Monosilicic acid potential in phytoremediation of the contaminated areas
The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has...
Ausführliche Beschreibung
Autor*in: |
Ji, Xionghui [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Chemosphere - Kidlington, Oxford : Elsevier Science, 1972, 157(2016), Seite 132-136 |
---|---|
Übergeordnetes Werk: |
volume:157 ; year:2016 ; pages:132-136 |
Links: |
---|
DOI / URN: |
10.1016/j.chemosphere.2016.05.029 |
---|
Katalog-ID: |
OLC1979791414 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1979791414 | ||
003 | DE-627 | ||
005 | 20230508114615.0 | ||
007 | tu | ||
008 | 160816s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.chemosphere.2016.05.029 |2 doi | |
028 | 5 | 2 | |a PQ20161201 |
035 | |a (DE-627)OLC1979791414 | ||
035 | |a (DE-599)GBVOLC1979791414 | ||
035 | |a (PRQ)c2087-77becf0fce29946777c551dedde0f2d3246dbf24e9b86e812b0f3ca93535232f0 | ||
035 | |a (KEY)0012464820160000157000000132monosilicicacidpotentialinphytoremediationofthecon | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |q DNB |
084 | |a AR 10100 |q AVZ |2 rvk | ||
084 | |a 38.32 |2 bkl | ||
084 | |a 35.00 |2 bkl | ||
100 | 1 | |a Ji, Xionghui |e verfasserin |4 aut | |
245 | 1 | 0 | |a Monosilicic acid potential in phytoremediation of the contaminated areas |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has advantages (low cost, easy monitoring, high selectivity) and limitations, including long time for procedure and negative impact of contaminants on used plants. Greenhouse investigations have shown that monosilicic acid can be used for regulation of the HM (Cd, Cr, Pb and Zn) mobility in the soil-plant system. If the concentration of monosilicic acid in soil was increased from 0 to 20 mg L(-1) of Si in soil solution, the HM bioavailability was increased by 30-150%. However, the negative influence on the barley by HM was reduced under monosilicic acid application. If the concentration of monosilicic acid was increased more than 20 mg L(-1), the HM mobility in the soil was decreased by 40-300% and heavy metal uptake by plants was reduced 2-3 times. The using of the monosilicic acid may increase the phytoremediation efficiency. However the technique adaptation will be necessary for phytoremediation on certain areas. | ||
540 | |a Nutzungsrecht: © Elsevier Ltd | ||
540 | |a Copyright © 2016 Elsevier Ltd. All rights reserved. | ||
700 | 1 | |a Liu, Saihua |4 oth | |
700 | 1 | |a Huang, Juan |4 oth | |
700 | 1 | |a Bocharnikova, Elena |4 oth | |
700 | 1 | |a Matichenkov, Vladimir |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Chemosphere |d Kidlington, Oxford : Elsevier Science, 1972 |g 157(2016), Seite 132-136 |w (DE-627)129288586 |w (DE-600)120089-6 |w (DE-576)014470187 |x 0045-6535 |7 nnns |
773 | 1 | 8 | |g volume:157 |g year:2016 |g pages:132-136 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.chemosphere.2016.05.029 |3 Volltext |
856 | 4 | 2 | |u http://www.sciencedirect.com/science/article/pii/S0045653516306683 |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/27213242 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4012 | ||
936 | r | v | |a AR 10100 |
936 | b | k | |a 38.32 |q AVZ |
936 | b | k | |a 35.00 |q AVZ |
951 | |a AR | ||
952 | |d 157 |j 2016 |h 132-136 |
author_variant |
x j xj |
---|---|
matchkey_str |
article:00456535:2016----::ooiiiaiptnilnhtrmdainfhc |
hierarchy_sort_str |
2016 |
bklnumber |
38.32 35.00 |
publishDate |
2016 |
allfields |
10.1016/j.chemosphere.2016.05.029 doi PQ20161201 (DE-627)OLC1979791414 (DE-599)GBVOLC1979791414 (PRQ)c2087-77becf0fce29946777c551dedde0f2d3246dbf24e9b86e812b0f3ca93535232f0 (KEY)0012464820160000157000000132monosilicicacidpotentialinphytoremediationofthecon DE-627 ger DE-627 rakwb eng 333.7 DNB AR 10100 AVZ rvk 38.32 bkl 35.00 bkl Ji, Xionghui verfasserin aut Monosilicic acid potential in phytoremediation of the contaminated areas 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has advantages (low cost, easy monitoring, high selectivity) and limitations, including long time for procedure and negative impact of contaminants on used plants. Greenhouse investigations have shown that monosilicic acid can be used for regulation of the HM (Cd, Cr, Pb and Zn) mobility in the soil-plant system. If the concentration of monosilicic acid in soil was increased from 0 to 20 mg L(-1) of Si in soil solution, the HM bioavailability was increased by 30-150%. However, the negative influence on the barley by HM was reduced under monosilicic acid application. If the concentration of monosilicic acid was increased more than 20 mg L(-1), the HM mobility in the soil was decreased by 40-300% and heavy metal uptake by plants was reduced 2-3 times. The using of the monosilicic acid may increase the phytoremediation efficiency. However the technique adaptation will be necessary for phytoremediation on certain areas. Nutzungsrecht: © Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. Liu, Saihua oth Huang, Juan oth Bocharnikova, Elena oth Matichenkov, Vladimir oth Enthalten in Chemosphere Kidlington, Oxford : Elsevier Science, 1972 157(2016), Seite 132-136 (DE-627)129288586 (DE-600)120089-6 (DE-576)014470187 0045-6535 nnns volume:157 year:2016 pages:132-136 http://dx.doi.org/10.1016/j.chemosphere.2016.05.029 Volltext http://www.sciencedirect.com/science/article/pii/S0045653516306683 http://www.ncbi.nlm.nih.gov/pubmed/27213242 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 AR 10100 38.32 AVZ 35.00 AVZ AR 157 2016 132-136 |
spelling |
10.1016/j.chemosphere.2016.05.029 doi PQ20161201 (DE-627)OLC1979791414 (DE-599)GBVOLC1979791414 (PRQ)c2087-77becf0fce29946777c551dedde0f2d3246dbf24e9b86e812b0f3ca93535232f0 (KEY)0012464820160000157000000132monosilicicacidpotentialinphytoremediationofthecon DE-627 ger DE-627 rakwb eng 333.7 DNB AR 10100 AVZ rvk 38.32 bkl 35.00 bkl Ji, Xionghui verfasserin aut Monosilicic acid potential in phytoremediation of the contaminated areas 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has advantages (low cost, easy monitoring, high selectivity) and limitations, including long time for procedure and negative impact of contaminants on used plants. Greenhouse investigations have shown that monosilicic acid can be used for regulation of the HM (Cd, Cr, Pb and Zn) mobility in the soil-plant system. If the concentration of monosilicic acid in soil was increased from 0 to 20 mg L(-1) of Si in soil solution, the HM bioavailability was increased by 30-150%. However, the negative influence on the barley by HM was reduced under monosilicic acid application. If the concentration of monosilicic acid was increased more than 20 mg L(-1), the HM mobility in the soil was decreased by 40-300% and heavy metal uptake by plants was reduced 2-3 times. The using of the monosilicic acid may increase the phytoremediation efficiency. However the technique adaptation will be necessary for phytoremediation on certain areas. Nutzungsrecht: © Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. Liu, Saihua oth Huang, Juan oth Bocharnikova, Elena oth Matichenkov, Vladimir oth Enthalten in Chemosphere Kidlington, Oxford : Elsevier Science, 1972 157(2016), Seite 132-136 (DE-627)129288586 (DE-600)120089-6 (DE-576)014470187 0045-6535 nnns volume:157 year:2016 pages:132-136 http://dx.doi.org/10.1016/j.chemosphere.2016.05.029 Volltext http://www.sciencedirect.com/science/article/pii/S0045653516306683 http://www.ncbi.nlm.nih.gov/pubmed/27213242 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 AR 10100 38.32 AVZ 35.00 AVZ AR 157 2016 132-136 |
allfields_unstemmed |
10.1016/j.chemosphere.2016.05.029 doi PQ20161201 (DE-627)OLC1979791414 (DE-599)GBVOLC1979791414 (PRQ)c2087-77becf0fce29946777c551dedde0f2d3246dbf24e9b86e812b0f3ca93535232f0 (KEY)0012464820160000157000000132monosilicicacidpotentialinphytoremediationofthecon DE-627 ger DE-627 rakwb eng 333.7 DNB AR 10100 AVZ rvk 38.32 bkl 35.00 bkl Ji, Xionghui verfasserin aut Monosilicic acid potential in phytoremediation of the contaminated areas 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has advantages (low cost, easy monitoring, high selectivity) and limitations, including long time for procedure and negative impact of contaminants on used plants. Greenhouse investigations have shown that monosilicic acid can be used for regulation of the HM (Cd, Cr, Pb and Zn) mobility in the soil-plant system. If the concentration of monosilicic acid in soil was increased from 0 to 20 mg L(-1) of Si in soil solution, the HM bioavailability was increased by 30-150%. However, the negative influence on the barley by HM was reduced under monosilicic acid application. If the concentration of monosilicic acid was increased more than 20 mg L(-1), the HM mobility in the soil was decreased by 40-300% and heavy metal uptake by plants was reduced 2-3 times. The using of the monosilicic acid may increase the phytoremediation efficiency. However the technique adaptation will be necessary for phytoremediation on certain areas. Nutzungsrecht: © Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. Liu, Saihua oth Huang, Juan oth Bocharnikova, Elena oth Matichenkov, Vladimir oth Enthalten in Chemosphere Kidlington, Oxford : Elsevier Science, 1972 157(2016), Seite 132-136 (DE-627)129288586 (DE-600)120089-6 (DE-576)014470187 0045-6535 nnns volume:157 year:2016 pages:132-136 http://dx.doi.org/10.1016/j.chemosphere.2016.05.029 Volltext http://www.sciencedirect.com/science/article/pii/S0045653516306683 http://www.ncbi.nlm.nih.gov/pubmed/27213242 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 AR 10100 38.32 AVZ 35.00 AVZ AR 157 2016 132-136 |
allfieldsGer |
10.1016/j.chemosphere.2016.05.029 doi PQ20161201 (DE-627)OLC1979791414 (DE-599)GBVOLC1979791414 (PRQ)c2087-77becf0fce29946777c551dedde0f2d3246dbf24e9b86e812b0f3ca93535232f0 (KEY)0012464820160000157000000132monosilicicacidpotentialinphytoremediationofthecon DE-627 ger DE-627 rakwb eng 333.7 DNB AR 10100 AVZ rvk 38.32 bkl 35.00 bkl Ji, Xionghui verfasserin aut Monosilicic acid potential in phytoremediation of the contaminated areas 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has advantages (low cost, easy monitoring, high selectivity) and limitations, including long time for procedure and negative impact of contaminants on used plants. Greenhouse investigations have shown that monosilicic acid can be used for regulation of the HM (Cd, Cr, Pb and Zn) mobility in the soil-plant system. If the concentration of monosilicic acid in soil was increased from 0 to 20 mg L(-1) of Si in soil solution, the HM bioavailability was increased by 30-150%. However, the negative influence on the barley by HM was reduced under monosilicic acid application. If the concentration of monosilicic acid was increased more than 20 mg L(-1), the HM mobility in the soil was decreased by 40-300% and heavy metal uptake by plants was reduced 2-3 times. The using of the monosilicic acid may increase the phytoremediation efficiency. However the technique adaptation will be necessary for phytoremediation on certain areas. Nutzungsrecht: © Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. Liu, Saihua oth Huang, Juan oth Bocharnikova, Elena oth Matichenkov, Vladimir oth Enthalten in Chemosphere Kidlington, Oxford : Elsevier Science, 1972 157(2016), Seite 132-136 (DE-627)129288586 (DE-600)120089-6 (DE-576)014470187 0045-6535 nnns volume:157 year:2016 pages:132-136 http://dx.doi.org/10.1016/j.chemosphere.2016.05.029 Volltext http://www.sciencedirect.com/science/article/pii/S0045653516306683 http://www.ncbi.nlm.nih.gov/pubmed/27213242 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 AR 10100 38.32 AVZ 35.00 AVZ AR 157 2016 132-136 |
allfieldsSound |
10.1016/j.chemosphere.2016.05.029 doi PQ20161201 (DE-627)OLC1979791414 (DE-599)GBVOLC1979791414 (PRQ)c2087-77becf0fce29946777c551dedde0f2d3246dbf24e9b86e812b0f3ca93535232f0 (KEY)0012464820160000157000000132monosilicicacidpotentialinphytoremediationofthecon DE-627 ger DE-627 rakwb eng 333.7 DNB AR 10100 AVZ rvk 38.32 bkl 35.00 bkl Ji, Xionghui verfasserin aut Monosilicic acid potential in phytoremediation of the contaminated areas 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has advantages (low cost, easy monitoring, high selectivity) and limitations, including long time for procedure and negative impact of contaminants on used plants. Greenhouse investigations have shown that monosilicic acid can be used for regulation of the HM (Cd, Cr, Pb and Zn) mobility in the soil-plant system. If the concentration of monosilicic acid in soil was increased from 0 to 20 mg L(-1) of Si in soil solution, the HM bioavailability was increased by 30-150%. However, the negative influence on the barley by HM was reduced under monosilicic acid application. If the concentration of monosilicic acid was increased more than 20 mg L(-1), the HM mobility in the soil was decreased by 40-300% and heavy metal uptake by plants was reduced 2-3 times. The using of the monosilicic acid may increase the phytoremediation efficiency. However the technique adaptation will be necessary for phytoremediation on certain areas. Nutzungsrecht: © Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. Liu, Saihua oth Huang, Juan oth Bocharnikova, Elena oth Matichenkov, Vladimir oth Enthalten in Chemosphere Kidlington, Oxford : Elsevier Science, 1972 157(2016), Seite 132-136 (DE-627)129288586 (DE-600)120089-6 (DE-576)014470187 0045-6535 nnns volume:157 year:2016 pages:132-136 http://dx.doi.org/10.1016/j.chemosphere.2016.05.029 Volltext http://www.sciencedirect.com/science/article/pii/S0045653516306683 http://www.ncbi.nlm.nih.gov/pubmed/27213242 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 AR 10100 38.32 AVZ 35.00 AVZ AR 157 2016 132-136 |
language |
English |
source |
Enthalten in Chemosphere 157(2016), Seite 132-136 volume:157 year:2016 pages:132-136 |
sourceStr |
Enthalten in Chemosphere 157(2016), Seite 132-136 volume:157 year:2016 pages:132-136 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Chemosphere |
authorswithroles_txt_mv |
Ji, Xionghui @@aut@@ Liu, Saihua @@oth@@ Huang, Juan @@oth@@ Bocharnikova, Elena @@oth@@ Matichenkov, Vladimir @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129288586 |
dewey-sort |
3333.7 |
id |
OLC1979791414 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1979791414</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508114615.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemosphere.2016.05.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1979791414</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1979791414</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2087-77becf0fce29946777c551dedde0f2d3246dbf24e9b86e812b0f3ca93535232f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0012464820160000157000000132monosilicicacidpotentialinphytoremediationofthecon</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AR 10100</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ji, Xionghui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monosilicic acid potential in phytoremediation of the contaminated areas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has advantages (low cost, easy monitoring, high selectivity) and limitations, including long time for procedure and negative impact of contaminants on used plants. Greenhouse investigations have shown that monosilicic acid can be used for regulation of the HM (Cd, Cr, Pb and Zn) mobility in the soil-plant system. If the concentration of monosilicic acid in soil was increased from 0 to 20 mg L(-1) of Si in soil solution, the HM bioavailability was increased by 30-150%. However, the negative influence on the barley by HM was reduced under monosilicic acid application. If the concentration of monosilicic acid was increased more than 20 mg L(-1), the HM mobility in the soil was decreased by 40-300% and heavy metal uptake by plants was reduced 2-3 times. The using of the monosilicic acid may increase the phytoremediation efficiency. However the technique adaptation will be necessary for phytoremediation on certain areas.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Elsevier Ltd</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Copyright © 2016 Elsevier Ltd. All rights reserved.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Saihua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Juan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bocharnikova, Elena</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matichenkov, Vladimir</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemosphere</subfield><subfield code="d">Kidlington, Oxford : Elsevier Science, 1972</subfield><subfield code="g">157(2016), Seite 132-136</subfield><subfield code="w">(DE-627)129288586</subfield><subfield code="w">(DE-600)120089-6</subfield><subfield code="w">(DE-576)014470187</subfield><subfield code="x">0045-6535</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:157</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:132-136</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.chemosphere.2016.05.029</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0045653516306683</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/27213242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">AR 10100</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.32</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">157</subfield><subfield code="j">2016</subfield><subfield code="h">132-136</subfield></datafield></record></collection>
|
author |
Ji, Xionghui |
spellingShingle |
Ji, Xionghui ddc 333.7 rvk AR 10100 bkl 38.32 bkl 35.00 Monosilicic acid potential in phytoremediation of the contaminated areas |
authorStr |
Ji, Xionghui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129288586 |
format |
Article |
dewey-ones |
333 - Economics of land & energy |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0045-6535 |
topic_title |
333.7 DNB AR 10100 AVZ rvk 38.32 bkl 35.00 bkl Monosilicic acid potential in phytoremediation of the contaminated areas |
topic |
ddc 333.7 rvk AR 10100 bkl 38.32 bkl 35.00 |
topic_unstemmed |
ddc 333.7 rvk AR 10100 bkl 38.32 bkl 35.00 |
topic_browse |
ddc 333.7 rvk AR 10100 bkl 38.32 bkl 35.00 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
s l sl j h jh e b eb v m vm |
hierarchy_parent_title |
Chemosphere |
hierarchy_parent_id |
129288586 |
dewey-tens |
330 - Economics |
hierarchy_top_title |
Chemosphere |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129288586 (DE-600)120089-6 (DE-576)014470187 |
title |
Monosilicic acid potential in phytoremediation of the contaminated areas |
ctrlnum |
(DE-627)OLC1979791414 (DE-599)GBVOLC1979791414 (PRQ)c2087-77becf0fce29946777c551dedde0f2d3246dbf24e9b86e812b0f3ca93535232f0 (KEY)0012464820160000157000000132monosilicicacidpotentialinphytoremediationofthecon |
title_full |
Monosilicic acid potential in phytoremediation of the contaminated areas |
author_sort |
Ji, Xionghui |
journal |
Chemosphere |
journalStr |
Chemosphere |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
132 |
author_browse |
Ji, Xionghui |
container_volume |
157 |
class |
333.7 DNB AR 10100 AVZ rvk 38.32 bkl 35.00 bkl |
format_se |
Aufsätze |
author-letter |
Ji, Xionghui |
doi_str_mv |
10.1016/j.chemosphere.2016.05.029 |
dewey-full |
333.7 |
title_sort |
monosilicic acid potential in phytoremediation of the contaminated areas |
title_auth |
Monosilicic acid potential in phytoremediation of the contaminated areas |
abstract |
The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has advantages (low cost, easy monitoring, high selectivity) and limitations, including long time for procedure and negative impact of contaminants on used plants. Greenhouse investigations have shown that monosilicic acid can be used for regulation of the HM (Cd, Cr, Pb and Zn) mobility in the soil-plant system. If the concentration of monosilicic acid in soil was increased from 0 to 20 mg L(-1) of Si in soil solution, the HM bioavailability was increased by 30-150%. However, the negative influence on the barley by HM was reduced under monosilicic acid application. If the concentration of monosilicic acid was increased more than 20 mg L(-1), the HM mobility in the soil was decreased by 40-300% and heavy metal uptake by plants was reduced 2-3 times. The using of the monosilicic acid may increase the phytoremediation efficiency. However the technique adaptation will be necessary for phytoremediation on certain areas. |
abstractGer |
The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has advantages (low cost, easy monitoring, high selectivity) and limitations, including long time for procedure and negative impact of contaminants on used plants. Greenhouse investigations have shown that monosilicic acid can be used for regulation of the HM (Cd, Cr, Pb and Zn) mobility in the soil-plant system. If the concentration of monosilicic acid in soil was increased from 0 to 20 mg L(-1) of Si in soil solution, the HM bioavailability was increased by 30-150%. However, the negative influence on the barley by HM was reduced under monosilicic acid application. If the concentration of monosilicic acid was increased more than 20 mg L(-1), the HM mobility in the soil was decreased by 40-300% and heavy metal uptake by plants was reduced 2-3 times. The using of the monosilicic acid may increase the phytoremediation efficiency. However the technique adaptation will be necessary for phytoremediation on certain areas. |
abstract_unstemmed |
The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has advantages (low cost, easy monitoring, high selectivity) and limitations, including long time for procedure and negative impact of contaminants on used plants. Greenhouse investigations have shown that monosilicic acid can be used for regulation of the HM (Cd, Cr, Pb and Zn) mobility in the soil-plant system. If the concentration of monosilicic acid in soil was increased from 0 to 20 mg L(-1) of Si in soil solution, the HM bioavailability was increased by 30-150%. However, the negative influence on the barley by HM was reduced under monosilicic acid application. If the concentration of monosilicic acid was increased more than 20 mg L(-1), the HM mobility in the soil was decreased by 40-300% and heavy metal uptake by plants was reduced 2-3 times. The using of the monosilicic acid may increase the phytoremediation efficiency. However the technique adaptation will be necessary for phytoremediation on certain areas. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_21 GBV_ILN_70 GBV_ILN_4012 |
title_short |
Monosilicic acid potential in phytoremediation of the contaminated areas |
url |
http://dx.doi.org/10.1016/j.chemosphere.2016.05.029 http://www.sciencedirect.com/science/article/pii/S0045653516306683 http://www.ncbi.nlm.nih.gov/pubmed/27213242 |
remote_bool |
false |
author2 |
Liu, Saihua Huang, Juan Bocharnikova, Elena Matichenkov, Vladimir |
author2Str |
Liu, Saihua Huang, Juan Bocharnikova, Elena Matichenkov, Vladimir |
ppnlink |
129288586 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.chemosphere.2016.05.029 |
up_date |
2024-07-04T01:41:20.578Z |
_version_ |
1803610783041454080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1979791414</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508114615.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemosphere.2016.05.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1979791414</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1979791414</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2087-77becf0fce29946777c551dedde0f2d3246dbf24e9b86e812b0f3ca93535232f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0012464820160000157000000132monosilicicacidpotentialinphytoremediationofthecon</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AR 10100</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ji, Xionghui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monosilicic acid potential in phytoremediation of the contaminated areas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has advantages (low cost, easy monitoring, high selectivity) and limitations, including long time for procedure and negative impact of contaminants on used plants. Greenhouse investigations have shown that monosilicic acid can be used for regulation of the HM (Cd, Cr, Pb and Zn) mobility in the soil-plant system. If the concentration of monosilicic acid in soil was increased from 0 to 20 mg L(-1) of Si in soil solution, the HM bioavailability was increased by 30-150%. However, the negative influence on the barley by HM was reduced under monosilicic acid application. If the concentration of monosilicic acid was increased more than 20 mg L(-1), the HM mobility in the soil was decreased by 40-300% and heavy metal uptake by plants was reduced 2-3 times. The using of the monosilicic acid may increase the phytoremediation efficiency. However the technique adaptation will be necessary for phytoremediation on certain areas.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Elsevier Ltd</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Copyright © 2016 Elsevier Ltd. All rights reserved.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Saihua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Juan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bocharnikova, Elena</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matichenkov, Vladimir</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemosphere</subfield><subfield code="d">Kidlington, Oxford : Elsevier Science, 1972</subfield><subfield code="g">157(2016), Seite 132-136</subfield><subfield code="w">(DE-627)129288586</subfield><subfield code="w">(DE-600)120089-6</subfield><subfield code="w">(DE-576)014470187</subfield><subfield code="x">0045-6535</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:157</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:132-136</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.chemosphere.2016.05.029</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0045653516306683</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/27213242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">AR 10100</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.32</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">157</subfield><subfield code="j">2016</subfield><subfield code="h">132-136</subfield></datafield></record></collection>
|
score |
7.401388 |