Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters
A novel method to achieve single-fundamental-mode lasing and higher order mode suppression using a multi-layer, patterned, dielectric anti-phase filter is employed on the top of oxide-confined vertical-cavity surface-emitting lasers (VCSELs). Dielectric layers are deposited and patterned on individu...
Ausführliche Beschreibung
Autor*in: |
Kesler, Benjamin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
vertical-cavity surface-emitting laser |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE photonics technology letters - New York, NY : IEEE, 1989, 28(2016), 14, Seite 1497-1500 |
---|---|
Übergeordnetes Werk: |
volume:28 ; year:2016 ; number:14 ; pages:1497-1500 |
Links: |
---|
DOI / URN: |
10.1109/LPT.2016.2555294 |
---|
Katalog-ID: |
OLC1979345309 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1979345309 | ||
003 | DE-627 | ||
005 | 20220222063309.0 | ||
007 | tu | ||
008 | 160720s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/LPT.2016.2555294 |2 doi | |
028 | 5 | 2 | |a PQ20161012 |
035 | |a (DE-627)OLC1979345309 | ||
035 | |a (DE-599)GBVOLC1979345309 | ||
035 | |a (PRQ)c1230-cec031006d8a5cab38249aaf7bb83a739cda2b4a7011a5d37a43f0fe96ec40c0 | ||
035 | |a (KEY)0175401720160000028001401497facilitatingsingletransversemodelasinginvcselsviap | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 33.38 |2 bkl | ||
084 | |a 53.54 |2 bkl | ||
100 | 1 | |a Kesler, Benjamin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A novel method to achieve single-fundamental-mode lasing and higher order mode suppression using a multi-layer, patterned, dielectric anti-phase filter is employed on the top of oxide-confined vertical-cavity surface-emitting lasers (VCSELs). Dielectric layers are deposited and patterned on individual VCSELs in a wafer-scale process to modify (increase/decrease) the mirror reflectivity across the oxide aperture via anti-phase reflections, creating spatially dependent threshold material gain and VCSEL lasing-mode control. A 1-D plane-wave propagation method is used to calculate the dielectric layer thicknesses in each spatial region needed to facilitate or suppress lasing. A single-fundamental-mode, continuous-wave output power of 3.5 mW is achieved at a lasing wavelength of 850 nm. This additive, non-destructive method allows for mode selection at any lasing wavelength and for any VCSEL layer structure without the need for destructive etching techniques or epitaxial regrowth. It also offers the capability of a tailored filter design based on available materials and deposition methods. | ||
650 | 4 | |a mode control | |
650 | 4 | |a dielectric filter | |
650 | 4 | |a vertical-cavity surface-emitting laser | |
650 | 4 | |a Surface treatment | |
650 | 4 | |a Gallium arsenide | |
650 | 4 | |a Vertical cavity surface emitting lasers | |
650 | 4 | |a Optical surface waves | |
650 | 4 | |a Mirrors | |
650 | 4 | |a single mode | |
650 | 4 | |a Anti-phase reflection | |
650 | 4 | |a Dielectrics | |
700 | 1 | |a O'Brien, Thomas |4 oth | |
700 | 1 | |a Su, Guan-Lin |4 oth | |
700 | 1 | |a Dallesasse, John M |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE photonics technology letters |d New York, NY : IEEE, 1989 |g 28(2016), 14, Seite 1497-1500 |w (DE-627)129622567 |w (DE-600)246805-0 |w (DE-576)018141765 |x 1041-1135 |7 nnns |
773 | 1 | 8 | |g volume:28 |g year:2016 |g number:14 |g pages:1497-1500 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/LPT.2016.2555294 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7454681 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_231 | ||
936 | b | k | |a 33.38 |q AVZ |
936 | b | k | |a 53.54 |q AVZ |
951 | |a AR | ||
952 | |d 28 |j 2016 |e 14 |h 1497-1500 |
author_variant |
b k bk |
---|---|
matchkey_str |
article:10411135:2016----::aiiaigigernvreoeaigncesiptendil |
hierarchy_sort_str |
2016 |
bklnumber |
33.38 53.54 |
publishDate |
2016 |
allfields |
10.1109/LPT.2016.2555294 doi PQ20161012 (DE-627)OLC1979345309 (DE-599)GBVOLC1979345309 (PRQ)c1230-cec031006d8a5cab38249aaf7bb83a739cda2b4a7011a5d37a43f0fe96ec40c0 (KEY)0175401720160000028001401497facilitatingsingletransversemodelasinginvcselsviap DE-627 ger DE-627 rakwb eng 620 DNB 33.38 bkl 53.54 bkl Kesler, Benjamin verfasserin aut Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A novel method to achieve single-fundamental-mode lasing and higher order mode suppression using a multi-layer, patterned, dielectric anti-phase filter is employed on the top of oxide-confined vertical-cavity surface-emitting lasers (VCSELs). Dielectric layers are deposited and patterned on individual VCSELs in a wafer-scale process to modify (increase/decrease) the mirror reflectivity across the oxide aperture via anti-phase reflections, creating spatially dependent threshold material gain and VCSEL lasing-mode control. A 1-D plane-wave propagation method is used to calculate the dielectric layer thicknesses in each spatial region needed to facilitate or suppress lasing. A single-fundamental-mode, continuous-wave output power of 3.5 mW is achieved at a lasing wavelength of 850 nm. This additive, non-destructive method allows for mode selection at any lasing wavelength and for any VCSEL layer structure without the need for destructive etching techniques or epitaxial regrowth. It also offers the capability of a tailored filter design based on available materials and deposition methods. mode control dielectric filter vertical-cavity surface-emitting laser Surface treatment Gallium arsenide Vertical cavity surface emitting lasers Optical surface waves Mirrors single mode Anti-phase reflection Dielectrics O'Brien, Thomas oth Su, Guan-Lin oth Dallesasse, John M oth Enthalten in IEEE photonics technology letters New York, NY : IEEE, 1989 28(2016), 14, Seite 1497-1500 (DE-627)129622567 (DE-600)246805-0 (DE-576)018141765 1041-1135 nnns volume:28 year:2016 number:14 pages:1497-1500 http://dx.doi.org/10.1109/LPT.2016.2555294 Volltext http://ieeexplore.ieee.org/document/7454681 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_70 GBV_ILN_231 33.38 AVZ 53.54 AVZ AR 28 2016 14 1497-1500 |
spelling |
10.1109/LPT.2016.2555294 doi PQ20161012 (DE-627)OLC1979345309 (DE-599)GBVOLC1979345309 (PRQ)c1230-cec031006d8a5cab38249aaf7bb83a739cda2b4a7011a5d37a43f0fe96ec40c0 (KEY)0175401720160000028001401497facilitatingsingletransversemodelasinginvcselsviap DE-627 ger DE-627 rakwb eng 620 DNB 33.38 bkl 53.54 bkl Kesler, Benjamin verfasserin aut Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A novel method to achieve single-fundamental-mode lasing and higher order mode suppression using a multi-layer, patterned, dielectric anti-phase filter is employed on the top of oxide-confined vertical-cavity surface-emitting lasers (VCSELs). Dielectric layers are deposited and patterned on individual VCSELs in a wafer-scale process to modify (increase/decrease) the mirror reflectivity across the oxide aperture via anti-phase reflections, creating spatially dependent threshold material gain and VCSEL lasing-mode control. A 1-D plane-wave propagation method is used to calculate the dielectric layer thicknesses in each spatial region needed to facilitate or suppress lasing. A single-fundamental-mode, continuous-wave output power of 3.5 mW is achieved at a lasing wavelength of 850 nm. This additive, non-destructive method allows for mode selection at any lasing wavelength and for any VCSEL layer structure without the need for destructive etching techniques or epitaxial regrowth. It also offers the capability of a tailored filter design based on available materials and deposition methods. mode control dielectric filter vertical-cavity surface-emitting laser Surface treatment Gallium arsenide Vertical cavity surface emitting lasers Optical surface waves Mirrors single mode Anti-phase reflection Dielectrics O'Brien, Thomas oth Su, Guan-Lin oth Dallesasse, John M oth Enthalten in IEEE photonics technology letters New York, NY : IEEE, 1989 28(2016), 14, Seite 1497-1500 (DE-627)129622567 (DE-600)246805-0 (DE-576)018141765 1041-1135 nnns volume:28 year:2016 number:14 pages:1497-1500 http://dx.doi.org/10.1109/LPT.2016.2555294 Volltext http://ieeexplore.ieee.org/document/7454681 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_70 GBV_ILN_231 33.38 AVZ 53.54 AVZ AR 28 2016 14 1497-1500 |
allfields_unstemmed |
10.1109/LPT.2016.2555294 doi PQ20161012 (DE-627)OLC1979345309 (DE-599)GBVOLC1979345309 (PRQ)c1230-cec031006d8a5cab38249aaf7bb83a739cda2b4a7011a5d37a43f0fe96ec40c0 (KEY)0175401720160000028001401497facilitatingsingletransversemodelasinginvcselsviap DE-627 ger DE-627 rakwb eng 620 DNB 33.38 bkl 53.54 bkl Kesler, Benjamin verfasserin aut Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A novel method to achieve single-fundamental-mode lasing and higher order mode suppression using a multi-layer, patterned, dielectric anti-phase filter is employed on the top of oxide-confined vertical-cavity surface-emitting lasers (VCSELs). Dielectric layers are deposited and patterned on individual VCSELs in a wafer-scale process to modify (increase/decrease) the mirror reflectivity across the oxide aperture via anti-phase reflections, creating spatially dependent threshold material gain and VCSEL lasing-mode control. A 1-D plane-wave propagation method is used to calculate the dielectric layer thicknesses in each spatial region needed to facilitate or suppress lasing. A single-fundamental-mode, continuous-wave output power of 3.5 mW is achieved at a lasing wavelength of 850 nm. This additive, non-destructive method allows for mode selection at any lasing wavelength and for any VCSEL layer structure without the need for destructive etching techniques or epitaxial regrowth. It also offers the capability of a tailored filter design based on available materials and deposition methods. mode control dielectric filter vertical-cavity surface-emitting laser Surface treatment Gallium arsenide Vertical cavity surface emitting lasers Optical surface waves Mirrors single mode Anti-phase reflection Dielectrics O'Brien, Thomas oth Su, Guan-Lin oth Dallesasse, John M oth Enthalten in IEEE photonics technology letters New York, NY : IEEE, 1989 28(2016), 14, Seite 1497-1500 (DE-627)129622567 (DE-600)246805-0 (DE-576)018141765 1041-1135 nnns volume:28 year:2016 number:14 pages:1497-1500 http://dx.doi.org/10.1109/LPT.2016.2555294 Volltext http://ieeexplore.ieee.org/document/7454681 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_70 GBV_ILN_231 33.38 AVZ 53.54 AVZ AR 28 2016 14 1497-1500 |
allfieldsGer |
10.1109/LPT.2016.2555294 doi PQ20161012 (DE-627)OLC1979345309 (DE-599)GBVOLC1979345309 (PRQ)c1230-cec031006d8a5cab38249aaf7bb83a739cda2b4a7011a5d37a43f0fe96ec40c0 (KEY)0175401720160000028001401497facilitatingsingletransversemodelasinginvcselsviap DE-627 ger DE-627 rakwb eng 620 DNB 33.38 bkl 53.54 bkl Kesler, Benjamin verfasserin aut Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A novel method to achieve single-fundamental-mode lasing and higher order mode suppression using a multi-layer, patterned, dielectric anti-phase filter is employed on the top of oxide-confined vertical-cavity surface-emitting lasers (VCSELs). Dielectric layers are deposited and patterned on individual VCSELs in a wafer-scale process to modify (increase/decrease) the mirror reflectivity across the oxide aperture via anti-phase reflections, creating spatially dependent threshold material gain and VCSEL lasing-mode control. A 1-D plane-wave propagation method is used to calculate the dielectric layer thicknesses in each spatial region needed to facilitate or suppress lasing. A single-fundamental-mode, continuous-wave output power of 3.5 mW is achieved at a lasing wavelength of 850 nm. This additive, non-destructive method allows for mode selection at any lasing wavelength and for any VCSEL layer structure without the need for destructive etching techniques or epitaxial regrowth. It also offers the capability of a tailored filter design based on available materials and deposition methods. mode control dielectric filter vertical-cavity surface-emitting laser Surface treatment Gallium arsenide Vertical cavity surface emitting lasers Optical surface waves Mirrors single mode Anti-phase reflection Dielectrics O'Brien, Thomas oth Su, Guan-Lin oth Dallesasse, John M oth Enthalten in IEEE photonics technology letters New York, NY : IEEE, 1989 28(2016), 14, Seite 1497-1500 (DE-627)129622567 (DE-600)246805-0 (DE-576)018141765 1041-1135 nnns volume:28 year:2016 number:14 pages:1497-1500 http://dx.doi.org/10.1109/LPT.2016.2555294 Volltext http://ieeexplore.ieee.org/document/7454681 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_70 GBV_ILN_231 33.38 AVZ 53.54 AVZ AR 28 2016 14 1497-1500 |
allfieldsSound |
10.1109/LPT.2016.2555294 doi PQ20161012 (DE-627)OLC1979345309 (DE-599)GBVOLC1979345309 (PRQ)c1230-cec031006d8a5cab38249aaf7bb83a739cda2b4a7011a5d37a43f0fe96ec40c0 (KEY)0175401720160000028001401497facilitatingsingletransversemodelasinginvcselsviap DE-627 ger DE-627 rakwb eng 620 DNB 33.38 bkl 53.54 bkl Kesler, Benjamin verfasserin aut Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A novel method to achieve single-fundamental-mode lasing and higher order mode suppression using a multi-layer, patterned, dielectric anti-phase filter is employed on the top of oxide-confined vertical-cavity surface-emitting lasers (VCSELs). Dielectric layers are deposited and patterned on individual VCSELs in a wafer-scale process to modify (increase/decrease) the mirror reflectivity across the oxide aperture via anti-phase reflections, creating spatially dependent threshold material gain and VCSEL lasing-mode control. A 1-D plane-wave propagation method is used to calculate the dielectric layer thicknesses in each spatial region needed to facilitate or suppress lasing. A single-fundamental-mode, continuous-wave output power of 3.5 mW is achieved at a lasing wavelength of 850 nm. This additive, non-destructive method allows for mode selection at any lasing wavelength and for any VCSEL layer structure without the need for destructive etching techniques or epitaxial regrowth. It also offers the capability of a tailored filter design based on available materials and deposition methods. mode control dielectric filter vertical-cavity surface-emitting laser Surface treatment Gallium arsenide Vertical cavity surface emitting lasers Optical surface waves Mirrors single mode Anti-phase reflection Dielectrics O'Brien, Thomas oth Su, Guan-Lin oth Dallesasse, John M oth Enthalten in IEEE photonics technology letters New York, NY : IEEE, 1989 28(2016), 14, Seite 1497-1500 (DE-627)129622567 (DE-600)246805-0 (DE-576)018141765 1041-1135 nnns volume:28 year:2016 number:14 pages:1497-1500 http://dx.doi.org/10.1109/LPT.2016.2555294 Volltext http://ieeexplore.ieee.org/document/7454681 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_70 GBV_ILN_231 33.38 AVZ 53.54 AVZ AR 28 2016 14 1497-1500 |
language |
English |
source |
Enthalten in IEEE photonics technology letters 28(2016), 14, Seite 1497-1500 volume:28 year:2016 number:14 pages:1497-1500 |
sourceStr |
Enthalten in IEEE photonics technology letters 28(2016), 14, Seite 1497-1500 volume:28 year:2016 number:14 pages:1497-1500 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
mode control dielectric filter vertical-cavity surface-emitting laser Surface treatment Gallium arsenide Vertical cavity surface emitting lasers Optical surface waves Mirrors single mode Anti-phase reflection Dielectrics |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE photonics technology letters |
authorswithroles_txt_mv |
Kesler, Benjamin @@aut@@ O'Brien, Thomas @@oth@@ Su, Guan-Lin @@oth@@ Dallesasse, John M @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129622567 |
dewey-sort |
3620 |
id |
OLC1979345309 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1979345309</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220222063309.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160720s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/LPT.2016.2555294</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1979345309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1979345309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1230-cec031006d8a5cab38249aaf7bb83a739cda2b4a7011a5d37a43f0fe96ec40c0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0175401720160000028001401497facilitatingsingletransversemodelasinginvcselsviap</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.54</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kesler, Benjamin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A novel method to achieve single-fundamental-mode lasing and higher order mode suppression using a multi-layer, patterned, dielectric anti-phase filter is employed on the top of oxide-confined vertical-cavity surface-emitting lasers (VCSELs). Dielectric layers are deposited and patterned on individual VCSELs in a wafer-scale process to modify (increase/decrease) the mirror reflectivity across the oxide aperture via anti-phase reflections, creating spatially dependent threshold material gain and VCSEL lasing-mode control. A 1-D plane-wave propagation method is used to calculate the dielectric layer thicknesses in each spatial region needed to facilitate or suppress lasing. A single-fundamental-mode, continuous-wave output power of 3.5 mW is achieved at a lasing wavelength of 850 nm. This additive, non-destructive method allows for mode selection at any lasing wavelength and for any VCSEL layer structure without the need for destructive etching techniques or epitaxial regrowth. It also offers the capability of a tailored filter design based on available materials and deposition methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mode control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dielectric filter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vertical-cavity surface-emitting laser</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface treatment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gallium arsenide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertical cavity surface emitting lasers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical surface waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mirrors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single mode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-phase reflection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dielectrics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O'Brien, Thomas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Guan-Lin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dallesasse, John M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE photonics technology letters</subfield><subfield code="d">New York, NY : IEEE, 1989</subfield><subfield code="g">28(2016), 14, Seite 1497-1500</subfield><subfield code="w">(DE-627)129622567</subfield><subfield code="w">(DE-600)246805-0</subfield><subfield code="w">(DE-576)018141765</subfield><subfield code="x">1041-1135</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:14</subfield><subfield code="g">pages:1497-1500</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/LPT.2016.2555294</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7454681</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_231</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.38</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.54</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2016</subfield><subfield code="e">14</subfield><subfield code="h">1497-1500</subfield></datafield></record></collection>
|
author |
Kesler, Benjamin |
spellingShingle |
Kesler, Benjamin ddc 620 bkl 33.38 bkl 53.54 misc mode control misc dielectric filter misc vertical-cavity surface-emitting laser misc Surface treatment misc Gallium arsenide misc Vertical cavity surface emitting lasers misc Optical surface waves misc Mirrors misc single mode misc Anti-phase reflection misc Dielectrics Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters |
authorStr |
Kesler, Benjamin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129622567 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1041-1135 |
topic_title |
620 DNB 33.38 bkl 53.54 bkl Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters mode control dielectric filter vertical-cavity surface-emitting laser Surface treatment Gallium arsenide Vertical cavity surface emitting lasers Optical surface waves Mirrors single mode Anti-phase reflection Dielectrics |
topic |
ddc 620 bkl 33.38 bkl 53.54 misc mode control misc dielectric filter misc vertical-cavity surface-emitting laser misc Surface treatment misc Gallium arsenide misc Vertical cavity surface emitting lasers misc Optical surface waves misc Mirrors misc single mode misc Anti-phase reflection misc Dielectrics |
topic_unstemmed |
ddc 620 bkl 33.38 bkl 53.54 misc mode control misc dielectric filter misc vertical-cavity surface-emitting laser misc Surface treatment misc Gallium arsenide misc Vertical cavity surface emitting lasers misc Optical surface waves misc Mirrors misc single mode misc Anti-phase reflection misc Dielectrics |
topic_browse |
ddc 620 bkl 33.38 bkl 53.54 misc mode control misc dielectric filter misc vertical-cavity surface-emitting laser misc Surface treatment misc Gallium arsenide misc Vertical cavity surface emitting lasers misc Optical surface waves misc Mirrors misc single mode misc Anti-phase reflection misc Dielectrics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t o to g l s gls j m d jm jmd |
hierarchy_parent_title |
IEEE photonics technology letters |
hierarchy_parent_id |
129622567 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE photonics technology letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129622567 (DE-600)246805-0 (DE-576)018141765 |
title |
Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters |
ctrlnum |
(DE-627)OLC1979345309 (DE-599)GBVOLC1979345309 (PRQ)c1230-cec031006d8a5cab38249aaf7bb83a739cda2b4a7011a5d37a43f0fe96ec40c0 (KEY)0175401720160000028001401497facilitatingsingletransversemodelasinginvcselsviap |
title_full |
Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters |
author_sort |
Kesler, Benjamin |
journal |
IEEE photonics technology letters |
journalStr |
IEEE photonics technology letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1497 |
author_browse |
Kesler, Benjamin |
container_volume |
28 |
class |
620 DNB 33.38 bkl 53.54 bkl |
format_se |
Aufsätze |
author-letter |
Kesler, Benjamin |
doi_str_mv |
10.1109/LPT.2016.2555294 |
dewey-full |
620 |
title_sort |
facilitating single-transverse-mode lasing in vcsels via patterned dielectric anti-phase filters |
title_auth |
Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters |
abstract |
A novel method to achieve single-fundamental-mode lasing and higher order mode suppression using a multi-layer, patterned, dielectric anti-phase filter is employed on the top of oxide-confined vertical-cavity surface-emitting lasers (VCSELs). Dielectric layers are deposited and patterned on individual VCSELs in a wafer-scale process to modify (increase/decrease) the mirror reflectivity across the oxide aperture via anti-phase reflections, creating spatially dependent threshold material gain and VCSEL lasing-mode control. A 1-D plane-wave propagation method is used to calculate the dielectric layer thicknesses in each spatial region needed to facilitate or suppress lasing. A single-fundamental-mode, continuous-wave output power of 3.5 mW is achieved at a lasing wavelength of 850 nm. This additive, non-destructive method allows for mode selection at any lasing wavelength and for any VCSEL layer structure without the need for destructive etching techniques or epitaxial regrowth. It also offers the capability of a tailored filter design based on available materials and deposition methods. |
abstractGer |
A novel method to achieve single-fundamental-mode lasing and higher order mode suppression using a multi-layer, patterned, dielectric anti-phase filter is employed on the top of oxide-confined vertical-cavity surface-emitting lasers (VCSELs). Dielectric layers are deposited and patterned on individual VCSELs in a wafer-scale process to modify (increase/decrease) the mirror reflectivity across the oxide aperture via anti-phase reflections, creating spatially dependent threshold material gain and VCSEL lasing-mode control. A 1-D plane-wave propagation method is used to calculate the dielectric layer thicknesses in each spatial region needed to facilitate or suppress lasing. A single-fundamental-mode, continuous-wave output power of 3.5 mW is achieved at a lasing wavelength of 850 nm. This additive, non-destructive method allows for mode selection at any lasing wavelength and for any VCSEL layer structure without the need for destructive etching techniques or epitaxial regrowth. It also offers the capability of a tailored filter design based on available materials and deposition methods. |
abstract_unstemmed |
A novel method to achieve single-fundamental-mode lasing and higher order mode suppression using a multi-layer, patterned, dielectric anti-phase filter is employed on the top of oxide-confined vertical-cavity surface-emitting lasers (VCSELs). Dielectric layers are deposited and patterned on individual VCSELs in a wafer-scale process to modify (increase/decrease) the mirror reflectivity across the oxide aperture via anti-phase reflections, creating spatially dependent threshold material gain and VCSEL lasing-mode control. A 1-D plane-wave propagation method is used to calculate the dielectric layer thicknesses in each spatial region needed to facilitate or suppress lasing. A single-fundamental-mode, continuous-wave output power of 3.5 mW is achieved at a lasing wavelength of 850 nm. This additive, non-destructive method allows for mode selection at any lasing wavelength and for any VCSEL layer structure without the need for destructive etching techniques or epitaxial regrowth. It also offers the capability of a tailored filter design based on available materials and deposition methods. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_70 GBV_ILN_231 |
container_issue |
14 |
title_short |
Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters |
url |
http://dx.doi.org/10.1109/LPT.2016.2555294 http://ieeexplore.ieee.org/document/7454681 |
remote_bool |
false |
author2 |
O'Brien, Thomas Su, Guan-Lin Dallesasse, John M |
author2Str |
O'Brien, Thomas Su, Guan-Lin Dallesasse, John M |
ppnlink |
129622567 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/LPT.2016.2555294 |
up_date |
2024-07-04T00:43:41.448Z |
_version_ |
1803607155885998080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1979345309</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220222063309.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160720s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/LPT.2016.2555294</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1979345309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1979345309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1230-cec031006d8a5cab38249aaf7bb83a739cda2b4a7011a5d37a43f0fe96ec40c0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0175401720160000028001401497facilitatingsingletransversemodelasinginvcselsviap</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.54</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kesler, Benjamin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A novel method to achieve single-fundamental-mode lasing and higher order mode suppression using a multi-layer, patterned, dielectric anti-phase filter is employed on the top of oxide-confined vertical-cavity surface-emitting lasers (VCSELs). Dielectric layers are deposited and patterned on individual VCSELs in a wafer-scale process to modify (increase/decrease) the mirror reflectivity across the oxide aperture via anti-phase reflections, creating spatially dependent threshold material gain and VCSEL lasing-mode control. A 1-D plane-wave propagation method is used to calculate the dielectric layer thicknesses in each spatial region needed to facilitate or suppress lasing. A single-fundamental-mode, continuous-wave output power of 3.5 mW is achieved at a lasing wavelength of 850 nm. This additive, non-destructive method allows for mode selection at any lasing wavelength and for any VCSEL layer structure without the need for destructive etching techniques or epitaxial regrowth. It also offers the capability of a tailored filter design based on available materials and deposition methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mode control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dielectric filter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vertical-cavity surface-emitting laser</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface treatment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gallium arsenide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertical cavity surface emitting lasers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical surface waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mirrors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single mode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-phase reflection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dielectrics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O'Brien, Thomas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Guan-Lin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dallesasse, John M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE photonics technology letters</subfield><subfield code="d">New York, NY : IEEE, 1989</subfield><subfield code="g">28(2016), 14, Seite 1497-1500</subfield><subfield code="w">(DE-627)129622567</subfield><subfield code="w">(DE-600)246805-0</subfield><subfield code="w">(DE-576)018141765</subfield><subfield code="x">1041-1135</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:14</subfield><subfield code="g">pages:1497-1500</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/LPT.2016.2555294</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7454681</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_231</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.38</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.54</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2016</subfield><subfield code="e">14</subfield><subfield code="h">1497-1500</subfield></datafield></record></collection>
|
score |
7.399987 |