Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system
Adaptive Neuro-Fuzzy Inference System (ANFIS) opens a new gateway in understanding the complex behaviors and phenomena for different fields such as heat transfer in nanoparticles. The ANFIS method is a shortcut to find a nonlinear relation between input and output and results in valid outcomes, espe...
Ausführliche Beschreibung
Autor*in: |
Savari, Maryam [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Numerical heat transfer / A - Washington, DC : Taylor & Francis, 1989, 70(2016), 1, Seite 103-14 |
---|---|
Übergeordnetes Werk: |
volume:70 ; year:2016 ; number:1 ; pages:103-14 |
Links: |
---|
DOI / URN: |
10.1080/10407782.2016.1139974 |
---|
Katalog-ID: |
OLC1980211558 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1980211558 | ||
003 | DE-627 | ||
005 | 20230714204804.0 | ||
007 | tu | ||
008 | 160816s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/10407782.2016.1139974 |2 doi | |
028 | 5 | 2 | |a PQ20160815 |
035 | |a (DE-627)OLC1980211558 | ||
035 | |a (DE-599)GBVOLC1980211558 | ||
035 | |a (PRQ)c1549-2e97123d0961a16d46701a3c0f1fbd30aaf78681b7466efd867380ed21c8fdc00 | ||
035 | |a (KEY)0090205520160000070000100103hydrodynamicandthermalperformancepredictionoffunct | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 530 |q DNB |
100 | 1 | |a Savari, Maryam |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Adaptive Neuro-Fuzzy Inference System (ANFIS) opens a new gateway in understanding the complex behaviors and phenomena for different fields such as heat transfer in nanoparticles. The ANFIS method is a shortcut to find a nonlinear relation between input and output and results in valid outcomes, especially in engineering phenomena, which is used here for determining the convective heat transfer coefficient. Using the ANFIS, the critical parameters in heat transfer including convective heat transfer coefficient and pressure drop are determined. To realize this issue, the thermophysical properties of non-covalently and covalently functionalized multiwalled carbon nanotubes-based water nanofluid were investigated experimentally. The results of simulation and their comparison with the experimental results showed an excellent evidence on the validity of the model, which can be expanded for other conditions. The proposed method of ANFIS modeling may be applied to the optimization of carbon-based nanostructure-based water nanofluid in a circular tube with constant heat flux. | ||
540 | |a Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016 | ||
650 | 4 | |a Simulation | |
650 | 4 | |a Heat transfer | |
700 | 1 | |a Rashidi, Sajjad |4 oth | |
700 | 1 | |a Amiri, Ahmad |4 oth | |
700 | 1 | |a Shanbedi, Mehdi |4 oth | |
700 | 1 | |a Zeinali Heris, Saeed |4 oth | |
700 | 1 | |a Kazi, S. N |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Numerical heat transfer / A |d Washington, DC : Taylor & Francis, 1989 |g 70(2016), 1, Seite 103-14 |w (DE-627)130798940 |w (DE-600)1007779-0 |w (DE-576)023042214 |x 1040-7782 |7 nnns |
773 | 1 | 8 | |g volume:70 |g year:2016 |g number:1 |g pages:103-14 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/10407782.2016.1139974 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/10407782.2016.1139974 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1805785825 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 70 |j 2016 |e 1 |h 103-14 |
author_variant |
m s ms |
---|---|
matchkey_str |
article:10407782:2016----::yrdnmcntemlefracpeitoofntoaiemnbsdaennfududrhlmnrlweies |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1080/10407782.2016.1139974 doi PQ20160815 (DE-627)OLC1980211558 (DE-599)GBVOLC1980211558 (PRQ)c1549-2e97123d0961a16d46701a3c0f1fbd30aaf78681b7466efd867380ed21c8fdc00 (KEY)0090205520160000070000100103hydrodynamicandthermalperformancepredictionoffunct DE-627 ger DE-627 rakwb eng 620 530 DNB Savari, Maryam verfasserin aut Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Adaptive Neuro-Fuzzy Inference System (ANFIS) opens a new gateway in understanding the complex behaviors and phenomena for different fields such as heat transfer in nanoparticles. The ANFIS method is a shortcut to find a nonlinear relation between input and output and results in valid outcomes, especially in engineering phenomena, which is used here for determining the convective heat transfer coefficient. Using the ANFIS, the critical parameters in heat transfer including convective heat transfer coefficient and pressure drop are determined. To realize this issue, the thermophysical properties of non-covalently and covalently functionalized multiwalled carbon nanotubes-based water nanofluid were investigated experimentally. The results of simulation and their comparison with the experimental results showed an excellent evidence on the validity of the model, which can be expanded for other conditions. The proposed method of ANFIS modeling may be applied to the optimization of carbon-based nanostructure-based water nanofluid in a circular tube with constant heat flux. Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016 Simulation Heat transfer Rashidi, Sajjad oth Amiri, Ahmad oth Shanbedi, Mehdi oth Zeinali Heris, Saeed oth Kazi, S. N oth Enthalten in Numerical heat transfer / A Washington, DC : Taylor & Francis, 1989 70(2016), 1, Seite 103-14 (DE-627)130798940 (DE-600)1007779-0 (DE-576)023042214 1040-7782 nnns volume:70 year:2016 number:1 pages:103-14 http://dx.doi.org/10.1080/10407782.2016.1139974 Volltext http://www.tandfonline.com/doi/abs/10.1080/10407782.2016.1139974 http://search.proquest.com/docview/1805785825 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 70 2016 1 103-14 |
spelling |
10.1080/10407782.2016.1139974 doi PQ20160815 (DE-627)OLC1980211558 (DE-599)GBVOLC1980211558 (PRQ)c1549-2e97123d0961a16d46701a3c0f1fbd30aaf78681b7466efd867380ed21c8fdc00 (KEY)0090205520160000070000100103hydrodynamicandthermalperformancepredictionoffunct DE-627 ger DE-627 rakwb eng 620 530 DNB Savari, Maryam verfasserin aut Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Adaptive Neuro-Fuzzy Inference System (ANFIS) opens a new gateway in understanding the complex behaviors and phenomena for different fields such as heat transfer in nanoparticles. The ANFIS method is a shortcut to find a nonlinear relation between input and output and results in valid outcomes, especially in engineering phenomena, which is used here for determining the convective heat transfer coefficient. Using the ANFIS, the critical parameters in heat transfer including convective heat transfer coefficient and pressure drop are determined. To realize this issue, the thermophysical properties of non-covalently and covalently functionalized multiwalled carbon nanotubes-based water nanofluid were investigated experimentally. The results of simulation and their comparison with the experimental results showed an excellent evidence on the validity of the model, which can be expanded for other conditions. The proposed method of ANFIS modeling may be applied to the optimization of carbon-based nanostructure-based water nanofluid in a circular tube with constant heat flux. Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016 Simulation Heat transfer Rashidi, Sajjad oth Amiri, Ahmad oth Shanbedi, Mehdi oth Zeinali Heris, Saeed oth Kazi, S. N oth Enthalten in Numerical heat transfer / A Washington, DC : Taylor & Francis, 1989 70(2016), 1, Seite 103-14 (DE-627)130798940 (DE-600)1007779-0 (DE-576)023042214 1040-7782 nnns volume:70 year:2016 number:1 pages:103-14 http://dx.doi.org/10.1080/10407782.2016.1139974 Volltext http://www.tandfonline.com/doi/abs/10.1080/10407782.2016.1139974 http://search.proquest.com/docview/1805785825 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 70 2016 1 103-14 |
allfields_unstemmed |
10.1080/10407782.2016.1139974 doi PQ20160815 (DE-627)OLC1980211558 (DE-599)GBVOLC1980211558 (PRQ)c1549-2e97123d0961a16d46701a3c0f1fbd30aaf78681b7466efd867380ed21c8fdc00 (KEY)0090205520160000070000100103hydrodynamicandthermalperformancepredictionoffunct DE-627 ger DE-627 rakwb eng 620 530 DNB Savari, Maryam verfasserin aut Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Adaptive Neuro-Fuzzy Inference System (ANFIS) opens a new gateway in understanding the complex behaviors and phenomena for different fields such as heat transfer in nanoparticles. The ANFIS method is a shortcut to find a nonlinear relation between input and output and results in valid outcomes, especially in engineering phenomena, which is used here for determining the convective heat transfer coefficient. Using the ANFIS, the critical parameters in heat transfer including convective heat transfer coefficient and pressure drop are determined. To realize this issue, the thermophysical properties of non-covalently and covalently functionalized multiwalled carbon nanotubes-based water nanofluid were investigated experimentally. The results of simulation and their comparison with the experimental results showed an excellent evidence on the validity of the model, which can be expanded for other conditions. The proposed method of ANFIS modeling may be applied to the optimization of carbon-based nanostructure-based water nanofluid in a circular tube with constant heat flux. Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016 Simulation Heat transfer Rashidi, Sajjad oth Amiri, Ahmad oth Shanbedi, Mehdi oth Zeinali Heris, Saeed oth Kazi, S. N oth Enthalten in Numerical heat transfer / A Washington, DC : Taylor & Francis, 1989 70(2016), 1, Seite 103-14 (DE-627)130798940 (DE-600)1007779-0 (DE-576)023042214 1040-7782 nnns volume:70 year:2016 number:1 pages:103-14 http://dx.doi.org/10.1080/10407782.2016.1139974 Volltext http://www.tandfonline.com/doi/abs/10.1080/10407782.2016.1139974 http://search.proquest.com/docview/1805785825 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 70 2016 1 103-14 |
allfieldsGer |
10.1080/10407782.2016.1139974 doi PQ20160815 (DE-627)OLC1980211558 (DE-599)GBVOLC1980211558 (PRQ)c1549-2e97123d0961a16d46701a3c0f1fbd30aaf78681b7466efd867380ed21c8fdc00 (KEY)0090205520160000070000100103hydrodynamicandthermalperformancepredictionoffunct DE-627 ger DE-627 rakwb eng 620 530 DNB Savari, Maryam verfasserin aut Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Adaptive Neuro-Fuzzy Inference System (ANFIS) opens a new gateway in understanding the complex behaviors and phenomena for different fields such as heat transfer in nanoparticles. The ANFIS method is a shortcut to find a nonlinear relation between input and output and results in valid outcomes, especially in engineering phenomena, which is used here for determining the convective heat transfer coefficient. Using the ANFIS, the critical parameters in heat transfer including convective heat transfer coefficient and pressure drop are determined. To realize this issue, the thermophysical properties of non-covalently and covalently functionalized multiwalled carbon nanotubes-based water nanofluid were investigated experimentally. The results of simulation and their comparison with the experimental results showed an excellent evidence on the validity of the model, which can be expanded for other conditions. The proposed method of ANFIS modeling may be applied to the optimization of carbon-based nanostructure-based water nanofluid in a circular tube with constant heat flux. Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016 Simulation Heat transfer Rashidi, Sajjad oth Amiri, Ahmad oth Shanbedi, Mehdi oth Zeinali Heris, Saeed oth Kazi, S. N oth Enthalten in Numerical heat transfer / A Washington, DC : Taylor & Francis, 1989 70(2016), 1, Seite 103-14 (DE-627)130798940 (DE-600)1007779-0 (DE-576)023042214 1040-7782 nnns volume:70 year:2016 number:1 pages:103-14 http://dx.doi.org/10.1080/10407782.2016.1139974 Volltext http://www.tandfonline.com/doi/abs/10.1080/10407782.2016.1139974 http://search.proquest.com/docview/1805785825 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 70 2016 1 103-14 |
allfieldsSound |
10.1080/10407782.2016.1139974 doi PQ20160815 (DE-627)OLC1980211558 (DE-599)GBVOLC1980211558 (PRQ)c1549-2e97123d0961a16d46701a3c0f1fbd30aaf78681b7466efd867380ed21c8fdc00 (KEY)0090205520160000070000100103hydrodynamicandthermalperformancepredictionoffunct DE-627 ger DE-627 rakwb eng 620 530 DNB Savari, Maryam verfasserin aut Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Adaptive Neuro-Fuzzy Inference System (ANFIS) opens a new gateway in understanding the complex behaviors and phenomena for different fields such as heat transfer in nanoparticles. The ANFIS method is a shortcut to find a nonlinear relation between input and output and results in valid outcomes, especially in engineering phenomena, which is used here for determining the convective heat transfer coefficient. Using the ANFIS, the critical parameters in heat transfer including convective heat transfer coefficient and pressure drop are determined. To realize this issue, the thermophysical properties of non-covalently and covalently functionalized multiwalled carbon nanotubes-based water nanofluid were investigated experimentally. The results of simulation and their comparison with the experimental results showed an excellent evidence on the validity of the model, which can be expanded for other conditions. The proposed method of ANFIS modeling may be applied to the optimization of carbon-based nanostructure-based water nanofluid in a circular tube with constant heat flux. Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016 Simulation Heat transfer Rashidi, Sajjad oth Amiri, Ahmad oth Shanbedi, Mehdi oth Zeinali Heris, Saeed oth Kazi, S. N oth Enthalten in Numerical heat transfer / A Washington, DC : Taylor & Francis, 1989 70(2016), 1, Seite 103-14 (DE-627)130798940 (DE-600)1007779-0 (DE-576)023042214 1040-7782 nnns volume:70 year:2016 number:1 pages:103-14 http://dx.doi.org/10.1080/10407782.2016.1139974 Volltext http://www.tandfonline.com/doi/abs/10.1080/10407782.2016.1139974 http://search.proquest.com/docview/1805785825 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 70 2016 1 103-14 |
language |
English |
source |
Enthalten in Numerical heat transfer / A 70(2016), 1, Seite 103-14 volume:70 year:2016 number:1 pages:103-14 |
sourceStr |
Enthalten in Numerical heat transfer / A 70(2016), 1, Seite 103-14 volume:70 year:2016 number:1 pages:103-14 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Simulation Heat transfer |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Numerical heat transfer / A |
authorswithroles_txt_mv |
Savari, Maryam @@aut@@ Rashidi, Sajjad @@oth@@ Amiri, Ahmad @@oth@@ Shanbedi, Mehdi @@oth@@ Zeinali Heris, Saeed @@oth@@ Kazi, S. N @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130798940 |
dewey-sort |
3620 |
id |
OLC1980211558 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980211558</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714204804.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/10407782.2016.1139974</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980211558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980211558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1549-2e97123d0961a16d46701a3c0f1fbd30aaf78681b7466efd867380ed21c8fdc00</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0090205520160000070000100103hydrodynamicandthermalperformancepredictionoffunct</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Savari, Maryam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Adaptive Neuro-Fuzzy Inference System (ANFIS) opens a new gateway in understanding the complex behaviors and phenomena for different fields such as heat transfer in nanoparticles. The ANFIS method is a shortcut to find a nonlinear relation between input and output and results in valid outcomes, especially in engineering phenomena, which is used here for determining the convective heat transfer coefficient. Using the ANFIS, the critical parameters in heat transfer including convective heat transfer coefficient and pressure drop are determined. To realize this issue, the thermophysical properties of non-covalently and covalently functionalized multiwalled carbon nanotubes-based water nanofluid were investigated experimentally. The results of simulation and their comparison with the experimental results showed an excellent evidence on the validity of the model, which can be expanded for other conditions. The proposed method of ANFIS modeling may be applied to the optimization of carbon-based nanostructure-based water nanofluid in a circular tube with constant heat flux.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rashidi, Sajjad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amiri, Ahmad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shanbedi, Mehdi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeinali Heris, Saeed</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kazi, S. N</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Numerical heat transfer / A</subfield><subfield code="d">Washington, DC : Taylor & Francis, 1989</subfield><subfield code="g">70(2016), 1, Seite 103-14</subfield><subfield code="w">(DE-627)130798940</subfield><subfield code="w">(DE-600)1007779-0</subfield><subfield code="w">(DE-576)023042214</subfield><subfield code="x">1040-7782</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:103-14</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/10407782.2016.1139974</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/10407782.2016.1139974</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1805785825</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">103-14</subfield></datafield></record></collection>
|
author |
Savari, Maryam |
spellingShingle |
Savari, Maryam ddc 620 misc Simulation misc Heat transfer Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system |
authorStr |
Savari, Maryam |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130798940 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1040-7782 |
topic_title |
620 530 DNB Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system Simulation Heat transfer |
topic |
ddc 620 misc Simulation misc Heat transfer |
topic_unstemmed |
ddc 620 misc Simulation misc Heat transfer |
topic_browse |
ddc 620 misc Simulation misc Heat transfer |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
s r sr a a aa m s ms h s z hs hsz s n k sn snk |
hierarchy_parent_title |
Numerical heat transfer / A |
hierarchy_parent_id |
130798940 |
dewey-tens |
620 - Engineering 530 - Physics |
hierarchy_top_title |
Numerical heat transfer / A |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130798940 (DE-600)1007779-0 (DE-576)023042214 |
title |
Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system |
ctrlnum |
(DE-627)OLC1980211558 (DE-599)GBVOLC1980211558 (PRQ)c1549-2e97123d0961a16d46701a3c0f1fbd30aaf78681b7466efd867380ed21c8fdc00 (KEY)0090205520160000070000100103hydrodynamicandthermalperformancepredictionoffunct |
title_full |
Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system |
author_sort |
Savari, Maryam |
journal |
Numerical heat transfer / A |
journalStr |
Numerical heat transfer / A |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
103 |
author_browse |
Savari, Maryam |
container_volume |
70 |
class |
620 530 DNB |
format_se |
Aufsätze |
author-letter |
Savari, Maryam |
doi_str_mv |
10.1080/10407782.2016.1139974 |
dewey-full |
620 530 |
title_sort |
hydrodynamic and thermal performance prediction of functionalized mwnt-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system |
title_auth |
Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system |
abstract |
Adaptive Neuro-Fuzzy Inference System (ANFIS) opens a new gateway in understanding the complex behaviors and phenomena for different fields such as heat transfer in nanoparticles. The ANFIS method is a shortcut to find a nonlinear relation between input and output and results in valid outcomes, especially in engineering phenomena, which is used here for determining the convective heat transfer coefficient. Using the ANFIS, the critical parameters in heat transfer including convective heat transfer coefficient and pressure drop are determined. To realize this issue, the thermophysical properties of non-covalently and covalently functionalized multiwalled carbon nanotubes-based water nanofluid were investigated experimentally. The results of simulation and their comparison with the experimental results showed an excellent evidence on the validity of the model, which can be expanded for other conditions. The proposed method of ANFIS modeling may be applied to the optimization of carbon-based nanostructure-based water nanofluid in a circular tube with constant heat flux. |
abstractGer |
Adaptive Neuro-Fuzzy Inference System (ANFIS) opens a new gateway in understanding the complex behaviors and phenomena for different fields such as heat transfer in nanoparticles. The ANFIS method is a shortcut to find a nonlinear relation between input and output and results in valid outcomes, especially in engineering phenomena, which is used here for determining the convective heat transfer coefficient. Using the ANFIS, the critical parameters in heat transfer including convective heat transfer coefficient and pressure drop are determined. To realize this issue, the thermophysical properties of non-covalently and covalently functionalized multiwalled carbon nanotubes-based water nanofluid were investigated experimentally. The results of simulation and their comparison with the experimental results showed an excellent evidence on the validity of the model, which can be expanded for other conditions. The proposed method of ANFIS modeling may be applied to the optimization of carbon-based nanostructure-based water nanofluid in a circular tube with constant heat flux. |
abstract_unstemmed |
Adaptive Neuro-Fuzzy Inference System (ANFIS) opens a new gateway in understanding the complex behaviors and phenomena for different fields such as heat transfer in nanoparticles. The ANFIS method is a shortcut to find a nonlinear relation between input and output and results in valid outcomes, especially in engineering phenomena, which is used here for determining the convective heat transfer coefficient. Using the ANFIS, the critical parameters in heat transfer including convective heat transfer coefficient and pressure drop are determined. To realize this issue, the thermophysical properties of non-covalently and covalently functionalized multiwalled carbon nanotubes-based water nanofluid were investigated experimentally. The results of simulation and their comparison with the experimental results showed an excellent evidence on the validity of the model, which can be expanded for other conditions. The proposed method of ANFIS modeling may be applied to the optimization of carbon-based nanostructure-based water nanofluid in a circular tube with constant heat flux. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
1 |
title_short |
Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system |
url |
http://dx.doi.org/10.1080/10407782.2016.1139974 http://www.tandfonline.com/doi/abs/10.1080/10407782.2016.1139974 http://search.proquest.com/docview/1805785825 |
remote_bool |
false |
author2 |
Rashidi, Sajjad Amiri, Ahmad Shanbedi, Mehdi Zeinali Heris, Saeed Kazi, S. N |
author2Str |
Rashidi, Sajjad Amiri, Ahmad Shanbedi, Mehdi Zeinali Heris, Saeed Kazi, S. N |
ppnlink |
130798940 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1080/10407782.2016.1139974 |
up_date |
2024-07-04T02:38:06.742Z |
_version_ |
1803614354666422272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980211558</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714204804.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/10407782.2016.1139974</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980211558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980211558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1549-2e97123d0961a16d46701a3c0f1fbd30aaf78681b7466efd867380ed21c8fdc00</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0090205520160000070000100103hydrodynamicandthermalperformancepredictionoffunct</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Savari, Maryam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Adaptive Neuro-Fuzzy Inference System (ANFIS) opens a new gateway in understanding the complex behaviors and phenomena for different fields such as heat transfer in nanoparticles. The ANFIS method is a shortcut to find a nonlinear relation between input and output and results in valid outcomes, especially in engineering phenomena, which is used here for determining the convective heat transfer coefficient. Using the ANFIS, the critical parameters in heat transfer including convective heat transfer coefficient and pressure drop are determined. To realize this issue, the thermophysical properties of non-covalently and covalently functionalized multiwalled carbon nanotubes-based water nanofluid were investigated experimentally. The results of simulation and their comparison with the experimental results showed an excellent evidence on the validity of the model, which can be expanded for other conditions. The proposed method of ANFIS modeling may be applied to the optimization of carbon-based nanostructure-based water nanofluid in a circular tube with constant heat flux.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rashidi, Sajjad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amiri, Ahmad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shanbedi, Mehdi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeinali Heris, Saeed</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kazi, S. N</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Numerical heat transfer / A</subfield><subfield code="d">Washington, DC : Taylor & Francis, 1989</subfield><subfield code="g">70(2016), 1, Seite 103-14</subfield><subfield code="w">(DE-627)130798940</subfield><subfield code="w">(DE-600)1007779-0</subfield><subfield code="w">(DE-576)023042214</subfield><subfield code="x">1040-7782</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:103-14</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/10407782.2016.1139974</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/10407782.2016.1139974</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1805785825</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">103-14</subfield></datafield></record></collection>
|
score |
7.399441 |