Container relocation problem with time windows for container departure
The blocks relocation problem is a classic combinatorial optimisation problem that occurs in daily operations for facilities that use block stacking systems. In the block stacking method, blocks can be stored on top of each other in order to utilise the limited surface of a storage area. When there...
Ausführliche Beschreibung
Autor*in: |
Ku, Dusan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © Elsevier B.V. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: European journal of operational research - Amsterdam : Elsevier, 1977, 252(2016), 3, Seite 1031-1039 |
---|---|
Übergeordnetes Werk: |
volume:252 ; year:2016 ; number:3 ; pages:1031-1039 |
Links: |
---|
DOI / URN: |
10.1016/j.ejor.2016.01.055 |
---|
Katalog-ID: |
OLC1980125880 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1980125880 | ||
003 | DE-627 | ||
005 | 20230714204621.0 | ||
007 | tu | ||
008 | 160816s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ejor.2016.01.055 |2 doi | |
028 | 5 | 2 | |a PQ20160815 |
035 | |a (DE-627)OLC1980125880 | ||
035 | |a (DE-599)GBVOLC1980125880 | ||
035 | |a (PRQ)c2216-d7b6f38f1c972bf277222d7e8f71e1a47d68d58f67d5d66bc1ed5e30ff0a99370 | ||
035 | |a (KEY)0068880020160000252000301031containerrelocationproblemwithtimewindowsforcontai | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 050 |q DNB |
082 | 0 | 4 | |a 650 |q AVZ |
100 | 1 | |a Ku, Dusan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Container relocation problem with time windows for container departure |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The blocks relocation problem is a classic combinatorial optimisation problem that occurs in daily operations for facilities that use block stacking systems. In the block stacking method, blocks can be stored on top of each other in order to utilise the limited surface of a storage area. When there is a predetermined pickup order among the blocks, this stacking method inevitably leads to the reshuffling moves for blocks stored above the target block and the minimisation of such unproductive reshuffling moves is of a primary concern to industry practitioners. A container terminal is a typical place where this problem arises, thus the problem being also referred to as the container relocation problem. In this study, we consider departure time windows for containers, which are usually revealed by the truck appointment system in port container terminals. We propose a stochastic dynamic programming model to calculate the minimum expected number of reshuffles for a stack of containers which all have departure time windows. The model is solved with a search-based algorithm in a tree search space, and an abstraction heuristic is proposed to improve the time performance. To overcome the computational limitation of exact methods, we develop a heuristic called the expected reshuffling index (ERI) and evaluate its performance. | ||
540 | |a Nutzungsrecht: © Elsevier B.V. | ||
650 | 4 | |a Heuristic | |
650 | 4 | |a Studies | |
650 | 4 | |a Stochastic models | |
650 | 4 | |a Relocation | |
650 | 4 | |a Optimization algorithms | |
650 | 4 | |a Dynamic programming | |
700 | 1 | |a Arthanari, Tiru S |4 oth | |
773 | 0 | 8 | |i Enthalten in |t European journal of operational research |d Amsterdam : Elsevier, 1977 |g 252(2016), 3, Seite 1031-1039 |w (DE-627)129611131 |w (DE-600)243003-4 |w (DE-576)015106594 |x 0377-2217 |7 nnns |
773 | 1 | 8 | |g volume:252 |g year:2016 |g number:3 |g pages:1031-1039 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.ejor.2016.01.055 |3 Volltext |
856 | 4 | 2 | |u http://www.sciencedirect.com/science/article/pii/S0377221716001016 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1777966305 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_4126 | ||
951 | |a AR | ||
952 | |d 252 |j 2016 |e 3 |h 1031-1039 |
author_variant |
d k dk |
---|---|
matchkey_str |
article:03772217:2016----::otierlctopolmihieidwfr |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1016/j.ejor.2016.01.055 doi PQ20160815 (DE-627)OLC1980125880 (DE-599)GBVOLC1980125880 (PRQ)c2216-d7b6f38f1c972bf277222d7e8f71e1a47d68d58f67d5d66bc1ed5e30ff0a99370 (KEY)0068880020160000252000301031containerrelocationproblemwithtimewindowsforcontai DE-627 ger DE-627 rakwb eng 050 DNB 650 AVZ Ku, Dusan verfasserin aut Container relocation problem with time windows for container departure 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The blocks relocation problem is a classic combinatorial optimisation problem that occurs in daily operations for facilities that use block stacking systems. In the block stacking method, blocks can be stored on top of each other in order to utilise the limited surface of a storage area. When there is a predetermined pickup order among the blocks, this stacking method inevitably leads to the reshuffling moves for blocks stored above the target block and the minimisation of such unproductive reshuffling moves is of a primary concern to industry practitioners. A container terminal is a typical place where this problem arises, thus the problem being also referred to as the container relocation problem. In this study, we consider departure time windows for containers, which are usually revealed by the truck appointment system in port container terminals. We propose a stochastic dynamic programming model to calculate the minimum expected number of reshuffles for a stack of containers which all have departure time windows. The model is solved with a search-based algorithm in a tree search space, and an abstraction heuristic is proposed to improve the time performance. To overcome the computational limitation of exact methods, we develop a heuristic called the expected reshuffling index (ERI) and evaluate its performance. Nutzungsrecht: © Elsevier B.V. Heuristic Studies Stochastic models Relocation Optimization algorithms Dynamic programming Arthanari, Tiru S oth Enthalten in European journal of operational research Amsterdam : Elsevier, 1977 252(2016), 3, Seite 1031-1039 (DE-627)129611131 (DE-600)243003-4 (DE-576)015106594 0377-2217 nnns volume:252 year:2016 number:3 pages:1031-1039 http://dx.doi.org/10.1016/j.ejor.2016.01.055 Volltext http://www.sciencedirect.com/science/article/pii/S0377221716001016 http://search.proquest.com/docview/1777966305 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_30 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4126 AR 252 2016 3 1031-1039 |
spelling |
10.1016/j.ejor.2016.01.055 doi PQ20160815 (DE-627)OLC1980125880 (DE-599)GBVOLC1980125880 (PRQ)c2216-d7b6f38f1c972bf277222d7e8f71e1a47d68d58f67d5d66bc1ed5e30ff0a99370 (KEY)0068880020160000252000301031containerrelocationproblemwithtimewindowsforcontai DE-627 ger DE-627 rakwb eng 050 DNB 650 AVZ Ku, Dusan verfasserin aut Container relocation problem with time windows for container departure 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The blocks relocation problem is a classic combinatorial optimisation problem that occurs in daily operations for facilities that use block stacking systems. In the block stacking method, blocks can be stored on top of each other in order to utilise the limited surface of a storage area. When there is a predetermined pickup order among the blocks, this stacking method inevitably leads to the reshuffling moves for blocks stored above the target block and the minimisation of such unproductive reshuffling moves is of a primary concern to industry practitioners. A container terminal is a typical place where this problem arises, thus the problem being also referred to as the container relocation problem. In this study, we consider departure time windows for containers, which are usually revealed by the truck appointment system in port container terminals. We propose a stochastic dynamic programming model to calculate the minimum expected number of reshuffles for a stack of containers which all have departure time windows. The model is solved with a search-based algorithm in a tree search space, and an abstraction heuristic is proposed to improve the time performance. To overcome the computational limitation of exact methods, we develop a heuristic called the expected reshuffling index (ERI) and evaluate its performance. Nutzungsrecht: © Elsevier B.V. Heuristic Studies Stochastic models Relocation Optimization algorithms Dynamic programming Arthanari, Tiru S oth Enthalten in European journal of operational research Amsterdam : Elsevier, 1977 252(2016), 3, Seite 1031-1039 (DE-627)129611131 (DE-600)243003-4 (DE-576)015106594 0377-2217 nnns volume:252 year:2016 number:3 pages:1031-1039 http://dx.doi.org/10.1016/j.ejor.2016.01.055 Volltext http://www.sciencedirect.com/science/article/pii/S0377221716001016 http://search.proquest.com/docview/1777966305 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_30 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4126 AR 252 2016 3 1031-1039 |
allfields_unstemmed |
10.1016/j.ejor.2016.01.055 doi PQ20160815 (DE-627)OLC1980125880 (DE-599)GBVOLC1980125880 (PRQ)c2216-d7b6f38f1c972bf277222d7e8f71e1a47d68d58f67d5d66bc1ed5e30ff0a99370 (KEY)0068880020160000252000301031containerrelocationproblemwithtimewindowsforcontai DE-627 ger DE-627 rakwb eng 050 DNB 650 AVZ Ku, Dusan verfasserin aut Container relocation problem with time windows for container departure 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The blocks relocation problem is a classic combinatorial optimisation problem that occurs in daily operations for facilities that use block stacking systems. In the block stacking method, blocks can be stored on top of each other in order to utilise the limited surface of a storage area. When there is a predetermined pickup order among the blocks, this stacking method inevitably leads to the reshuffling moves for blocks stored above the target block and the minimisation of such unproductive reshuffling moves is of a primary concern to industry practitioners. A container terminal is a typical place where this problem arises, thus the problem being also referred to as the container relocation problem. In this study, we consider departure time windows for containers, which are usually revealed by the truck appointment system in port container terminals. We propose a stochastic dynamic programming model to calculate the minimum expected number of reshuffles for a stack of containers which all have departure time windows. The model is solved with a search-based algorithm in a tree search space, and an abstraction heuristic is proposed to improve the time performance. To overcome the computational limitation of exact methods, we develop a heuristic called the expected reshuffling index (ERI) and evaluate its performance. Nutzungsrecht: © Elsevier B.V. Heuristic Studies Stochastic models Relocation Optimization algorithms Dynamic programming Arthanari, Tiru S oth Enthalten in European journal of operational research Amsterdam : Elsevier, 1977 252(2016), 3, Seite 1031-1039 (DE-627)129611131 (DE-600)243003-4 (DE-576)015106594 0377-2217 nnns volume:252 year:2016 number:3 pages:1031-1039 http://dx.doi.org/10.1016/j.ejor.2016.01.055 Volltext http://www.sciencedirect.com/science/article/pii/S0377221716001016 http://search.proquest.com/docview/1777966305 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_30 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4126 AR 252 2016 3 1031-1039 |
allfieldsGer |
10.1016/j.ejor.2016.01.055 doi PQ20160815 (DE-627)OLC1980125880 (DE-599)GBVOLC1980125880 (PRQ)c2216-d7b6f38f1c972bf277222d7e8f71e1a47d68d58f67d5d66bc1ed5e30ff0a99370 (KEY)0068880020160000252000301031containerrelocationproblemwithtimewindowsforcontai DE-627 ger DE-627 rakwb eng 050 DNB 650 AVZ Ku, Dusan verfasserin aut Container relocation problem with time windows for container departure 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The blocks relocation problem is a classic combinatorial optimisation problem that occurs in daily operations for facilities that use block stacking systems. In the block stacking method, blocks can be stored on top of each other in order to utilise the limited surface of a storage area. When there is a predetermined pickup order among the blocks, this stacking method inevitably leads to the reshuffling moves for blocks stored above the target block and the minimisation of such unproductive reshuffling moves is of a primary concern to industry practitioners. A container terminal is a typical place where this problem arises, thus the problem being also referred to as the container relocation problem. In this study, we consider departure time windows for containers, which are usually revealed by the truck appointment system in port container terminals. We propose a stochastic dynamic programming model to calculate the minimum expected number of reshuffles for a stack of containers which all have departure time windows. The model is solved with a search-based algorithm in a tree search space, and an abstraction heuristic is proposed to improve the time performance. To overcome the computational limitation of exact methods, we develop a heuristic called the expected reshuffling index (ERI) and evaluate its performance. Nutzungsrecht: © Elsevier B.V. Heuristic Studies Stochastic models Relocation Optimization algorithms Dynamic programming Arthanari, Tiru S oth Enthalten in European journal of operational research Amsterdam : Elsevier, 1977 252(2016), 3, Seite 1031-1039 (DE-627)129611131 (DE-600)243003-4 (DE-576)015106594 0377-2217 nnns volume:252 year:2016 number:3 pages:1031-1039 http://dx.doi.org/10.1016/j.ejor.2016.01.055 Volltext http://www.sciencedirect.com/science/article/pii/S0377221716001016 http://search.proquest.com/docview/1777966305 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_30 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4126 AR 252 2016 3 1031-1039 |
allfieldsSound |
10.1016/j.ejor.2016.01.055 doi PQ20160815 (DE-627)OLC1980125880 (DE-599)GBVOLC1980125880 (PRQ)c2216-d7b6f38f1c972bf277222d7e8f71e1a47d68d58f67d5d66bc1ed5e30ff0a99370 (KEY)0068880020160000252000301031containerrelocationproblemwithtimewindowsforcontai DE-627 ger DE-627 rakwb eng 050 DNB 650 AVZ Ku, Dusan verfasserin aut Container relocation problem with time windows for container departure 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The blocks relocation problem is a classic combinatorial optimisation problem that occurs in daily operations for facilities that use block stacking systems. In the block stacking method, blocks can be stored on top of each other in order to utilise the limited surface of a storage area. When there is a predetermined pickup order among the blocks, this stacking method inevitably leads to the reshuffling moves for blocks stored above the target block and the minimisation of such unproductive reshuffling moves is of a primary concern to industry practitioners. A container terminal is a typical place where this problem arises, thus the problem being also referred to as the container relocation problem. In this study, we consider departure time windows for containers, which are usually revealed by the truck appointment system in port container terminals. We propose a stochastic dynamic programming model to calculate the minimum expected number of reshuffles for a stack of containers which all have departure time windows. The model is solved with a search-based algorithm in a tree search space, and an abstraction heuristic is proposed to improve the time performance. To overcome the computational limitation of exact methods, we develop a heuristic called the expected reshuffling index (ERI) and evaluate its performance. Nutzungsrecht: © Elsevier B.V. Heuristic Studies Stochastic models Relocation Optimization algorithms Dynamic programming Arthanari, Tiru S oth Enthalten in European journal of operational research Amsterdam : Elsevier, 1977 252(2016), 3, Seite 1031-1039 (DE-627)129611131 (DE-600)243003-4 (DE-576)015106594 0377-2217 nnns volume:252 year:2016 number:3 pages:1031-1039 http://dx.doi.org/10.1016/j.ejor.2016.01.055 Volltext http://www.sciencedirect.com/science/article/pii/S0377221716001016 http://search.proquest.com/docview/1777966305 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_30 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4126 AR 252 2016 3 1031-1039 |
language |
English |
source |
Enthalten in European journal of operational research 252(2016), 3, Seite 1031-1039 volume:252 year:2016 number:3 pages:1031-1039 |
sourceStr |
Enthalten in European journal of operational research 252(2016), 3, Seite 1031-1039 volume:252 year:2016 number:3 pages:1031-1039 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Heuristic Studies Stochastic models Relocation Optimization algorithms Dynamic programming |
dewey-raw |
050 |
isfreeaccess_bool |
false |
container_title |
European journal of operational research |
authorswithroles_txt_mv |
Ku, Dusan @@aut@@ Arthanari, Tiru S @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129611131 |
dewey-sort |
250 |
id |
OLC1980125880 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980125880</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714204621.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ejor.2016.01.055</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980125880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980125880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2216-d7b6f38f1c972bf277222d7e8f71e1a47d68d58f67d5d66bc1ed5e30ff0a99370</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0068880020160000252000301031containerrelocationproblemwithtimewindowsforcontai</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ku, Dusan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Container relocation problem with time windows for container departure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The blocks relocation problem is a classic combinatorial optimisation problem that occurs in daily operations for facilities that use block stacking systems. In the block stacking method, blocks can be stored on top of each other in order to utilise the limited surface of a storage area. When there is a predetermined pickup order among the blocks, this stacking method inevitably leads to the reshuffling moves for blocks stored above the target block and the minimisation of such unproductive reshuffling moves is of a primary concern to industry practitioners. A container terminal is a typical place where this problem arises, thus the problem being also referred to as the container relocation problem. In this study, we consider departure time windows for containers, which are usually revealed by the truck appointment system in port container terminals. We propose a stochastic dynamic programming model to calculate the minimum expected number of reshuffles for a stack of containers which all have departure time windows. The model is solved with a search-based algorithm in a tree search space, and an abstraction heuristic is proposed to improve the time performance. To overcome the computational limitation of exact methods, we develop a heuristic called the expected reshuffling index (ERI) and evaluate its performance.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Elsevier B.V.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relocation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic programming</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arthanari, Tiru S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European journal of operational research</subfield><subfield code="d">Amsterdam : Elsevier, 1977</subfield><subfield code="g">252(2016), 3, Seite 1031-1039</subfield><subfield code="w">(DE-627)129611131</subfield><subfield code="w">(DE-600)243003-4</subfield><subfield code="w">(DE-576)015106594</subfield><subfield code="x">0377-2217</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:252</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1031-1039</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.ejor.2016.01.055</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0377221716001016</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1777966305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">252</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="h">1031-1039</subfield></datafield></record></collection>
|
author |
Ku, Dusan |
spellingShingle |
Ku, Dusan ddc 050 ddc 650 misc Heuristic misc Studies misc Stochastic models misc Relocation misc Optimization algorithms misc Dynamic programming Container relocation problem with time windows for container departure |
authorStr |
Ku, Dusan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129611131 |
format |
Article |
dewey-ones |
050 - General serial publications 650 - Management & auxiliary services |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0377-2217 |
topic_title |
050 DNB 650 AVZ Container relocation problem with time windows for container departure Heuristic Studies Stochastic models Relocation Optimization algorithms Dynamic programming |
topic |
ddc 050 ddc 650 misc Heuristic misc Studies misc Stochastic models misc Relocation misc Optimization algorithms misc Dynamic programming |
topic_unstemmed |
ddc 050 ddc 650 misc Heuristic misc Studies misc Stochastic models misc Relocation misc Optimization algorithms misc Dynamic programming |
topic_browse |
ddc 050 ddc 650 misc Heuristic misc Studies misc Stochastic models misc Relocation misc Optimization algorithms misc Dynamic programming |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t s a ts tsa |
hierarchy_parent_title |
European journal of operational research |
hierarchy_parent_id |
129611131 |
dewey-tens |
050 - Magazines, journals & serials 650 - Management & public relations |
hierarchy_top_title |
European journal of operational research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129611131 (DE-600)243003-4 (DE-576)015106594 |
title |
Container relocation problem with time windows for container departure |
ctrlnum |
(DE-627)OLC1980125880 (DE-599)GBVOLC1980125880 (PRQ)c2216-d7b6f38f1c972bf277222d7e8f71e1a47d68d58f67d5d66bc1ed5e30ff0a99370 (KEY)0068880020160000252000301031containerrelocationproblemwithtimewindowsforcontai |
title_full |
Container relocation problem with time windows for container departure |
author_sort |
Ku, Dusan |
journal |
European journal of operational research |
journalStr |
European journal of operational research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1031 |
author_browse |
Ku, Dusan |
container_volume |
252 |
class |
050 DNB 650 AVZ |
format_se |
Aufsätze |
author-letter |
Ku, Dusan |
doi_str_mv |
10.1016/j.ejor.2016.01.055 |
dewey-full |
050 650 |
title_sort |
container relocation problem with time windows for container departure |
title_auth |
Container relocation problem with time windows for container departure |
abstract |
The blocks relocation problem is a classic combinatorial optimisation problem that occurs in daily operations for facilities that use block stacking systems. In the block stacking method, blocks can be stored on top of each other in order to utilise the limited surface of a storage area. When there is a predetermined pickup order among the blocks, this stacking method inevitably leads to the reshuffling moves for blocks stored above the target block and the minimisation of such unproductive reshuffling moves is of a primary concern to industry practitioners. A container terminal is a typical place where this problem arises, thus the problem being also referred to as the container relocation problem. In this study, we consider departure time windows for containers, which are usually revealed by the truck appointment system in port container terminals. We propose a stochastic dynamic programming model to calculate the minimum expected number of reshuffles for a stack of containers which all have departure time windows. The model is solved with a search-based algorithm in a tree search space, and an abstraction heuristic is proposed to improve the time performance. To overcome the computational limitation of exact methods, we develop a heuristic called the expected reshuffling index (ERI) and evaluate its performance. |
abstractGer |
The blocks relocation problem is a classic combinatorial optimisation problem that occurs in daily operations for facilities that use block stacking systems. In the block stacking method, blocks can be stored on top of each other in order to utilise the limited surface of a storage area. When there is a predetermined pickup order among the blocks, this stacking method inevitably leads to the reshuffling moves for blocks stored above the target block and the minimisation of such unproductive reshuffling moves is of a primary concern to industry practitioners. A container terminal is a typical place where this problem arises, thus the problem being also referred to as the container relocation problem. In this study, we consider departure time windows for containers, which are usually revealed by the truck appointment system in port container terminals. We propose a stochastic dynamic programming model to calculate the minimum expected number of reshuffles for a stack of containers which all have departure time windows. The model is solved with a search-based algorithm in a tree search space, and an abstraction heuristic is proposed to improve the time performance. To overcome the computational limitation of exact methods, we develop a heuristic called the expected reshuffling index (ERI) and evaluate its performance. |
abstract_unstemmed |
The blocks relocation problem is a classic combinatorial optimisation problem that occurs in daily operations for facilities that use block stacking systems. In the block stacking method, blocks can be stored on top of each other in order to utilise the limited surface of a storage area. When there is a predetermined pickup order among the blocks, this stacking method inevitably leads to the reshuffling moves for blocks stored above the target block and the minimisation of such unproductive reshuffling moves is of a primary concern to industry practitioners. A container terminal is a typical place where this problem arises, thus the problem being also referred to as the container relocation problem. In this study, we consider departure time windows for containers, which are usually revealed by the truck appointment system in port container terminals. We propose a stochastic dynamic programming model to calculate the minimum expected number of reshuffles for a stack of containers which all have departure time windows. The model is solved with a search-based algorithm in a tree search space, and an abstraction heuristic is proposed to improve the time performance. To overcome the computational limitation of exact methods, we develop a heuristic called the expected reshuffling index (ERI) and evaluate its performance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_21 GBV_ILN_26 GBV_ILN_30 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4126 |
container_issue |
3 |
title_short |
Container relocation problem with time windows for container departure |
url |
http://dx.doi.org/10.1016/j.ejor.2016.01.055 http://www.sciencedirect.com/science/article/pii/S0377221716001016 http://search.proquest.com/docview/1777966305 |
remote_bool |
false |
author2 |
Arthanari, Tiru S |
author2Str |
Arthanari, Tiru S |
ppnlink |
129611131 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.ejor.2016.01.055 |
up_date |
2024-07-04T02:26:47.981Z |
_version_ |
1803613642930782208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980125880</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714204621.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ejor.2016.01.055</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980125880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980125880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2216-d7b6f38f1c972bf277222d7e8f71e1a47d68d58f67d5d66bc1ed5e30ff0a99370</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0068880020160000252000301031containerrelocationproblemwithtimewindowsforcontai</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ku, Dusan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Container relocation problem with time windows for container departure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The blocks relocation problem is a classic combinatorial optimisation problem that occurs in daily operations for facilities that use block stacking systems. In the block stacking method, blocks can be stored on top of each other in order to utilise the limited surface of a storage area. When there is a predetermined pickup order among the blocks, this stacking method inevitably leads to the reshuffling moves for blocks stored above the target block and the minimisation of such unproductive reshuffling moves is of a primary concern to industry practitioners. A container terminal is a typical place where this problem arises, thus the problem being also referred to as the container relocation problem. In this study, we consider departure time windows for containers, which are usually revealed by the truck appointment system in port container terminals. We propose a stochastic dynamic programming model to calculate the minimum expected number of reshuffles for a stack of containers which all have departure time windows. The model is solved with a search-based algorithm in a tree search space, and an abstraction heuristic is proposed to improve the time performance. To overcome the computational limitation of exact methods, we develop a heuristic called the expected reshuffling index (ERI) and evaluate its performance.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Elsevier B.V.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relocation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic programming</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arthanari, Tiru S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European journal of operational research</subfield><subfield code="d">Amsterdam : Elsevier, 1977</subfield><subfield code="g">252(2016), 3, Seite 1031-1039</subfield><subfield code="w">(DE-627)129611131</subfield><subfield code="w">(DE-600)243003-4</subfield><subfield code="w">(DE-576)015106594</subfield><subfield code="x">0377-2217</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:252</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1031-1039</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.ejor.2016.01.055</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0377221716001016</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1777966305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">252</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="h">1031-1039</subfield></datafield></record></collection>
|
score |
7.4018173 |