Thermodynamic compatibility of actives encapsulated into PEG‐PLA nanoparticles: In Silico predictions and experimental verification
Achieving optimal solubility of active substances in polymeric carriers is of fundamental importance for a number of industrial applications, including targeted drug delivery within the growing field of nanomedicine. However, its experimental optimization using a trial‐and‐error approach is cumberso...
Ausführliche Beschreibung
Autor*in: |
Erlebach, Andreas [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016 Wiley Periodicals, Inc. |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Journal of computational chemistry - New York, NY : Wiley, 1980, 37(2016), 24, Seite 2220-2227 |
---|---|
Übergeordnetes Werk: |
volume:37 ; year:2016 ; number:24 ; pages:2220-2227 |
Links: |
---|
DOI / URN: |
10.1002/jcc.24449 |
---|
Katalog-ID: |
OLC198024300X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC198024300X | ||
003 | DE-627 | ||
005 | 20230512191923.0 | ||
007 | tu | ||
008 | 160816s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/jcc.24449 |2 doi | |
028 | 5 | 2 | |a PQ20160815 |
035 | |a (DE-627)OLC198024300X | ||
035 | |a (DE-599)GBVOLC198024300X | ||
035 | |a (PRQ)c749-9825ccf6585ccded580dfe82427363d8bb4afb82dd77d7a141be7d1b0321f5953 | ||
035 | |a (KEY)0100255420160000037002402220thermodynamiccompatibilityofactivesencapsulatedint | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DNB |
084 | |a VA 5105 |q AVZ |2 rvk | ||
084 | |a 35.05 |2 bkl | ||
100 | 1 | |a Erlebach, Andreas |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermodynamic compatibility of actives encapsulated into PEG‐PLA nanoparticles: In Silico predictions and experimental verification |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Achieving optimal solubility of active substances in polymeric carriers is of fundamental importance for a number of industrial applications, including targeted drug delivery within the growing field of nanomedicine. However, its experimental optimization using a trial‐and‐error approach is cumbersome and time‐consuming. Here, an approach based on molecular dynamics (MD) simulations and the Flory–Huggins theory is proposed for rapid prediction of thermodynamic compatibility between active species and copolymers comprising hydrophilic and hydrophobic segments. In contrast to similar methods, our approach offers high computational efficiency by employing MD simulations that avoid explicit consideration of the actual copolymer chains. The accuracy of the method is demonstrated for compatibility predictions between pyrene and nile red as model dyes as well as indomethacin as model drug and copolymers containing blocks of poly(ethylene glycol) and poly(lactic acid) in different ratios. The results of the simulations are directly verified by comparison with the observed encapsulation efficiency of nanoparticles prepared by nanoprecipitation. © 2016 Wiley Periodicals, Inc. A theoretical approach based on atomistic simulations and the Flory–Huggins theory for rapid prediction of drug loading efficiencies of copolymers comprising hydrophilic and hydrophobic blocks is reported. The results of the simulations are directly verified by comparison with observed encapsulation efficiency of PEG‐PLA nanoparticles prepared by nanoprecipitation. | ||
540 | |a Nutzungsrecht: © 2016 Wiley Periodicals, Inc. | ||
650 | 4 | |a atomistic simulations | |
650 | 4 | |a polymeric nanoparticles | |
650 | 4 | |a molecular dynamics | |
650 | 4 | |a Flory–Huggins theory | |
700 | 1 | |a Ott, Timm |4 oth | |
700 | 1 | |a Otzen, Christoph |4 oth | |
700 | 1 | |a Schubert, Stephanie |4 oth | |
700 | 1 | |a Czaplewska, Justyna |4 oth | |
700 | 1 | |a Schubert, Ulrich S |4 oth | |
700 | 1 | |a Sierka, Marek |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of computational chemistry |d New York, NY : Wiley, 1980 |g 37(2016), 24, Seite 2220-2227 |w (DE-627)129860301 |w (DE-600)282917-4 |w (DE-576)015169324 |x 0192-8651 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2016 |g number:24 |g pages:2220-2227 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/jcc.24449 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/jcc.24449/abstract |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | r | v | |a VA 5105 |
936 | b | k | |a 35.05 |q AVZ |
951 | |a AR | ||
952 | |d 37 |j 2016 |e 24 |h 2220-2227 |
author_variant |
a e ae |
---|---|
matchkey_str |
article:01928651:2016----::hroyaicmaiiiyfcieecpuaeitpglnnprilsniiordci |
hierarchy_sort_str |
2016 |
bklnumber |
35.05 |
publishDate |
2016 |
allfields |
10.1002/jcc.24449 doi PQ20160815 (DE-627)OLC198024300X (DE-599)GBVOLC198024300X (PRQ)c749-9825ccf6585ccded580dfe82427363d8bb4afb82dd77d7a141be7d1b0321f5953 (KEY)0100255420160000037002402220thermodynamiccompatibilityofactivesencapsulatedint DE-627 ger DE-627 rakwb eng 540 DNB VA 5105 AVZ rvk 35.05 bkl Erlebach, Andreas verfasserin aut Thermodynamic compatibility of actives encapsulated into PEG‐PLA nanoparticles: In Silico predictions and experimental verification 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Achieving optimal solubility of active substances in polymeric carriers is of fundamental importance for a number of industrial applications, including targeted drug delivery within the growing field of nanomedicine. However, its experimental optimization using a trial‐and‐error approach is cumbersome and time‐consuming. Here, an approach based on molecular dynamics (MD) simulations and the Flory–Huggins theory is proposed for rapid prediction of thermodynamic compatibility between active species and copolymers comprising hydrophilic and hydrophobic segments. In contrast to similar methods, our approach offers high computational efficiency by employing MD simulations that avoid explicit consideration of the actual copolymer chains. The accuracy of the method is demonstrated for compatibility predictions between pyrene and nile red as model dyes as well as indomethacin as model drug and copolymers containing blocks of poly(ethylene glycol) and poly(lactic acid) in different ratios. The results of the simulations are directly verified by comparison with the observed encapsulation efficiency of nanoparticles prepared by nanoprecipitation. © 2016 Wiley Periodicals, Inc. A theoretical approach based on atomistic simulations and the Flory–Huggins theory for rapid prediction of drug loading efficiencies of copolymers comprising hydrophilic and hydrophobic blocks is reported. The results of the simulations are directly verified by comparison with observed encapsulation efficiency of PEG‐PLA nanoparticles prepared by nanoprecipitation. Nutzungsrecht: © 2016 Wiley Periodicals, Inc. atomistic simulations polymeric nanoparticles molecular dynamics Flory–Huggins theory Ott, Timm oth Otzen, Christoph oth Schubert, Stephanie oth Czaplewska, Justyna oth Schubert, Ulrich S oth Sierka, Marek oth Enthalten in Journal of computational chemistry New York, NY : Wiley, 1980 37(2016), 24, Seite 2220-2227 (DE-627)129860301 (DE-600)282917-4 (DE-576)015169324 0192-8651 nnns volume:37 year:2016 number:24 pages:2220-2227 http://dx.doi.org/10.1002/jcc.24449 Volltext http://onlinelibrary.wiley.com/doi/10.1002/jcc.24449/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 VA 5105 35.05 AVZ AR 37 2016 24 2220-2227 |
spelling |
10.1002/jcc.24449 doi PQ20160815 (DE-627)OLC198024300X (DE-599)GBVOLC198024300X (PRQ)c749-9825ccf6585ccded580dfe82427363d8bb4afb82dd77d7a141be7d1b0321f5953 (KEY)0100255420160000037002402220thermodynamiccompatibilityofactivesencapsulatedint DE-627 ger DE-627 rakwb eng 540 DNB VA 5105 AVZ rvk 35.05 bkl Erlebach, Andreas verfasserin aut Thermodynamic compatibility of actives encapsulated into PEG‐PLA nanoparticles: In Silico predictions and experimental verification 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Achieving optimal solubility of active substances in polymeric carriers is of fundamental importance for a number of industrial applications, including targeted drug delivery within the growing field of nanomedicine. However, its experimental optimization using a trial‐and‐error approach is cumbersome and time‐consuming. Here, an approach based on molecular dynamics (MD) simulations and the Flory–Huggins theory is proposed for rapid prediction of thermodynamic compatibility between active species and copolymers comprising hydrophilic and hydrophobic segments. In contrast to similar methods, our approach offers high computational efficiency by employing MD simulations that avoid explicit consideration of the actual copolymer chains. The accuracy of the method is demonstrated for compatibility predictions between pyrene and nile red as model dyes as well as indomethacin as model drug and copolymers containing blocks of poly(ethylene glycol) and poly(lactic acid) in different ratios. The results of the simulations are directly verified by comparison with the observed encapsulation efficiency of nanoparticles prepared by nanoprecipitation. © 2016 Wiley Periodicals, Inc. A theoretical approach based on atomistic simulations and the Flory–Huggins theory for rapid prediction of drug loading efficiencies of copolymers comprising hydrophilic and hydrophobic blocks is reported. The results of the simulations are directly verified by comparison with observed encapsulation efficiency of PEG‐PLA nanoparticles prepared by nanoprecipitation. Nutzungsrecht: © 2016 Wiley Periodicals, Inc. atomistic simulations polymeric nanoparticles molecular dynamics Flory–Huggins theory Ott, Timm oth Otzen, Christoph oth Schubert, Stephanie oth Czaplewska, Justyna oth Schubert, Ulrich S oth Sierka, Marek oth Enthalten in Journal of computational chemistry New York, NY : Wiley, 1980 37(2016), 24, Seite 2220-2227 (DE-627)129860301 (DE-600)282917-4 (DE-576)015169324 0192-8651 nnns volume:37 year:2016 number:24 pages:2220-2227 http://dx.doi.org/10.1002/jcc.24449 Volltext http://onlinelibrary.wiley.com/doi/10.1002/jcc.24449/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 VA 5105 35.05 AVZ AR 37 2016 24 2220-2227 |
allfields_unstemmed |
10.1002/jcc.24449 doi PQ20160815 (DE-627)OLC198024300X (DE-599)GBVOLC198024300X (PRQ)c749-9825ccf6585ccded580dfe82427363d8bb4afb82dd77d7a141be7d1b0321f5953 (KEY)0100255420160000037002402220thermodynamiccompatibilityofactivesencapsulatedint DE-627 ger DE-627 rakwb eng 540 DNB VA 5105 AVZ rvk 35.05 bkl Erlebach, Andreas verfasserin aut Thermodynamic compatibility of actives encapsulated into PEG‐PLA nanoparticles: In Silico predictions and experimental verification 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Achieving optimal solubility of active substances in polymeric carriers is of fundamental importance for a number of industrial applications, including targeted drug delivery within the growing field of nanomedicine. However, its experimental optimization using a trial‐and‐error approach is cumbersome and time‐consuming. Here, an approach based on molecular dynamics (MD) simulations and the Flory–Huggins theory is proposed for rapid prediction of thermodynamic compatibility between active species and copolymers comprising hydrophilic and hydrophobic segments. In contrast to similar methods, our approach offers high computational efficiency by employing MD simulations that avoid explicit consideration of the actual copolymer chains. The accuracy of the method is demonstrated for compatibility predictions between pyrene and nile red as model dyes as well as indomethacin as model drug and copolymers containing blocks of poly(ethylene glycol) and poly(lactic acid) in different ratios. The results of the simulations are directly verified by comparison with the observed encapsulation efficiency of nanoparticles prepared by nanoprecipitation. © 2016 Wiley Periodicals, Inc. A theoretical approach based on atomistic simulations and the Flory–Huggins theory for rapid prediction of drug loading efficiencies of copolymers comprising hydrophilic and hydrophobic blocks is reported. The results of the simulations are directly verified by comparison with observed encapsulation efficiency of PEG‐PLA nanoparticles prepared by nanoprecipitation. Nutzungsrecht: © 2016 Wiley Periodicals, Inc. atomistic simulations polymeric nanoparticles molecular dynamics Flory–Huggins theory Ott, Timm oth Otzen, Christoph oth Schubert, Stephanie oth Czaplewska, Justyna oth Schubert, Ulrich S oth Sierka, Marek oth Enthalten in Journal of computational chemistry New York, NY : Wiley, 1980 37(2016), 24, Seite 2220-2227 (DE-627)129860301 (DE-600)282917-4 (DE-576)015169324 0192-8651 nnns volume:37 year:2016 number:24 pages:2220-2227 http://dx.doi.org/10.1002/jcc.24449 Volltext http://onlinelibrary.wiley.com/doi/10.1002/jcc.24449/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 VA 5105 35.05 AVZ AR 37 2016 24 2220-2227 |
allfieldsGer |
10.1002/jcc.24449 doi PQ20160815 (DE-627)OLC198024300X (DE-599)GBVOLC198024300X (PRQ)c749-9825ccf6585ccded580dfe82427363d8bb4afb82dd77d7a141be7d1b0321f5953 (KEY)0100255420160000037002402220thermodynamiccompatibilityofactivesencapsulatedint DE-627 ger DE-627 rakwb eng 540 DNB VA 5105 AVZ rvk 35.05 bkl Erlebach, Andreas verfasserin aut Thermodynamic compatibility of actives encapsulated into PEG‐PLA nanoparticles: In Silico predictions and experimental verification 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Achieving optimal solubility of active substances in polymeric carriers is of fundamental importance for a number of industrial applications, including targeted drug delivery within the growing field of nanomedicine. However, its experimental optimization using a trial‐and‐error approach is cumbersome and time‐consuming. Here, an approach based on molecular dynamics (MD) simulations and the Flory–Huggins theory is proposed for rapid prediction of thermodynamic compatibility between active species and copolymers comprising hydrophilic and hydrophobic segments. In contrast to similar methods, our approach offers high computational efficiency by employing MD simulations that avoid explicit consideration of the actual copolymer chains. The accuracy of the method is demonstrated for compatibility predictions between pyrene and nile red as model dyes as well as indomethacin as model drug and copolymers containing blocks of poly(ethylene glycol) and poly(lactic acid) in different ratios. The results of the simulations are directly verified by comparison with the observed encapsulation efficiency of nanoparticles prepared by nanoprecipitation. © 2016 Wiley Periodicals, Inc. A theoretical approach based on atomistic simulations and the Flory–Huggins theory for rapid prediction of drug loading efficiencies of copolymers comprising hydrophilic and hydrophobic blocks is reported. The results of the simulations are directly verified by comparison with observed encapsulation efficiency of PEG‐PLA nanoparticles prepared by nanoprecipitation. Nutzungsrecht: © 2016 Wiley Periodicals, Inc. atomistic simulations polymeric nanoparticles molecular dynamics Flory–Huggins theory Ott, Timm oth Otzen, Christoph oth Schubert, Stephanie oth Czaplewska, Justyna oth Schubert, Ulrich S oth Sierka, Marek oth Enthalten in Journal of computational chemistry New York, NY : Wiley, 1980 37(2016), 24, Seite 2220-2227 (DE-627)129860301 (DE-600)282917-4 (DE-576)015169324 0192-8651 nnns volume:37 year:2016 number:24 pages:2220-2227 http://dx.doi.org/10.1002/jcc.24449 Volltext http://onlinelibrary.wiley.com/doi/10.1002/jcc.24449/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 VA 5105 35.05 AVZ AR 37 2016 24 2220-2227 |
allfieldsSound |
10.1002/jcc.24449 doi PQ20160815 (DE-627)OLC198024300X (DE-599)GBVOLC198024300X (PRQ)c749-9825ccf6585ccded580dfe82427363d8bb4afb82dd77d7a141be7d1b0321f5953 (KEY)0100255420160000037002402220thermodynamiccompatibilityofactivesencapsulatedint DE-627 ger DE-627 rakwb eng 540 DNB VA 5105 AVZ rvk 35.05 bkl Erlebach, Andreas verfasserin aut Thermodynamic compatibility of actives encapsulated into PEG‐PLA nanoparticles: In Silico predictions and experimental verification 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Achieving optimal solubility of active substances in polymeric carriers is of fundamental importance for a number of industrial applications, including targeted drug delivery within the growing field of nanomedicine. However, its experimental optimization using a trial‐and‐error approach is cumbersome and time‐consuming. Here, an approach based on molecular dynamics (MD) simulations and the Flory–Huggins theory is proposed for rapid prediction of thermodynamic compatibility between active species and copolymers comprising hydrophilic and hydrophobic segments. In contrast to similar methods, our approach offers high computational efficiency by employing MD simulations that avoid explicit consideration of the actual copolymer chains. The accuracy of the method is demonstrated for compatibility predictions between pyrene and nile red as model dyes as well as indomethacin as model drug and copolymers containing blocks of poly(ethylene glycol) and poly(lactic acid) in different ratios. The results of the simulations are directly verified by comparison with the observed encapsulation efficiency of nanoparticles prepared by nanoprecipitation. © 2016 Wiley Periodicals, Inc. A theoretical approach based on atomistic simulations and the Flory–Huggins theory for rapid prediction of drug loading efficiencies of copolymers comprising hydrophilic and hydrophobic blocks is reported. The results of the simulations are directly verified by comparison with observed encapsulation efficiency of PEG‐PLA nanoparticles prepared by nanoprecipitation. Nutzungsrecht: © 2016 Wiley Periodicals, Inc. atomistic simulations polymeric nanoparticles molecular dynamics Flory–Huggins theory Ott, Timm oth Otzen, Christoph oth Schubert, Stephanie oth Czaplewska, Justyna oth Schubert, Ulrich S oth Sierka, Marek oth Enthalten in Journal of computational chemistry New York, NY : Wiley, 1980 37(2016), 24, Seite 2220-2227 (DE-627)129860301 (DE-600)282917-4 (DE-576)015169324 0192-8651 nnns volume:37 year:2016 number:24 pages:2220-2227 http://dx.doi.org/10.1002/jcc.24449 Volltext http://onlinelibrary.wiley.com/doi/10.1002/jcc.24449/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 VA 5105 35.05 AVZ AR 37 2016 24 2220-2227 |
language |
English |
source |
Enthalten in Journal of computational chemistry 37(2016), 24, Seite 2220-2227 volume:37 year:2016 number:24 pages:2220-2227 |
sourceStr |
Enthalten in Journal of computational chemistry 37(2016), 24, Seite 2220-2227 volume:37 year:2016 number:24 pages:2220-2227 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
atomistic simulations polymeric nanoparticles molecular dynamics Flory–Huggins theory |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Journal of computational chemistry |
authorswithroles_txt_mv |
Erlebach, Andreas @@aut@@ Ott, Timm @@oth@@ Otzen, Christoph @@oth@@ Schubert, Stephanie @@oth@@ Czaplewska, Justyna @@oth@@ Schubert, Ulrich S @@oth@@ Sierka, Marek @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129860301 |
dewey-sort |
3540 |
id |
OLC198024300X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198024300X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230512191923.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/jcc.24449</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198024300X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198024300X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c749-9825ccf6585ccded580dfe82427363d8bb4afb82dd77d7a141be7d1b0321f5953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0100255420160000037002402220thermodynamiccompatibilityofactivesencapsulatedint</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5105</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.05</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Erlebach, Andreas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermodynamic compatibility of actives encapsulated into PEG‐PLA nanoparticles: In Silico predictions and experimental verification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Achieving optimal solubility of active substances in polymeric carriers is of fundamental importance for a number of industrial applications, including targeted drug delivery within the growing field of nanomedicine. However, its experimental optimization using a trial‐and‐error approach is cumbersome and time‐consuming. Here, an approach based on molecular dynamics (MD) simulations and the Flory–Huggins theory is proposed for rapid prediction of thermodynamic compatibility between active species and copolymers comprising hydrophilic and hydrophobic segments. In contrast to similar methods, our approach offers high computational efficiency by employing MD simulations that avoid explicit consideration of the actual copolymer chains. The accuracy of the method is demonstrated for compatibility predictions between pyrene and nile red as model dyes as well as indomethacin as model drug and copolymers containing blocks of poly(ethylene glycol) and poly(lactic acid) in different ratios. The results of the simulations are directly verified by comparison with the observed encapsulation efficiency of nanoparticles prepared by nanoprecipitation. © 2016 Wiley Periodicals, Inc. A theoretical approach based on atomistic simulations and the Flory–Huggins theory for rapid prediction of drug loading efficiencies of copolymers comprising hydrophilic and hydrophobic blocks is reported. The results of the simulations are directly verified by comparison with observed encapsulation efficiency of PEG‐PLA nanoparticles prepared by nanoprecipitation.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Wiley Periodicals, Inc.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atomistic simulations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polymeric nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">molecular dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flory–Huggins theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ott, Timm</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Otzen, Christoph</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schubert, Stephanie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Czaplewska, Justyna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schubert, Ulrich S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sierka, Marek</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of computational chemistry</subfield><subfield code="d">New York, NY : Wiley, 1980</subfield><subfield code="g">37(2016), 24, Seite 2220-2227</subfield><subfield code="w">(DE-627)129860301</subfield><subfield code="w">(DE-600)282917-4</subfield><subfield code="w">(DE-576)015169324</subfield><subfield code="x">0192-8651</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:24</subfield><subfield code="g">pages:2220-2227</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/jcc.24449</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/jcc.24449/abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5105</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.05</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2016</subfield><subfield code="e">24</subfield><subfield code="h">2220-2227</subfield></datafield></record></collection>
|
author |
Erlebach, Andreas |
spellingShingle |
Erlebach, Andreas ddc 540 rvk VA 5105 bkl 35.05 misc atomistic simulations misc polymeric nanoparticles misc molecular dynamics misc Flory–Huggins theory Thermodynamic compatibility of actives encapsulated into PEG‐PLA nanoparticles: In Silico predictions and experimental verification |
authorStr |
Erlebach, Andreas |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129860301 |
format |
Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0192-8651 |
topic_title |
540 DNB VA 5105 AVZ rvk 35.05 bkl Thermodynamic compatibility of actives encapsulated into PEG‐PLA nanoparticles: In Silico predictions and experimental verification atomistic simulations polymeric nanoparticles molecular dynamics Flory–Huggins theory |
topic |
ddc 540 rvk VA 5105 bkl 35.05 misc atomistic simulations misc polymeric nanoparticles misc molecular dynamics misc Flory–Huggins theory |
topic_unstemmed |
ddc 540 rvk VA 5105 bkl 35.05 misc atomistic simulations misc polymeric nanoparticles misc molecular dynamics misc Flory–Huggins theory |
topic_browse |
ddc 540 rvk VA 5105 bkl 35.05 misc atomistic simulations misc polymeric nanoparticles misc molecular dynamics misc Flory–Huggins theory |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t o to c o co s s ss j c jc u s s us uss m s ms |
hierarchy_parent_title |
Journal of computational chemistry |
hierarchy_parent_id |
129860301 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Journal of computational chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129860301 (DE-600)282917-4 (DE-576)015169324 |
title |
Thermodynamic compatibility of actives encapsulated into PEG‐PLA nanoparticles: In Silico predictions and experimental verification |
ctrlnum |
(DE-627)OLC198024300X (DE-599)GBVOLC198024300X (PRQ)c749-9825ccf6585ccded580dfe82427363d8bb4afb82dd77d7a141be7d1b0321f5953 (KEY)0100255420160000037002402220thermodynamiccompatibilityofactivesencapsulatedint |
title_full |
Thermodynamic compatibility of actives encapsulated into PEG‐PLA nanoparticles: In Silico predictions and experimental verification |
author_sort |
Erlebach, Andreas |
journal |
Journal of computational chemistry |
journalStr |
Journal of computational chemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
2220 |
author_browse |
Erlebach, Andreas |
container_volume |
37 |
class |
540 DNB VA 5105 AVZ rvk 35.05 bkl |
format_se |
Aufsätze |
author-letter |
Erlebach, Andreas |
doi_str_mv |
10.1002/jcc.24449 |
dewey-full |
540 |
title_sort |
thermodynamic compatibility of actives encapsulated into peg‐pla nanoparticles: in silico predictions and experimental verification |
title_auth |
Thermodynamic compatibility of actives encapsulated into PEG‐PLA nanoparticles: In Silico predictions and experimental verification |
abstract |
Achieving optimal solubility of active substances in polymeric carriers is of fundamental importance for a number of industrial applications, including targeted drug delivery within the growing field of nanomedicine. However, its experimental optimization using a trial‐and‐error approach is cumbersome and time‐consuming. Here, an approach based on molecular dynamics (MD) simulations and the Flory–Huggins theory is proposed for rapid prediction of thermodynamic compatibility between active species and copolymers comprising hydrophilic and hydrophobic segments. In contrast to similar methods, our approach offers high computational efficiency by employing MD simulations that avoid explicit consideration of the actual copolymer chains. The accuracy of the method is demonstrated for compatibility predictions between pyrene and nile red as model dyes as well as indomethacin as model drug and copolymers containing blocks of poly(ethylene glycol) and poly(lactic acid) in different ratios. The results of the simulations are directly verified by comparison with the observed encapsulation efficiency of nanoparticles prepared by nanoprecipitation. © 2016 Wiley Periodicals, Inc. A theoretical approach based on atomistic simulations and the Flory–Huggins theory for rapid prediction of drug loading efficiencies of copolymers comprising hydrophilic and hydrophobic blocks is reported. The results of the simulations are directly verified by comparison with observed encapsulation efficiency of PEG‐PLA nanoparticles prepared by nanoprecipitation. |
abstractGer |
Achieving optimal solubility of active substances in polymeric carriers is of fundamental importance for a number of industrial applications, including targeted drug delivery within the growing field of nanomedicine. However, its experimental optimization using a trial‐and‐error approach is cumbersome and time‐consuming. Here, an approach based on molecular dynamics (MD) simulations and the Flory–Huggins theory is proposed for rapid prediction of thermodynamic compatibility between active species and copolymers comprising hydrophilic and hydrophobic segments. In contrast to similar methods, our approach offers high computational efficiency by employing MD simulations that avoid explicit consideration of the actual copolymer chains. The accuracy of the method is demonstrated for compatibility predictions between pyrene and nile red as model dyes as well as indomethacin as model drug and copolymers containing blocks of poly(ethylene glycol) and poly(lactic acid) in different ratios. The results of the simulations are directly verified by comparison with the observed encapsulation efficiency of nanoparticles prepared by nanoprecipitation. © 2016 Wiley Periodicals, Inc. A theoretical approach based on atomistic simulations and the Flory–Huggins theory for rapid prediction of drug loading efficiencies of copolymers comprising hydrophilic and hydrophobic blocks is reported. The results of the simulations are directly verified by comparison with observed encapsulation efficiency of PEG‐PLA nanoparticles prepared by nanoprecipitation. |
abstract_unstemmed |
Achieving optimal solubility of active substances in polymeric carriers is of fundamental importance for a number of industrial applications, including targeted drug delivery within the growing field of nanomedicine. However, its experimental optimization using a trial‐and‐error approach is cumbersome and time‐consuming. Here, an approach based on molecular dynamics (MD) simulations and the Flory–Huggins theory is proposed for rapid prediction of thermodynamic compatibility between active species and copolymers comprising hydrophilic and hydrophobic segments. In contrast to similar methods, our approach offers high computational efficiency by employing MD simulations that avoid explicit consideration of the actual copolymer chains. The accuracy of the method is demonstrated for compatibility predictions between pyrene and nile red as model dyes as well as indomethacin as model drug and copolymers containing blocks of poly(ethylene glycol) and poly(lactic acid) in different ratios. The results of the simulations are directly verified by comparison with the observed encapsulation efficiency of nanoparticles prepared by nanoprecipitation. © 2016 Wiley Periodicals, Inc. A theoretical approach based on atomistic simulations and the Flory–Huggins theory for rapid prediction of drug loading efficiencies of copolymers comprising hydrophilic and hydrophobic blocks is reported. The results of the simulations are directly verified by comparison with observed encapsulation efficiency of PEG‐PLA nanoparticles prepared by nanoprecipitation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_70 |
container_issue |
24 |
title_short |
Thermodynamic compatibility of actives encapsulated into PEG‐PLA nanoparticles: In Silico predictions and experimental verification |
url |
http://dx.doi.org/10.1002/jcc.24449 http://onlinelibrary.wiley.com/doi/10.1002/jcc.24449/abstract |
remote_bool |
false |
author2 |
Ott, Timm Otzen, Christoph Schubert, Stephanie Czaplewska, Justyna Schubert, Ulrich S Sierka, Marek |
author2Str |
Ott, Timm Otzen, Christoph Schubert, Stephanie Czaplewska, Justyna Schubert, Ulrich S Sierka, Marek |
ppnlink |
129860301 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1002/jcc.24449 |
up_date |
2024-07-04T02:42:03.312Z |
_version_ |
1803614602729095168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198024300X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230512191923.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/jcc.24449</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198024300X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198024300X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c749-9825ccf6585ccded580dfe82427363d8bb4afb82dd77d7a141be7d1b0321f5953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0100255420160000037002402220thermodynamiccompatibilityofactivesencapsulatedint</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5105</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.05</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Erlebach, Andreas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermodynamic compatibility of actives encapsulated into PEG‐PLA nanoparticles: In Silico predictions and experimental verification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Achieving optimal solubility of active substances in polymeric carriers is of fundamental importance for a number of industrial applications, including targeted drug delivery within the growing field of nanomedicine. However, its experimental optimization using a trial‐and‐error approach is cumbersome and time‐consuming. Here, an approach based on molecular dynamics (MD) simulations and the Flory–Huggins theory is proposed for rapid prediction of thermodynamic compatibility between active species and copolymers comprising hydrophilic and hydrophobic segments. In contrast to similar methods, our approach offers high computational efficiency by employing MD simulations that avoid explicit consideration of the actual copolymer chains. The accuracy of the method is demonstrated for compatibility predictions between pyrene and nile red as model dyes as well as indomethacin as model drug and copolymers containing blocks of poly(ethylene glycol) and poly(lactic acid) in different ratios. The results of the simulations are directly verified by comparison with the observed encapsulation efficiency of nanoparticles prepared by nanoprecipitation. © 2016 Wiley Periodicals, Inc. A theoretical approach based on atomistic simulations and the Flory–Huggins theory for rapid prediction of drug loading efficiencies of copolymers comprising hydrophilic and hydrophobic blocks is reported. The results of the simulations are directly verified by comparison with observed encapsulation efficiency of PEG‐PLA nanoparticles prepared by nanoprecipitation.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Wiley Periodicals, Inc.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atomistic simulations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polymeric nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">molecular dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flory–Huggins theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ott, Timm</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Otzen, Christoph</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schubert, Stephanie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Czaplewska, Justyna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schubert, Ulrich S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sierka, Marek</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of computational chemistry</subfield><subfield code="d">New York, NY : Wiley, 1980</subfield><subfield code="g">37(2016), 24, Seite 2220-2227</subfield><subfield code="w">(DE-627)129860301</subfield><subfield code="w">(DE-600)282917-4</subfield><subfield code="w">(DE-576)015169324</subfield><subfield code="x">0192-8651</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:24</subfield><subfield code="g">pages:2220-2227</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/jcc.24449</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/jcc.24449/abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5105</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.05</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2016</subfield><subfield code="e">24</subfield><subfield code="h">2220-2227</subfield></datafield></record></collection>
|
score |
7.4007006 |