Waveform inversion of acoustic waves for explosion yield estimation
We present a new waveform inversion technique to estimate the energy of near‐surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are n...
Ausführliche Beschreibung
Autor*in: |
Kim, K [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © Published 2016. This article is a US Government work and is in the public domain in the United States of America. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Geophysical research letters - Washington, DC : Union, 1974, 43(2016), 13, Seite 6883-6890 |
---|---|
Übergeordnetes Werk: |
volume:43 ; year:2016 ; number:13 ; pages:6883-6890 |
Links: |
---|
DOI / URN: |
10.1002/2016GL069624 |
---|
Katalog-ID: |
OLC1979874964 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1979874964 | ||
003 | DE-627 | ||
005 | 20220223170642.0 | ||
007 | tu | ||
008 | 160816s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/2016GL069624 |2 doi | |
028 | 5 | 2 | |a PQ20160815 |
035 | |a (DE-627)OLC1979874964 | ||
035 | |a (DE-599)GBVOLC1979874964 | ||
035 | |a (PRQ)p953-4cb63ee154dd89b0974560681c83434fbb31a5b0c9051575b5d52c28750eb2870 | ||
035 | |a (KEY)0026932820160000043001306883waveforminversionofacousticwavesforexplosionyielde | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a 38.70 |2 bkl | ||
100 | 1 | |a Kim, K |e verfasserin |4 aut | |
245 | 1 | 0 | |a Waveform inversion of acoustic waves for explosion yield estimation |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We present a new waveform inversion technique to estimate the energy of near‐surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source‐receiver distance. In this study, three‐dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<∼30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications. Yield estimation of a near‐surface explosion using acoustic waves Full waveform inversion of acoustic signals incorporating 3‐D numerical modelings Full 3‐D simulation of acoustic waves taking into account topographic and atmospheric propagation effects | ||
540 | |a Nutzungsrecht: © Published 2016. This article is a US Government work and is in the public domain in the United States of America. | ||
650 | 4 | |a waveform inversion | |
650 | 4 | |a infrasound | |
650 | 4 | |a explosion yield | |
650 | 4 | |a explosion | |
650 | 4 | |a 3‐D modeling | |
650 | 4 | |a Geophysics | |
650 | 4 | |a Acoustics | |
650 | 4 | |a Propagation | |
650 | 4 | |a Waveform analysis | |
650 | 4 | |a Topography | |
700 | 1 | |a Rodgers, A |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Geophysical research letters |d Washington, DC : Union, 1974 |g 43(2016), 13, Seite 6883-6890 |w (DE-627)129095109 |w (DE-600)7403-2 |w (DE-576)01443122X |x 0094-8276 |7 nnns |
773 | 1 | 8 | |g volume:43 |g year:2016 |g number:13 |g pages:6883-6890 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/2016GL069624 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/2016GL069624/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1806548601 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_2279 | ||
936 | b | k | |a 38.70 |q AVZ |
951 | |a AR | ||
952 | |d 43 |j 2016 |e 13 |h 6883-6890 |
author_variant |
k k kk |
---|---|
matchkey_str |
article:00948276:2016----::aeomnesooaosiwvsoepoi |
hierarchy_sort_str |
2016 |
bklnumber |
38.70 |
publishDate |
2016 |
allfields |
10.1002/2016GL069624 doi PQ20160815 (DE-627)OLC1979874964 (DE-599)GBVOLC1979874964 (PRQ)p953-4cb63ee154dd89b0974560681c83434fbb31a5b0c9051575b5d52c28750eb2870 (KEY)0026932820160000043001306883waveforminversionofacousticwavesforexplosionyielde DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Kim, K verfasserin aut Waveform inversion of acoustic waves for explosion yield estimation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a new waveform inversion technique to estimate the energy of near‐surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source‐receiver distance. In this study, three‐dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<∼30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications. Yield estimation of a near‐surface explosion using acoustic waves Full waveform inversion of acoustic signals incorporating 3‐D numerical modelings Full 3‐D simulation of acoustic waves taking into account topographic and atmospheric propagation effects Nutzungsrecht: © Published 2016. This article is a US Government work and is in the public domain in the United States of America. waveform inversion infrasound explosion yield explosion 3‐D modeling Geophysics Acoustics Propagation Waveform analysis Topography Rodgers, A oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 43(2016), 13, Seite 6883-6890 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:43 year:2016 number:13 pages:6883-6890 http://dx.doi.org/10.1002/2016GL069624 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016GL069624/abstract http://search.proquest.com/docview/1806548601 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 43 2016 13 6883-6890 |
spelling |
10.1002/2016GL069624 doi PQ20160815 (DE-627)OLC1979874964 (DE-599)GBVOLC1979874964 (PRQ)p953-4cb63ee154dd89b0974560681c83434fbb31a5b0c9051575b5d52c28750eb2870 (KEY)0026932820160000043001306883waveforminversionofacousticwavesforexplosionyielde DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Kim, K verfasserin aut Waveform inversion of acoustic waves for explosion yield estimation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a new waveform inversion technique to estimate the energy of near‐surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source‐receiver distance. In this study, three‐dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<∼30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications. Yield estimation of a near‐surface explosion using acoustic waves Full waveform inversion of acoustic signals incorporating 3‐D numerical modelings Full 3‐D simulation of acoustic waves taking into account topographic and atmospheric propagation effects Nutzungsrecht: © Published 2016. This article is a US Government work and is in the public domain in the United States of America. waveform inversion infrasound explosion yield explosion 3‐D modeling Geophysics Acoustics Propagation Waveform analysis Topography Rodgers, A oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 43(2016), 13, Seite 6883-6890 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:43 year:2016 number:13 pages:6883-6890 http://dx.doi.org/10.1002/2016GL069624 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016GL069624/abstract http://search.proquest.com/docview/1806548601 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 43 2016 13 6883-6890 |
allfields_unstemmed |
10.1002/2016GL069624 doi PQ20160815 (DE-627)OLC1979874964 (DE-599)GBVOLC1979874964 (PRQ)p953-4cb63ee154dd89b0974560681c83434fbb31a5b0c9051575b5d52c28750eb2870 (KEY)0026932820160000043001306883waveforminversionofacousticwavesforexplosionyielde DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Kim, K verfasserin aut Waveform inversion of acoustic waves for explosion yield estimation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a new waveform inversion technique to estimate the energy of near‐surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source‐receiver distance. In this study, three‐dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<∼30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications. Yield estimation of a near‐surface explosion using acoustic waves Full waveform inversion of acoustic signals incorporating 3‐D numerical modelings Full 3‐D simulation of acoustic waves taking into account topographic and atmospheric propagation effects Nutzungsrecht: © Published 2016. This article is a US Government work and is in the public domain in the United States of America. waveform inversion infrasound explosion yield explosion 3‐D modeling Geophysics Acoustics Propagation Waveform analysis Topography Rodgers, A oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 43(2016), 13, Seite 6883-6890 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:43 year:2016 number:13 pages:6883-6890 http://dx.doi.org/10.1002/2016GL069624 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016GL069624/abstract http://search.proquest.com/docview/1806548601 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 43 2016 13 6883-6890 |
allfieldsGer |
10.1002/2016GL069624 doi PQ20160815 (DE-627)OLC1979874964 (DE-599)GBVOLC1979874964 (PRQ)p953-4cb63ee154dd89b0974560681c83434fbb31a5b0c9051575b5d52c28750eb2870 (KEY)0026932820160000043001306883waveforminversionofacousticwavesforexplosionyielde DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Kim, K verfasserin aut Waveform inversion of acoustic waves for explosion yield estimation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a new waveform inversion technique to estimate the energy of near‐surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source‐receiver distance. In this study, three‐dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<∼30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications. Yield estimation of a near‐surface explosion using acoustic waves Full waveform inversion of acoustic signals incorporating 3‐D numerical modelings Full 3‐D simulation of acoustic waves taking into account topographic and atmospheric propagation effects Nutzungsrecht: © Published 2016. This article is a US Government work and is in the public domain in the United States of America. waveform inversion infrasound explosion yield explosion 3‐D modeling Geophysics Acoustics Propagation Waveform analysis Topography Rodgers, A oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 43(2016), 13, Seite 6883-6890 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:43 year:2016 number:13 pages:6883-6890 http://dx.doi.org/10.1002/2016GL069624 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016GL069624/abstract http://search.proquest.com/docview/1806548601 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 43 2016 13 6883-6890 |
allfieldsSound |
10.1002/2016GL069624 doi PQ20160815 (DE-627)OLC1979874964 (DE-599)GBVOLC1979874964 (PRQ)p953-4cb63ee154dd89b0974560681c83434fbb31a5b0c9051575b5d52c28750eb2870 (KEY)0026932820160000043001306883waveforminversionofacousticwavesforexplosionyielde DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Kim, K verfasserin aut Waveform inversion of acoustic waves for explosion yield estimation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a new waveform inversion technique to estimate the energy of near‐surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source‐receiver distance. In this study, three‐dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<∼30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications. Yield estimation of a near‐surface explosion using acoustic waves Full waveform inversion of acoustic signals incorporating 3‐D numerical modelings Full 3‐D simulation of acoustic waves taking into account topographic and atmospheric propagation effects Nutzungsrecht: © Published 2016. This article is a US Government work and is in the public domain in the United States of America. waveform inversion infrasound explosion yield explosion 3‐D modeling Geophysics Acoustics Propagation Waveform analysis Topography Rodgers, A oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 43(2016), 13, Seite 6883-6890 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:43 year:2016 number:13 pages:6883-6890 http://dx.doi.org/10.1002/2016GL069624 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016GL069624/abstract http://search.proquest.com/docview/1806548601 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 43 2016 13 6883-6890 |
language |
English |
source |
Enthalten in Geophysical research letters 43(2016), 13, Seite 6883-6890 volume:43 year:2016 number:13 pages:6883-6890 |
sourceStr |
Enthalten in Geophysical research letters 43(2016), 13, Seite 6883-6890 volume:43 year:2016 number:13 pages:6883-6890 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
waveform inversion infrasound explosion yield explosion 3‐D modeling Geophysics Acoustics Propagation Waveform analysis Topography |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Geophysical research letters |
authorswithroles_txt_mv |
Kim, K @@aut@@ Rodgers, A @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129095109 |
dewey-sort |
3550 |
id |
OLC1979874964 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1979874964</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223170642.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2016GL069624</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1979874964</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1979874964</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p953-4cb63ee154dd89b0974560681c83434fbb31a5b0c9051575b5d52c28750eb2870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0026932820160000043001306883waveforminversionofacousticwavesforexplosionyielde</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, K</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Waveform inversion of acoustic waves for explosion yield estimation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a new waveform inversion technique to estimate the energy of near‐surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source‐receiver distance. In this study, three‐dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<∼30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications. Yield estimation of a near‐surface explosion using acoustic waves Full waveform inversion of acoustic signals incorporating 3‐D numerical modelings Full 3‐D simulation of acoustic waves taking into account topographic and atmospheric propagation effects</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Published 2016. This article is a US Government work and is in the public domain in the United States of America.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">waveform inversion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infrasound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">explosion yield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">explosion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3‐D modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waveform analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topography</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodgers, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geophysical research letters</subfield><subfield code="d">Washington, DC : Union, 1974</subfield><subfield code="g">43(2016), 13, Seite 6883-6890</subfield><subfield code="w">(DE-627)129095109</subfield><subfield code="w">(DE-600)7403-2</subfield><subfield code="w">(DE-576)01443122X</subfield><subfield code="x">0094-8276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:13</subfield><subfield code="g">pages:6883-6890</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2016GL069624</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2016GL069624/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1806548601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2016</subfield><subfield code="e">13</subfield><subfield code="h">6883-6890</subfield></datafield></record></collection>
|
author |
Kim, K |
spellingShingle |
Kim, K ddc 550 bkl 38.70 misc waveform inversion misc infrasound misc explosion yield misc explosion misc 3‐D modeling misc Geophysics misc Acoustics misc Propagation misc Waveform analysis misc Topography Waveform inversion of acoustic waves for explosion yield estimation |
authorStr |
Kim, K |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129095109 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0094-8276 |
topic_title |
550 DNB 38.70 bkl Waveform inversion of acoustic waves for explosion yield estimation waveform inversion infrasound explosion yield explosion 3‐D modeling Geophysics Acoustics Propagation Waveform analysis Topography |
topic |
ddc 550 bkl 38.70 misc waveform inversion misc infrasound misc explosion yield misc explosion misc 3‐D modeling misc Geophysics misc Acoustics misc Propagation misc Waveform analysis misc Topography |
topic_unstemmed |
ddc 550 bkl 38.70 misc waveform inversion misc infrasound misc explosion yield misc explosion misc 3‐D modeling misc Geophysics misc Acoustics misc Propagation misc Waveform analysis misc Topography |
topic_browse |
ddc 550 bkl 38.70 misc waveform inversion misc infrasound misc explosion yield misc explosion misc 3‐D modeling misc Geophysics misc Acoustics misc Propagation misc Waveform analysis misc Topography |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
a r ar |
hierarchy_parent_title |
Geophysical research letters |
hierarchy_parent_id |
129095109 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Geophysical research letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X |
title |
Waveform inversion of acoustic waves for explosion yield estimation |
ctrlnum |
(DE-627)OLC1979874964 (DE-599)GBVOLC1979874964 (PRQ)p953-4cb63ee154dd89b0974560681c83434fbb31a5b0c9051575b5d52c28750eb2870 (KEY)0026932820160000043001306883waveforminversionofacousticwavesforexplosionyielde |
title_full |
Waveform inversion of acoustic waves for explosion yield estimation |
author_sort |
Kim, K |
journal |
Geophysical research letters |
journalStr |
Geophysical research letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
6883 |
author_browse |
Kim, K |
container_volume |
43 |
class |
550 DNB 38.70 bkl |
format_se |
Aufsätze |
author-letter |
Kim, K |
doi_str_mv |
10.1002/2016GL069624 |
dewey-full |
550 |
title_sort |
waveform inversion of acoustic waves for explosion yield estimation |
title_auth |
Waveform inversion of acoustic waves for explosion yield estimation |
abstract |
We present a new waveform inversion technique to estimate the energy of near‐surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source‐receiver distance. In this study, three‐dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<∼30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications. Yield estimation of a near‐surface explosion using acoustic waves Full waveform inversion of acoustic signals incorporating 3‐D numerical modelings Full 3‐D simulation of acoustic waves taking into account topographic and atmospheric propagation effects |
abstractGer |
We present a new waveform inversion technique to estimate the energy of near‐surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source‐receiver distance. In this study, three‐dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<∼30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications. Yield estimation of a near‐surface explosion using acoustic waves Full waveform inversion of acoustic signals incorporating 3‐D numerical modelings Full 3‐D simulation of acoustic waves taking into account topographic and atmospheric propagation effects |
abstract_unstemmed |
We present a new waveform inversion technique to estimate the energy of near‐surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source‐receiver distance. In this study, three‐dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<∼30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications. Yield estimation of a near‐surface explosion using acoustic waves Full waveform inversion of acoustic signals incorporating 3‐D numerical modelings Full 3‐D simulation of acoustic waves taking into account topographic and atmospheric propagation effects |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 |
container_issue |
13 |
title_short |
Waveform inversion of acoustic waves for explosion yield estimation |
url |
http://dx.doi.org/10.1002/2016GL069624 http://onlinelibrary.wiley.com/doi/10.1002/2016GL069624/abstract http://search.proquest.com/docview/1806548601 |
remote_bool |
false |
author2 |
Rodgers, A |
author2Str |
Rodgers, A |
ppnlink |
129095109 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1002/2016GL069624 |
up_date |
2024-07-04T01:53:40.248Z |
_version_ |
1803611558639566848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1979874964</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223170642.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2016GL069624</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1979874964</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1979874964</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p953-4cb63ee154dd89b0974560681c83434fbb31a5b0c9051575b5d52c28750eb2870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0026932820160000043001306883waveforminversionofacousticwavesforexplosionyielde</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, K</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Waveform inversion of acoustic waves for explosion yield estimation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a new waveform inversion technique to estimate the energy of near‐surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source‐receiver distance. In this study, three‐dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<∼30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications. Yield estimation of a near‐surface explosion using acoustic waves Full waveform inversion of acoustic signals incorporating 3‐D numerical modelings Full 3‐D simulation of acoustic waves taking into account topographic and atmospheric propagation effects</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Published 2016. This article is a US Government work and is in the public domain in the United States of America.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">waveform inversion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infrasound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">explosion yield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">explosion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3‐D modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waveform analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topography</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodgers, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geophysical research letters</subfield><subfield code="d">Washington, DC : Union, 1974</subfield><subfield code="g">43(2016), 13, Seite 6883-6890</subfield><subfield code="w">(DE-627)129095109</subfield><subfield code="w">(DE-600)7403-2</subfield><subfield code="w">(DE-576)01443122X</subfield><subfield code="x">0094-8276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:13</subfield><subfield code="g">pages:6883-6890</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2016GL069624</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2016GL069624/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1806548601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2016</subfield><subfield code="e">13</subfield><subfield code="h">6883-6890</subfield></datafield></record></collection>
|
score |
7.399703 |