-passive fusion Soil measurements L-band Soil moisture L-band microwave Jagdhuber, Thomas oth Horn, Ralf oth Bogena, Heye R oth Hajnsek, Irena oth Reigber, Andreas oth Vereecken, Harry oth Enthalten in IEEE transactions on geoscience and remote sensing New York, NY : IEEE, 1964 54(2016), 7, Seite 3878-3889 (DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 0196-2892 nnns volume:54 year:2016 number:7 pages:3878-3889 http://dx.doi.org/10.1109/TGRS.2016.2529659 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7426813 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 AR 54 2016 7 3878-3889 |
allfieldsSound |
10.1109/TGRS.2016.2529659 doi PQ20160720 (DE-627)OLC1978947879 (DE-599)GBVOLC1978947879 (PRQ)c1312-259c067d38ee63e6e87b6eb6aba54dc0ae089197744fb1e9d3f5381a90ea12110 (KEY)0048677920160000054000703878investigationofsmapfusionalgorithmswithairborneact DE-627 ger DE-627 rakwb eng 620 550 DNB Montzka, Carsten verfasserin aut Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The objective of the NASA Soil Moisture Active Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments are a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer and the active L-band system F-SAR of DLR were flown simultaneously on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e., the main land cover types and all experimental monitoring sites. Here, we used the obtained data sets as a test bed for the analysis of three active-passive fusion techniques: 1) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data; 2) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture; and 3) fusion of two single-source soil moisture products from radar and radiometer. Results indicate that the regression parameters <inline-formula> <tex-math notation="LaTeX">\beta</tex-math></inline-formula> are dependent on the radar vegetation index. The best performance was obtained by the fusion of radiometer brightness temperatures and radar backscatter, which was able to reach the same accuracy as single-source coarse-scale radiometer soil moisture retrieval but on a higher spatial resolution. Microwave measurement Microwave radiometry Soil Moisture Active Passive (SMAP) Radar radiometer Active-passive fusion Soil measurements L-band Soil moisture L-band microwave Jagdhuber, Thomas oth Horn, Ralf oth Bogena, Heye R oth Hajnsek, Irena oth Reigber, Andreas oth Vereecken, Harry oth Enthalten in IEEE transactions on geoscience and remote sensing New York, NY : IEEE, 1964 54(2016), 7, Seite 3878-3889 (DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 0196-2892 nnns volume:54 year:2016 number:7 pages:3878-3889 http://dx.doi.org/10.1109/TGRS.2016.2529659 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7426813 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 AR 54 2016 7 3878-3889 |
language |
English |
source |
Enthalten in IEEE transactions on geoscience and remote sensing 54(2016), 7, Seite 3878-3889 volume:54 year:2016 number:7 pages:3878-3889 |
sourceStr |
Enthalten in IEEE transactions on geoscience and remote sensing 54(2016), 7, Seite 3878-3889 volume:54 year:2016 number:7 pages:3878-3889 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Microwave measurement Microwave radiometry Soil Moisture Active Passive (SMAP) Radar radiometer Active-passive fusion Soil measurements L-band Soil moisture L-band microwave |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on geoscience and remote sensing |
authorswithroles_txt_mv |
Montzka, Carsten @@aut@@ Jagdhuber, Thomas @@oth@@ Horn, Ralf @@oth@@ Bogena, Heye R @@oth@@ Hajnsek, Irena @@oth@@ Reigber, Andreas @@oth@@ Vereecken, Harry @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129601667 |
dewey-sort |
3620 |
id |
OLC1978947879 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1978947879</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714202511.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160720s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TGRS.2016.2529659</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160720</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1978947879</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1978947879</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1312-259c067d38ee63e6e87b6eb6aba54dc0ae089197744fb1e9d3f5381a90ea12110</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0048677920160000054000703878investigationofsmapfusionalgorithmswithairborneact</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Montzka, Carsten</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The objective of the NASA Soil Moisture Active Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments are a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer and the active L-band system F-SAR of DLR were flown simultaneously on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e., the main land cover types and all experimental monitoring sites. Here, we used the obtained data sets as a test bed for the analysis of three active-passive fusion techniques: 1) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data; 2) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture; and 3) fusion of two single-source soil moisture products from radar and radiometer. Results indicate that the regression parameters <inline-formula> <tex-math notation="LaTeX">\beta</tex-math></inline-formula> are dependent on the radar vegetation index. The best performance was obtained by the fusion of radiometer brightness temperatures and radar backscatter, which was able to reach the same accuracy as single-source coarse-scale radiometer soil moisture retrieval but on a higher spatial resolution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwave measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwave radiometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil Moisture Active Passive (SMAP)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radiometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Active-passive fusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil measurements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">L-band</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil moisture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">L-band microwave</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jagdhuber, Thomas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horn, Ralf</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bogena, Heye R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hajnsek, Irena</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reigber, Andreas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vereecken, Harry</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on geoscience and remote sensing</subfield><subfield code="d">New York, NY : IEEE, 1964</subfield><subfield code="g">54(2016), 7, Seite 3878-3889</subfield><subfield code="w">(DE-627)129601667</subfield><subfield code="w">(DE-600)241439-9</subfield><subfield code="w">(DE-576)015095282</subfield><subfield code="x">0196-2892</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:3878-3889</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TGRS.2016.2529659</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7426813</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2016</subfield><subfield code="e">7</subfield><subfield code="h">3878-3889</subfield></datafield></record></collection>
|
author |
Montzka, Carsten |
spellingShingle |
Montzka, Carsten ddc 620 misc Microwave measurement misc Microwave radiometry misc Soil Moisture Active Passive (SMAP) misc Radar misc radiometer misc Active-passive fusion misc Soil measurements misc L-band misc Soil moisture misc L-band microwave Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing |
authorStr |
Montzka, Carsten |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129601667 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0196-2892 |
topic_title |
620 550 DNB Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing Microwave measurement Microwave radiometry Soil Moisture Active Passive (SMAP) Radar radiometer Active-passive fusion Soil measurements L-band Soil moisture L-band microwave |
topic |
ddc 620 misc Microwave measurement misc Microwave radiometry misc Soil Moisture Active Passive (SMAP) misc Radar misc radiometer misc Active-passive fusion misc Soil measurements misc L-band misc Soil moisture misc L-band microwave |
topic_unstemmed |
ddc 620 misc Microwave measurement misc Microwave radiometry misc Soil Moisture Active Passive (SMAP) misc Radar misc radiometer misc Active-passive fusion misc Soil measurements misc L-band misc Soil moisture misc L-band microwave |
topic_browse |
ddc 620 misc Microwave measurement misc Microwave radiometry misc Soil Moisture Active Passive (SMAP) misc Radar misc radiometer misc Active-passive fusion misc Soil measurements misc L-band misc Soil moisture misc L-band microwave |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t j tj r h rh h r b hr hrb i h ih a r ar h v hv |
hierarchy_parent_title |
IEEE transactions on geoscience and remote sensing |
hierarchy_parent_id |
129601667 |
dewey-tens |
620 - Engineering 550 - Earth sciences & geology |
hierarchy_top_title |
IEEE transactions on geoscience and remote sensing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 |
title |
Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing |
ctrlnum |
(DE-627)OLC1978947879 (DE-599)GBVOLC1978947879 (PRQ)c1312-259c067d38ee63e6e87b6eb6aba54dc0ae089197744fb1e9d3f5381a90ea12110 (KEY)0048677920160000054000703878investigationofsmapfusionalgorithmswithairborneact |
title_full |
Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing |
author_sort |
Montzka, Carsten |
journal |
IEEE transactions on geoscience and remote sensing |
journalStr |
IEEE transactions on geoscience and remote sensing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
3878 |
author_browse |
Montzka, Carsten |
container_volume |
54 |
class |
620 550 DNB |
format_se |
Aufsätze |
author-letter |
Montzka, Carsten |
doi_str_mv |
10.1109/TGRS.2016.2529659 |
dewey-full |
620 550 |
title_sort |
investigation of smap fusion algorithms with airborne active and passive l-band microwave remote sensing |
title_auth |
Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing |
abstract |
The objective of the NASA Soil Moisture Active Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments are a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer and the active L-band system F-SAR of DLR were flown simultaneously on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e., the main land cover types and all experimental monitoring sites. Here, we used the obtained data sets as a test bed for the analysis of three active-passive fusion techniques: 1) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data; 2) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture; and 3) fusion of two single-source soil moisture products from radar and radiometer. Results indicate that the regression parameters <inline-formula> <tex-math notation="LaTeX">\beta</tex-math></inline-formula> are dependent on the radar vegetation index. The best performance was obtained by the fusion of radiometer brightness temperatures and radar backscatter, which was able to reach the same accuracy as single-source coarse-scale radiometer soil moisture retrieval but on a higher spatial resolution. |
abstractGer |
The objective of the NASA Soil Moisture Active Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments are a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer and the active L-band system F-SAR of DLR were flown simultaneously on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e., the main land cover types and all experimental monitoring sites. Here, we used the obtained data sets as a test bed for the analysis of three active-passive fusion techniques: 1) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data; 2) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture; and 3) fusion of two single-source soil moisture products from radar and radiometer. Results indicate that the regression parameters <inline-formula> <tex-math notation="LaTeX">\beta</tex-math></inline-formula> are dependent on the radar vegetation index. The best performance was obtained by the fusion of radiometer brightness temperatures and radar backscatter, which was able to reach the same accuracy as single-source coarse-scale radiometer soil moisture retrieval but on a higher spatial resolution. |
abstract_unstemmed |
The objective of the NASA Soil Moisture Active Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments are a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer and the active L-band system F-SAR of DLR were flown simultaneously on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e., the main land cover types and all experimental monitoring sites. Here, we used the obtained data sets as a test bed for the analysis of three active-passive fusion techniques: 1) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data; 2) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture; and 3) fusion of two single-source soil moisture products from radar and radiometer. Results indicate that the regression parameters <inline-formula> <tex-math notation="LaTeX">\beta</tex-math></inline-formula> are dependent on the radar vegetation index. The best performance was obtained by the fusion of radiometer brightness temperatures and radar backscatter, which was able to reach the same accuracy as single-source coarse-scale radiometer soil moisture retrieval but on a higher spatial resolution. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 |
container_issue |
7 |
title_short |
Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing |
url |
http://dx.doi.org/10.1109/TGRS.2016.2529659 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7426813 |
remote_bool |
false |
author2 |
Jagdhuber, Thomas Horn, Ralf Bogena, Heye R Hajnsek, Irena Reigber, Andreas Vereecken, Harry |
author2Str |
Jagdhuber, Thomas Horn, Ralf Bogena, Heye R Hajnsek, Irena Reigber, Andreas Vereecken, Harry |
ppnlink |
129601667 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1109/TGRS.2016.2529659 |
up_date |
2024-07-03T23:25:30.540Z |
_version_ |
1803602237130276866 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1978947879</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714202511.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160720s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TGRS.2016.2529659</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160720</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1978947879</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1978947879</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1312-259c067d38ee63e6e87b6eb6aba54dc0ae089197744fb1e9d3f5381a90ea12110</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0048677920160000054000703878investigationofsmapfusionalgorithmswithairborneact</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Montzka, Carsten</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The objective of the NASA Soil Moisture Active Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments are a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer and the active L-band system F-SAR of DLR were flown simultaneously on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e., the main land cover types and all experimental monitoring sites. Here, we used the obtained data sets as a test bed for the analysis of three active-passive fusion techniques: 1) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data; 2) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture; and 3) fusion of two single-source soil moisture products from radar and radiometer. Results indicate that the regression parameters <inline-formula> <tex-math notation="LaTeX">\beta</tex-math></inline-formula> are dependent on the radar vegetation index. The best performance was obtained by the fusion of radiometer brightness temperatures and radar backscatter, which was able to reach the same accuracy as single-source coarse-scale radiometer soil moisture retrieval but on a higher spatial resolution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwave measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwave radiometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil Moisture Active Passive (SMAP)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radiometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Active-passive fusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil measurements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">L-band</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil moisture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">L-band microwave</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jagdhuber, Thomas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horn, Ralf</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bogena, Heye R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hajnsek, Irena</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reigber, Andreas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vereecken, Harry</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on geoscience and remote sensing</subfield><subfield code="d">New York, NY : IEEE, 1964</subfield><subfield code="g">54(2016), 7, Seite 3878-3889</subfield><subfield code="w">(DE-627)129601667</subfield><subfield code="w">(DE-600)241439-9</subfield><subfield code="w">(DE-576)015095282</subfield><subfield code="x">0196-2892</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:3878-3889</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TGRS.2016.2529659</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7426813</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2016</subfield><subfield code="e">7</subfield><subfield code="h">3878-3889</subfield></datafield></record></collection>
|
score |
7.401602 |