Incorporating social information to perform diverse replier recommendation in question and answer communities
Social information is contextual information that has made significant contributions to intelligent information systems. However, social information has not been fully used, especially in question and answer (Q&A) systems. This study describes a contextual recommendation method in which diverse...
Ausführliche Beschreibung
Autor*in: |
Yingchun Liu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of information science - London [u.a.] : Sage Publ., 1979, 42(2016), 4, Seite 449 |
---|---|
Übergeordnetes Werk: |
volume:42 ; year:2016 ; number:4 ; pages:449 |
Links: |
---|
Katalog-ID: |
OLC1980184860 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1980184860 | ||
003 | DE-627 | ||
005 | 20230714204736.0 | ||
007 | tu | ||
008 | 160816s2016 xx ||||| 00| ||eng c | ||
028 | 5 | 2 | |a PQ20160815 |
035 | |a (DE-627)OLC1980184860 | ||
035 | |a (DE-599)GBVOLC1980184860 | ||
035 | |a (PRQ)p1226-e799c7578889b944f2a36fcbc135819702b66f16a1769088afc7e59796c001bd0 | ||
035 | |a (KEY)0077776520160000042000400449incorporatingsocialinformationtoperformdiverserepl | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q DNB |
084 | |a LING |2 fid | ||
100 | 0 | |a Yingchun Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Incorporating social information to perform diverse replier recommendation in question and answer communities |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Social information is contextual information that has made significant contributions to intelligent information systems. However, social information has not been fully used, especially in question and answer (Q&A) systems. This study describes a contextual recommendation method in which diverse repliers are recommended for new questions using incorporated social information in Q&A communities. We have mined multiple kinds of social information by analysing social behaviours and relations found in a Q&A community and proposed an algorithm to incorporate different social information in various social contexts to perform diverse repliers' recommendations. Recommendation diversity and social contexts have been considered and the properly used social information has been emphasized in this study. We conducted experiments using a dataset collected from the Stack Overflow website. The results demonstrate that different social information makes different contributions in promoting question answering, and incorporating social information properly could improve recommendation diversity and performance, which would then result in the promotion of satisfactory question solving. | ||
650 | 4 | |a Recommender systems | |
650 | 4 | |a Performance evaluation | |
650 | 4 | |a Questions | |
650 | 4 | |a Intelligent systems | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Studies | |
650 | 4 | |a Information science | |
700 | 0 | |a Zhen Lin |4 oth | |
700 | 0 | |a Xiaolin Zheng |4 oth | |
700 | 0 | |a Deren Chen |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of information science |d London [u.a.] : Sage Publ., 1979 |g 42(2016), 4, Seite 449 |w (DE-627)13006064X |w (DE-600)439125-1 |w (DE-576)015596990 |x 0165-5515 |7 nnns |
773 | 1 | 8 | |g volume:42 |g year:2016 |g number:4 |g pages:449 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1806074690 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-LING | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OPC-BBI | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4334 | ||
951 | |a AR | ||
952 | |d 42 |j 2016 |e 4 |h 449 |
author_variant |
y l yl |
---|---|
matchkey_str |
article:01655515:2016----::noprtnscaifrainoefrdvreelercmedtoiqe |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
PQ20160815 (DE-627)OLC1980184860 (DE-599)GBVOLC1980184860 (PRQ)p1226-e799c7578889b944f2a36fcbc135819702b66f16a1769088afc7e59796c001bd0 (KEY)0077776520160000042000400449incorporatingsocialinformationtoperformdiverserepl DE-627 ger DE-627 rakwb eng 070 004 DNB LING fid Yingchun Liu verfasserin aut Incorporating social information to perform diverse replier recommendation in question and answer communities 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Social information is contextual information that has made significant contributions to intelligent information systems. However, social information has not been fully used, especially in question and answer (Q&A) systems. This study describes a contextual recommendation method in which diverse repliers are recommended for new questions using incorporated social information in Q&A communities. We have mined multiple kinds of social information by analysing social behaviours and relations found in a Q&A community and proposed an algorithm to incorporate different social information in various social contexts to perform diverse repliers' recommendations. Recommendation diversity and social contexts have been considered and the properly used social information has been emphasized in this study. We conducted experiments using a dataset collected from the Stack Overflow website. The results demonstrate that different social information makes different contributions in promoting question answering, and incorporating social information properly could improve recommendation diversity and performance, which would then result in the promotion of satisfactory question solving. Recommender systems Performance evaluation Questions Intelligent systems Algorithms Studies Information science Zhen Lin oth Xiaolin Zheng oth Deren Chen oth Enthalten in Journal of information science London [u.a.] : Sage Publ., 1979 42(2016), 4, Seite 449 (DE-627)13006064X (DE-600)439125-1 (DE-576)015596990 0165-5515 nnns volume:42 year:2016 number:4 pages:449 http://search.proquest.com/docview/1806074690 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_11 GBV_ILN_70 GBV_ILN_4334 AR 42 2016 4 449 |
spelling |
PQ20160815 (DE-627)OLC1980184860 (DE-599)GBVOLC1980184860 (PRQ)p1226-e799c7578889b944f2a36fcbc135819702b66f16a1769088afc7e59796c001bd0 (KEY)0077776520160000042000400449incorporatingsocialinformationtoperformdiverserepl DE-627 ger DE-627 rakwb eng 070 004 DNB LING fid Yingchun Liu verfasserin aut Incorporating social information to perform diverse replier recommendation in question and answer communities 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Social information is contextual information that has made significant contributions to intelligent information systems. However, social information has not been fully used, especially in question and answer (Q&A) systems. This study describes a contextual recommendation method in which diverse repliers are recommended for new questions using incorporated social information in Q&A communities. We have mined multiple kinds of social information by analysing social behaviours and relations found in a Q&A community and proposed an algorithm to incorporate different social information in various social contexts to perform diverse repliers' recommendations. Recommendation diversity and social contexts have been considered and the properly used social information has been emphasized in this study. We conducted experiments using a dataset collected from the Stack Overflow website. The results demonstrate that different social information makes different contributions in promoting question answering, and incorporating social information properly could improve recommendation diversity and performance, which would then result in the promotion of satisfactory question solving. Recommender systems Performance evaluation Questions Intelligent systems Algorithms Studies Information science Zhen Lin oth Xiaolin Zheng oth Deren Chen oth Enthalten in Journal of information science London [u.a.] : Sage Publ., 1979 42(2016), 4, Seite 449 (DE-627)13006064X (DE-600)439125-1 (DE-576)015596990 0165-5515 nnns volume:42 year:2016 number:4 pages:449 http://search.proquest.com/docview/1806074690 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_11 GBV_ILN_70 GBV_ILN_4334 AR 42 2016 4 449 |
allfields_unstemmed |
PQ20160815 (DE-627)OLC1980184860 (DE-599)GBVOLC1980184860 (PRQ)p1226-e799c7578889b944f2a36fcbc135819702b66f16a1769088afc7e59796c001bd0 (KEY)0077776520160000042000400449incorporatingsocialinformationtoperformdiverserepl DE-627 ger DE-627 rakwb eng 070 004 DNB LING fid Yingchun Liu verfasserin aut Incorporating social information to perform diverse replier recommendation in question and answer communities 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Social information is contextual information that has made significant contributions to intelligent information systems. However, social information has not been fully used, especially in question and answer (Q&A) systems. This study describes a contextual recommendation method in which diverse repliers are recommended for new questions using incorporated social information in Q&A communities. We have mined multiple kinds of social information by analysing social behaviours and relations found in a Q&A community and proposed an algorithm to incorporate different social information in various social contexts to perform diverse repliers' recommendations. Recommendation diversity and social contexts have been considered and the properly used social information has been emphasized in this study. We conducted experiments using a dataset collected from the Stack Overflow website. The results demonstrate that different social information makes different contributions in promoting question answering, and incorporating social information properly could improve recommendation diversity and performance, which would then result in the promotion of satisfactory question solving. Recommender systems Performance evaluation Questions Intelligent systems Algorithms Studies Information science Zhen Lin oth Xiaolin Zheng oth Deren Chen oth Enthalten in Journal of information science London [u.a.] : Sage Publ., 1979 42(2016), 4, Seite 449 (DE-627)13006064X (DE-600)439125-1 (DE-576)015596990 0165-5515 nnns volume:42 year:2016 number:4 pages:449 http://search.proquest.com/docview/1806074690 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_11 GBV_ILN_70 GBV_ILN_4334 AR 42 2016 4 449 |
allfieldsGer |
PQ20160815 (DE-627)OLC1980184860 (DE-599)GBVOLC1980184860 (PRQ)p1226-e799c7578889b944f2a36fcbc135819702b66f16a1769088afc7e59796c001bd0 (KEY)0077776520160000042000400449incorporatingsocialinformationtoperformdiverserepl DE-627 ger DE-627 rakwb eng 070 004 DNB LING fid Yingchun Liu verfasserin aut Incorporating social information to perform diverse replier recommendation in question and answer communities 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Social information is contextual information that has made significant contributions to intelligent information systems. However, social information has not been fully used, especially in question and answer (Q&A) systems. This study describes a contextual recommendation method in which diverse repliers are recommended for new questions using incorporated social information in Q&A communities. We have mined multiple kinds of social information by analysing social behaviours and relations found in a Q&A community and proposed an algorithm to incorporate different social information in various social contexts to perform diverse repliers' recommendations. Recommendation diversity and social contexts have been considered and the properly used social information has been emphasized in this study. We conducted experiments using a dataset collected from the Stack Overflow website. The results demonstrate that different social information makes different contributions in promoting question answering, and incorporating social information properly could improve recommendation diversity and performance, which would then result in the promotion of satisfactory question solving. Recommender systems Performance evaluation Questions Intelligent systems Algorithms Studies Information science Zhen Lin oth Xiaolin Zheng oth Deren Chen oth Enthalten in Journal of information science London [u.a.] : Sage Publ., 1979 42(2016), 4, Seite 449 (DE-627)13006064X (DE-600)439125-1 (DE-576)015596990 0165-5515 nnns volume:42 year:2016 number:4 pages:449 http://search.proquest.com/docview/1806074690 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_11 GBV_ILN_70 GBV_ILN_4334 AR 42 2016 4 449 |
allfieldsSound |
PQ20160815 (DE-627)OLC1980184860 (DE-599)GBVOLC1980184860 (PRQ)p1226-e799c7578889b944f2a36fcbc135819702b66f16a1769088afc7e59796c001bd0 (KEY)0077776520160000042000400449incorporatingsocialinformationtoperformdiverserepl DE-627 ger DE-627 rakwb eng 070 004 DNB LING fid Yingchun Liu verfasserin aut Incorporating social information to perform diverse replier recommendation in question and answer communities 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Social information is contextual information that has made significant contributions to intelligent information systems. However, social information has not been fully used, especially in question and answer (Q&A) systems. This study describes a contextual recommendation method in which diverse repliers are recommended for new questions using incorporated social information in Q&A communities. We have mined multiple kinds of social information by analysing social behaviours and relations found in a Q&A community and proposed an algorithm to incorporate different social information in various social contexts to perform diverse repliers' recommendations. Recommendation diversity and social contexts have been considered and the properly used social information has been emphasized in this study. We conducted experiments using a dataset collected from the Stack Overflow website. The results demonstrate that different social information makes different contributions in promoting question answering, and incorporating social information properly could improve recommendation diversity and performance, which would then result in the promotion of satisfactory question solving. Recommender systems Performance evaluation Questions Intelligent systems Algorithms Studies Information science Zhen Lin oth Xiaolin Zheng oth Deren Chen oth Enthalten in Journal of information science London [u.a.] : Sage Publ., 1979 42(2016), 4, Seite 449 (DE-627)13006064X (DE-600)439125-1 (DE-576)015596990 0165-5515 nnns volume:42 year:2016 number:4 pages:449 http://search.proquest.com/docview/1806074690 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_11 GBV_ILN_70 GBV_ILN_4334 AR 42 2016 4 449 |
language |
English |
source |
Enthalten in Journal of information science 42(2016), 4, Seite 449 volume:42 year:2016 number:4 pages:449 |
sourceStr |
Enthalten in Journal of information science 42(2016), 4, Seite 449 volume:42 year:2016 number:4 pages:449 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Recommender systems Performance evaluation Questions Intelligent systems Algorithms Studies Information science |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Journal of information science |
authorswithroles_txt_mv |
Yingchun Liu @@aut@@ Zhen Lin @@oth@@ Xiaolin Zheng @@oth@@ Deren Chen @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
13006064X |
dewey-sort |
270 |
id |
OLC1980184860 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980184860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714204736.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980184860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980184860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1226-e799c7578889b944f2a36fcbc135819702b66f16a1769088afc7e59796c001bd0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0077776520160000042000400449incorporatingsocialinformationtoperformdiverserepl</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yingchun Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Incorporating social information to perform diverse replier recommendation in question and answer communities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Social information is contextual information that has made significant contributions to intelligent information systems. However, social information has not been fully used, especially in question and answer (Q&A) systems. This study describes a contextual recommendation method in which diverse repliers are recommended for new questions using incorporated social information in Q&A communities. We have mined multiple kinds of social information by analysing social behaviours and relations found in a Q&A community and proposed an algorithm to incorporate different social information in various social contexts to perform diverse repliers' recommendations. Recommendation diversity and social contexts have been considered and the properly used social information has been emphasized in this study. We conducted experiments using a dataset collected from the Stack Overflow website. The results demonstrate that different social information makes different contributions in promoting question answering, and incorporating social information properly could improve recommendation diversity and performance, which would then result in the promotion of satisfactory question solving.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recommender systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance evaluation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Questions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligent systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhen Lin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaolin Zheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deren Chen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of information science</subfield><subfield code="d">London [u.a.] : Sage Publ., 1979</subfield><subfield code="g">42(2016), 4, Seite 449</subfield><subfield code="w">(DE-627)13006064X</subfield><subfield code="w">(DE-600)439125-1</subfield><subfield code="w">(DE-576)015596990</subfield><subfield code="x">0165-5515</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:449</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1806074690</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">449</subfield></datafield></record></collection>
|
author |
Yingchun Liu |
spellingShingle |
Yingchun Liu ddc 070 fid LING misc Recommender systems misc Performance evaluation misc Questions misc Intelligent systems misc Algorithms misc Studies misc Information science Incorporating social information to perform diverse replier recommendation in question and answer communities |
authorStr |
Yingchun Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)13006064X |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0165-5515 |
topic_title |
070 004 DNB LING fid Incorporating social information to perform diverse replier recommendation in question and answer communities Recommender systems Performance evaluation Questions Intelligent systems Algorithms Studies Information science |
topic |
ddc 070 fid LING misc Recommender systems misc Performance evaluation misc Questions misc Intelligent systems misc Algorithms misc Studies misc Information science |
topic_unstemmed |
ddc 070 fid LING misc Recommender systems misc Performance evaluation misc Questions misc Intelligent systems misc Algorithms misc Studies misc Information science |
topic_browse |
ddc 070 fid LING misc Recommender systems misc Performance evaluation misc Questions misc Intelligent systems misc Algorithms misc Studies misc Information science |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
z l zl x z xz d c dc |
hierarchy_parent_title |
Journal of information science |
hierarchy_parent_id |
13006064X |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of information science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)13006064X (DE-600)439125-1 (DE-576)015596990 |
title |
Incorporating social information to perform diverse replier recommendation in question and answer communities |
ctrlnum |
(DE-627)OLC1980184860 (DE-599)GBVOLC1980184860 (PRQ)p1226-e799c7578889b944f2a36fcbc135819702b66f16a1769088afc7e59796c001bd0 (KEY)0077776520160000042000400449incorporatingsocialinformationtoperformdiverserepl |
title_full |
Incorporating social information to perform diverse replier recommendation in question and answer communities |
author_sort |
Yingchun Liu |
journal |
Journal of information science |
journalStr |
Journal of information science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
449 |
author_browse |
Yingchun Liu |
container_volume |
42 |
class |
070 004 DNB LING fid |
format_se |
Aufsätze |
author-letter |
Yingchun Liu |
dewey-full |
070 004 |
title_sort |
incorporating social information to perform diverse replier recommendation in question and answer communities |
title_auth |
Incorporating social information to perform diverse replier recommendation in question and answer communities |
abstract |
Social information is contextual information that has made significant contributions to intelligent information systems. However, social information has not been fully used, especially in question and answer (Q&A) systems. This study describes a contextual recommendation method in which diverse repliers are recommended for new questions using incorporated social information in Q&A communities. We have mined multiple kinds of social information by analysing social behaviours and relations found in a Q&A community and proposed an algorithm to incorporate different social information in various social contexts to perform diverse repliers' recommendations. Recommendation diversity and social contexts have been considered and the properly used social information has been emphasized in this study. We conducted experiments using a dataset collected from the Stack Overflow website. The results demonstrate that different social information makes different contributions in promoting question answering, and incorporating social information properly could improve recommendation diversity and performance, which would then result in the promotion of satisfactory question solving. |
abstractGer |
Social information is contextual information that has made significant contributions to intelligent information systems. However, social information has not been fully used, especially in question and answer (Q&A) systems. This study describes a contextual recommendation method in which diverse repliers are recommended for new questions using incorporated social information in Q&A communities. We have mined multiple kinds of social information by analysing social behaviours and relations found in a Q&A community and proposed an algorithm to incorporate different social information in various social contexts to perform diverse repliers' recommendations. Recommendation diversity and social contexts have been considered and the properly used social information has been emphasized in this study. We conducted experiments using a dataset collected from the Stack Overflow website. The results demonstrate that different social information makes different contributions in promoting question answering, and incorporating social information properly could improve recommendation diversity and performance, which would then result in the promotion of satisfactory question solving. |
abstract_unstemmed |
Social information is contextual information that has made significant contributions to intelligent information systems. However, social information has not been fully used, especially in question and answer (Q&A) systems. This study describes a contextual recommendation method in which diverse repliers are recommended for new questions using incorporated social information in Q&A communities. We have mined multiple kinds of social information by analysing social behaviours and relations found in a Q&A community and proposed an algorithm to incorporate different social information in various social contexts to perform diverse repliers' recommendations. Recommendation diversity and social contexts have been considered and the properly used social information has been emphasized in this study. We conducted experiments using a dataset collected from the Stack Overflow website. The results demonstrate that different social information makes different contributions in promoting question answering, and incorporating social information properly could improve recommendation diversity and performance, which would then result in the promotion of satisfactory question solving. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_11 GBV_ILN_70 GBV_ILN_4334 |
container_issue |
4 |
title_short |
Incorporating social information to perform diverse replier recommendation in question and answer communities |
url |
http://search.proquest.com/docview/1806074690 |
remote_bool |
false |
author2 |
Zhen Lin Xiaolin Zheng Deren Chen |
author2Str |
Zhen Lin Xiaolin Zheng Deren Chen |
ppnlink |
13006064X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
up_date |
2024-07-04T02:34:54.722Z |
_version_ |
1803614153316761600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980184860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714204736.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980184860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980184860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1226-e799c7578889b944f2a36fcbc135819702b66f16a1769088afc7e59796c001bd0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0077776520160000042000400449incorporatingsocialinformationtoperformdiverserepl</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yingchun Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Incorporating social information to perform diverse replier recommendation in question and answer communities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Social information is contextual information that has made significant contributions to intelligent information systems. However, social information has not been fully used, especially in question and answer (Q&A) systems. This study describes a contextual recommendation method in which diverse repliers are recommended for new questions using incorporated social information in Q&A communities. We have mined multiple kinds of social information by analysing social behaviours and relations found in a Q&A community and proposed an algorithm to incorporate different social information in various social contexts to perform diverse repliers' recommendations. Recommendation diversity and social contexts have been considered and the properly used social information has been emphasized in this study. We conducted experiments using a dataset collected from the Stack Overflow website. The results demonstrate that different social information makes different contributions in promoting question answering, and incorporating social information properly could improve recommendation diversity and performance, which would then result in the promotion of satisfactory question solving.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recommender systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance evaluation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Questions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligent systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhen Lin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaolin Zheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deren Chen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of information science</subfield><subfield code="d">London [u.a.] : Sage Publ., 1979</subfield><subfield code="g">42(2016), 4, Seite 449</subfield><subfield code="w">(DE-627)13006064X</subfield><subfield code="w">(DE-600)439125-1</subfield><subfield code="w">(DE-576)015596990</subfield><subfield code="x">0165-5515</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:449</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1806074690</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">449</subfield></datafield></record></collection>
|
score |
7.399987 |