A general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis
Rolling element bearings are vital components in most rotating machines. Bearings often operate in harsh environments where manufacturing imperfections, misalignments, and fatigue can result in reduced component lifespan. These failures are often preceded by changes in the normal vibration of the sy...
Ausführliche Beschreibung
Autor*in: |
Harris, B. W [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Proceedings of the Institution of Mechanical Engineers / C - Los Angeles, Calif. [u.a.] : Sage, 1983, 230(2016), 13, Seite 2169-2180 |
---|---|
Übergeordnetes Werk: |
volume:230 ; year:2016 ; number:13 ; pages:2169-2180 |
Links: |
---|
DOI / URN: |
10.1177/0954406215592439 |
---|
Katalog-ID: |
OLC1980340056 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1980340056 | ||
003 | DE-627 | ||
005 | 20220220183040.0 | ||
007 | tu | ||
008 | 160816s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1177/0954406215592439 |2 doi | |
028 | 5 | 2 | |a PQ20160815 |
035 | |a (DE-627)OLC1980340056 | ||
035 | |a (DE-599)GBVOLC1980340056 | ||
035 | |a (PRQ)c934-d65ed08f7e71760449e9645c689485cea8ee9e70a300ce71a3dc2c736f4865990 | ||
035 | |a (KEY)0121116120160000230001302169generalanomalydetectionapproachappliedtorollingele | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 52.10 |2 bkl | ||
100 | 1 | |a Harris, B. W |e verfasserin |4 aut | |
245 | 1 | 2 | |a A general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Rolling element bearings are vital components in most rotating machines. Bearings often operate in harsh environments where manufacturing imperfections, misalignments, and fatigue can result in reduced component lifespan. These failures are often preceded by changes in the normal vibration of the system. Modeling and detecting these vibrational anomalies is common practice in predicting machine failure. This paper develops and implements a novel approach to detecting bearing vibration anomalies in the time-frequency domain. The performance of the new approach is quantified using both simulated and experimental bearing vibration data. In these ground-truth experiments, the proposed time-frequency method successfully detects anomalies (>98% true positive) using short time spans (<0.1 s) with low false alarm rates (<1% false positive). Using experimental data, this time-frequency approach is shown to outperform one-dimensional time series analysis techniques. | ||
650 | 4 | |a Rolling | |
650 | 4 | |a Experiments | |
650 | 4 | |a Matrix | |
650 | 4 | |a Bearings | |
650 | 4 | |a Vibration | |
650 | 4 | |a Time series | |
700 | 1 | |a Milo, M. W |4 oth | |
700 | 1 | |a Roan, M. J |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Proceedings of the Institution of Mechanical Engineers / C |d Los Angeles, Calif. [u.a.] : Sage, 1983 |g 230(2016), 13, Seite 2169-2180 |w (DE-627)130863114 |w (DE-600)1030844-1 |w (DE-576)023106441 |x 0954-4062 |7 nnns |
773 | 1 | 8 | |g volume:230 |g year:2016 |g number:13 |g pages:2169-2180 |
856 | 4 | 1 | |u http://dx.doi.org/10.1177/0954406215592439 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1807871426 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.10 |q AVZ |
951 | |a AR | ||
952 | |d 230 |j 2016 |e 13 |h 2169-2180 |
author_variant |
b w h bw bwh |
---|---|
matchkey_str |
article:09544062:2016----::gnrlnmldtcinprahpletrliglmnbaigvaeuedmni |
hierarchy_sort_str |
2016 |
bklnumber |
52.10 |
publishDate |
2016 |
allfields |
10.1177/0954406215592439 doi PQ20160815 (DE-627)OLC1980340056 (DE-599)GBVOLC1980340056 (PRQ)c934-d65ed08f7e71760449e9645c689485cea8ee9e70a300ce71a3dc2c736f4865990 (KEY)0121116120160000230001302169generalanomalydetectionapproachappliedtorollingele DE-627 ger DE-627 rakwb eng 620 DNB 52.10 bkl Harris, B. W verfasserin aut A general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Rolling element bearings are vital components in most rotating machines. Bearings often operate in harsh environments where manufacturing imperfections, misalignments, and fatigue can result in reduced component lifespan. These failures are often preceded by changes in the normal vibration of the system. Modeling and detecting these vibrational anomalies is common practice in predicting machine failure. This paper develops and implements a novel approach to detecting bearing vibration anomalies in the time-frequency domain. The performance of the new approach is quantified using both simulated and experimental bearing vibration data. In these ground-truth experiments, the proposed time-frequency method successfully detects anomalies (>98% true positive) using short time spans (<0.1 s) with low false alarm rates (<1% false positive). Using experimental data, this time-frequency approach is shown to outperform one-dimensional time series analysis techniques. Rolling Experiments Matrix Bearings Vibration Time series Milo, M. W oth Roan, M. J oth Enthalten in Proceedings of the Institution of Mechanical Engineers / C Los Angeles, Calif. [u.a.] : Sage, 1983 230(2016), 13, Seite 2169-2180 (DE-627)130863114 (DE-600)1030844-1 (DE-576)023106441 0954-4062 nnns volume:230 year:2016 number:13 pages:2169-2180 http://dx.doi.org/10.1177/0954406215592439 Volltext http://search.proquest.com/docview/1807871426 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4700 52.10 AVZ AR 230 2016 13 2169-2180 |
spelling |
10.1177/0954406215592439 doi PQ20160815 (DE-627)OLC1980340056 (DE-599)GBVOLC1980340056 (PRQ)c934-d65ed08f7e71760449e9645c689485cea8ee9e70a300ce71a3dc2c736f4865990 (KEY)0121116120160000230001302169generalanomalydetectionapproachappliedtorollingele DE-627 ger DE-627 rakwb eng 620 DNB 52.10 bkl Harris, B. W verfasserin aut A general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Rolling element bearings are vital components in most rotating machines. Bearings often operate in harsh environments where manufacturing imperfections, misalignments, and fatigue can result in reduced component lifespan. These failures are often preceded by changes in the normal vibration of the system. Modeling and detecting these vibrational anomalies is common practice in predicting machine failure. This paper develops and implements a novel approach to detecting bearing vibration anomalies in the time-frequency domain. The performance of the new approach is quantified using both simulated and experimental bearing vibration data. In these ground-truth experiments, the proposed time-frequency method successfully detects anomalies (>98% true positive) using short time spans (<0.1 s) with low false alarm rates (<1% false positive). Using experimental data, this time-frequency approach is shown to outperform one-dimensional time series analysis techniques. Rolling Experiments Matrix Bearings Vibration Time series Milo, M. W oth Roan, M. J oth Enthalten in Proceedings of the Institution of Mechanical Engineers / C Los Angeles, Calif. [u.a.] : Sage, 1983 230(2016), 13, Seite 2169-2180 (DE-627)130863114 (DE-600)1030844-1 (DE-576)023106441 0954-4062 nnns volume:230 year:2016 number:13 pages:2169-2180 http://dx.doi.org/10.1177/0954406215592439 Volltext http://search.proquest.com/docview/1807871426 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4700 52.10 AVZ AR 230 2016 13 2169-2180 |
allfields_unstemmed |
10.1177/0954406215592439 doi PQ20160815 (DE-627)OLC1980340056 (DE-599)GBVOLC1980340056 (PRQ)c934-d65ed08f7e71760449e9645c689485cea8ee9e70a300ce71a3dc2c736f4865990 (KEY)0121116120160000230001302169generalanomalydetectionapproachappliedtorollingele DE-627 ger DE-627 rakwb eng 620 DNB 52.10 bkl Harris, B. W verfasserin aut A general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Rolling element bearings are vital components in most rotating machines. Bearings often operate in harsh environments where manufacturing imperfections, misalignments, and fatigue can result in reduced component lifespan. These failures are often preceded by changes in the normal vibration of the system. Modeling and detecting these vibrational anomalies is common practice in predicting machine failure. This paper develops and implements a novel approach to detecting bearing vibration anomalies in the time-frequency domain. The performance of the new approach is quantified using both simulated and experimental bearing vibration data. In these ground-truth experiments, the proposed time-frequency method successfully detects anomalies (>98% true positive) using short time spans (<0.1 s) with low false alarm rates (<1% false positive). Using experimental data, this time-frequency approach is shown to outperform one-dimensional time series analysis techniques. Rolling Experiments Matrix Bearings Vibration Time series Milo, M. W oth Roan, M. J oth Enthalten in Proceedings of the Institution of Mechanical Engineers / C Los Angeles, Calif. [u.a.] : Sage, 1983 230(2016), 13, Seite 2169-2180 (DE-627)130863114 (DE-600)1030844-1 (DE-576)023106441 0954-4062 nnns volume:230 year:2016 number:13 pages:2169-2180 http://dx.doi.org/10.1177/0954406215592439 Volltext http://search.proquest.com/docview/1807871426 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4700 52.10 AVZ AR 230 2016 13 2169-2180 |
allfieldsGer |
10.1177/0954406215592439 doi PQ20160815 (DE-627)OLC1980340056 (DE-599)GBVOLC1980340056 (PRQ)c934-d65ed08f7e71760449e9645c689485cea8ee9e70a300ce71a3dc2c736f4865990 (KEY)0121116120160000230001302169generalanomalydetectionapproachappliedtorollingele DE-627 ger DE-627 rakwb eng 620 DNB 52.10 bkl Harris, B. W verfasserin aut A general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Rolling element bearings are vital components in most rotating machines. Bearings often operate in harsh environments where manufacturing imperfections, misalignments, and fatigue can result in reduced component lifespan. These failures are often preceded by changes in the normal vibration of the system. Modeling and detecting these vibrational anomalies is common practice in predicting machine failure. This paper develops and implements a novel approach to detecting bearing vibration anomalies in the time-frequency domain. The performance of the new approach is quantified using both simulated and experimental bearing vibration data. In these ground-truth experiments, the proposed time-frequency method successfully detects anomalies (>98% true positive) using short time spans (<0.1 s) with low false alarm rates (<1% false positive). Using experimental data, this time-frequency approach is shown to outperform one-dimensional time series analysis techniques. Rolling Experiments Matrix Bearings Vibration Time series Milo, M. W oth Roan, M. J oth Enthalten in Proceedings of the Institution of Mechanical Engineers / C Los Angeles, Calif. [u.a.] : Sage, 1983 230(2016), 13, Seite 2169-2180 (DE-627)130863114 (DE-600)1030844-1 (DE-576)023106441 0954-4062 nnns volume:230 year:2016 number:13 pages:2169-2180 http://dx.doi.org/10.1177/0954406215592439 Volltext http://search.proquest.com/docview/1807871426 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4700 52.10 AVZ AR 230 2016 13 2169-2180 |
allfieldsSound |
10.1177/0954406215592439 doi PQ20160815 (DE-627)OLC1980340056 (DE-599)GBVOLC1980340056 (PRQ)c934-d65ed08f7e71760449e9645c689485cea8ee9e70a300ce71a3dc2c736f4865990 (KEY)0121116120160000230001302169generalanomalydetectionapproachappliedtorollingele DE-627 ger DE-627 rakwb eng 620 DNB 52.10 bkl Harris, B. W verfasserin aut A general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Rolling element bearings are vital components in most rotating machines. Bearings often operate in harsh environments where manufacturing imperfections, misalignments, and fatigue can result in reduced component lifespan. These failures are often preceded by changes in the normal vibration of the system. Modeling and detecting these vibrational anomalies is common practice in predicting machine failure. This paper develops and implements a novel approach to detecting bearing vibration anomalies in the time-frequency domain. The performance of the new approach is quantified using both simulated and experimental bearing vibration data. In these ground-truth experiments, the proposed time-frequency method successfully detects anomalies (>98% true positive) using short time spans (<0.1 s) with low false alarm rates (<1% false positive). Using experimental data, this time-frequency approach is shown to outperform one-dimensional time series analysis techniques. Rolling Experiments Matrix Bearings Vibration Time series Milo, M. W oth Roan, M. J oth Enthalten in Proceedings of the Institution of Mechanical Engineers / C Los Angeles, Calif. [u.a.] : Sage, 1983 230(2016), 13, Seite 2169-2180 (DE-627)130863114 (DE-600)1030844-1 (DE-576)023106441 0954-4062 nnns volume:230 year:2016 number:13 pages:2169-2180 http://dx.doi.org/10.1177/0954406215592439 Volltext http://search.proquest.com/docview/1807871426 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4700 52.10 AVZ AR 230 2016 13 2169-2180 |
language |
English |
source |
Enthalten in Proceedings of the Institution of Mechanical Engineers / C 230(2016), 13, Seite 2169-2180 volume:230 year:2016 number:13 pages:2169-2180 |
sourceStr |
Enthalten in Proceedings of the Institution of Mechanical Engineers / C 230(2016), 13, Seite 2169-2180 volume:230 year:2016 number:13 pages:2169-2180 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Rolling Experiments Matrix Bearings Vibration Time series |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Proceedings of the Institution of Mechanical Engineers / C |
authorswithroles_txt_mv |
Harris, B. W @@aut@@ Milo, M. W @@oth@@ Roan, M. J @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130863114 |
dewey-sort |
3620 |
id |
OLC1980340056 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980340056</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220183040.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1177/0954406215592439</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980340056</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980340056</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c934-d65ed08f7e71760449e9645c689485cea8ee9e70a300ce71a3dc2c736f4865990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0121116120160000230001302169generalanomalydetectionapproachappliedtorollingele</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harris, B. W</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rolling element bearings are vital components in most rotating machines. Bearings often operate in harsh environments where manufacturing imperfections, misalignments, and fatigue can result in reduced component lifespan. These failures are often preceded by changes in the normal vibration of the system. Modeling and detecting these vibrational anomalies is common practice in predicting machine failure. This paper develops and implements a novel approach to detecting bearing vibration anomalies in the time-frequency domain. The performance of the new approach is quantified using both simulated and experimental bearing vibration data. In these ground-truth experiments, the proposed time-frequency method successfully detects anomalies (>98% true positive) using short time spans (<0.1 s) with low false alarm rates (<1% false positive). Using experimental data, this time-frequency approach is shown to outperform one-dimensional time series analysis techniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rolling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experiments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bearings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Milo, M. W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roan, M. J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the Institution of Mechanical Engineers / C</subfield><subfield code="d">Los Angeles, Calif. [u.a.] : Sage, 1983</subfield><subfield code="g">230(2016), 13, Seite 2169-2180</subfield><subfield code="w">(DE-627)130863114</subfield><subfield code="w">(DE-600)1030844-1</subfield><subfield code="w">(DE-576)023106441</subfield><subfield code="x">0954-4062</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:230</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:13</subfield><subfield code="g">pages:2169-2180</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1177/0954406215592439</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1807871426</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.10</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">230</subfield><subfield code="j">2016</subfield><subfield code="e">13</subfield><subfield code="h">2169-2180</subfield></datafield></record></collection>
|
author |
Harris, B. W |
spellingShingle |
Harris, B. W ddc 620 bkl 52.10 misc Rolling misc Experiments misc Matrix misc Bearings misc Vibration misc Time series A general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis |
authorStr |
Harris, B. W |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130863114 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0954-4062 |
topic_title |
620 DNB 52.10 bkl A general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis Rolling Experiments Matrix Bearings Vibration Time series |
topic |
ddc 620 bkl 52.10 misc Rolling misc Experiments misc Matrix misc Bearings misc Vibration misc Time series |
topic_unstemmed |
ddc 620 bkl 52.10 misc Rolling misc Experiments misc Matrix misc Bearings misc Vibration misc Time series |
topic_browse |
ddc 620 bkl 52.10 misc Rolling misc Experiments misc Matrix misc Bearings misc Vibration misc Time series |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m w m mw mwm m j r mj mjr |
hierarchy_parent_title |
Proceedings of the Institution of Mechanical Engineers / C |
hierarchy_parent_id |
130863114 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Proceedings of the Institution of Mechanical Engineers / C |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130863114 (DE-600)1030844-1 (DE-576)023106441 |
title |
A general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis |
ctrlnum |
(DE-627)OLC1980340056 (DE-599)GBVOLC1980340056 (PRQ)c934-d65ed08f7e71760449e9645c689485cea8ee9e70a300ce71a3dc2c736f4865990 (KEY)0121116120160000230001302169generalanomalydetectionapproachappliedtorollingele |
title_full |
A general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis |
author_sort |
Harris, B. W |
journal |
Proceedings of the Institution of Mechanical Engineers / C |
journalStr |
Proceedings of the Institution of Mechanical Engineers / C |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
2169 |
author_browse |
Harris, B. W |
container_volume |
230 |
class |
620 DNB 52.10 bkl |
format_se |
Aufsätze |
author-letter |
Harris, B. W |
doi_str_mv |
10.1177/0954406215592439 |
dewey-full |
620 |
title_sort |
general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis |
title_auth |
A general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis |
abstract |
Rolling element bearings are vital components in most rotating machines. Bearings often operate in harsh environments where manufacturing imperfections, misalignments, and fatigue can result in reduced component lifespan. These failures are often preceded by changes in the normal vibration of the system. Modeling and detecting these vibrational anomalies is common practice in predicting machine failure. This paper develops and implements a novel approach to detecting bearing vibration anomalies in the time-frequency domain. The performance of the new approach is quantified using both simulated and experimental bearing vibration data. In these ground-truth experiments, the proposed time-frequency method successfully detects anomalies (>98% true positive) using short time spans (<0.1 s) with low false alarm rates (<1% false positive). Using experimental data, this time-frequency approach is shown to outperform one-dimensional time series analysis techniques. |
abstractGer |
Rolling element bearings are vital components in most rotating machines. Bearings often operate in harsh environments where manufacturing imperfections, misalignments, and fatigue can result in reduced component lifespan. These failures are often preceded by changes in the normal vibration of the system. Modeling and detecting these vibrational anomalies is common practice in predicting machine failure. This paper develops and implements a novel approach to detecting bearing vibration anomalies in the time-frequency domain. The performance of the new approach is quantified using both simulated and experimental bearing vibration data. In these ground-truth experiments, the proposed time-frequency method successfully detects anomalies (>98% true positive) using short time spans (<0.1 s) with low false alarm rates (<1% false positive). Using experimental data, this time-frequency approach is shown to outperform one-dimensional time series analysis techniques. |
abstract_unstemmed |
Rolling element bearings are vital components in most rotating machines. Bearings often operate in harsh environments where manufacturing imperfections, misalignments, and fatigue can result in reduced component lifespan. These failures are often preceded by changes in the normal vibration of the system. Modeling and detecting these vibrational anomalies is common practice in predicting machine failure. This paper develops and implements a novel approach to detecting bearing vibration anomalies in the time-frequency domain. The performance of the new approach is quantified using both simulated and experimental bearing vibration data. In these ground-truth experiments, the proposed time-frequency method successfully detects anomalies (>98% true positive) using short time spans (<0.1 s) with low false alarm rates (<1% false positive). Using experimental data, this time-frequency approach is shown to outperform one-dimensional time series analysis techniques. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4700 |
container_issue |
13 |
title_short |
A general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis |
url |
http://dx.doi.org/10.1177/0954406215592439 http://search.proquest.com/docview/1807871426 |
remote_bool |
false |
author2 |
Milo, M. W Roan, M. J |
author2Str |
Milo, M. W Roan, M. J |
ppnlink |
130863114 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1177/0954406215592439 |
up_date |
2024-07-04T02:54:21.699Z |
_version_ |
1803615376990273536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980340056</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220183040.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1177/0954406215592439</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980340056</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980340056</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c934-d65ed08f7e71760449e9645c689485cea8ee9e70a300ce71a3dc2c736f4865990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0121116120160000230001302169generalanomalydetectionapproachappliedtorollingele</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harris, B. W</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A general anomaly detection approach applied to rolling element bearings via reduced-dimensionality transition matrix analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rolling element bearings are vital components in most rotating machines. Bearings often operate in harsh environments where manufacturing imperfections, misalignments, and fatigue can result in reduced component lifespan. These failures are often preceded by changes in the normal vibration of the system. Modeling and detecting these vibrational anomalies is common practice in predicting machine failure. This paper develops and implements a novel approach to detecting bearing vibration anomalies in the time-frequency domain. The performance of the new approach is quantified using both simulated and experimental bearing vibration data. In these ground-truth experiments, the proposed time-frequency method successfully detects anomalies (>98% true positive) using short time spans (<0.1 s) with low false alarm rates (<1% false positive). Using experimental data, this time-frequency approach is shown to outperform one-dimensional time series analysis techniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rolling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experiments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bearings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Milo, M. W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roan, M. J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the Institution of Mechanical Engineers / C</subfield><subfield code="d">Los Angeles, Calif. [u.a.] : Sage, 1983</subfield><subfield code="g">230(2016), 13, Seite 2169-2180</subfield><subfield code="w">(DE-627)130863114</subfield><subfield code="w">(DE-600)1030844-1</subfield><subfield code="w">(DE-576)023106441</subfield><subfield code="x">0954-4062</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:230</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:13</subfield><subfield code="g">pages:2169-2180</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1177/0954406215592439</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1807871426</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.10</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">230</subfield><subfield code="j">2016</subfield><subfield code="e">13</subfield><subfield code="h">2169-2180</subfield></datafield></record></collection>
|
score |
7.400505 |