Distribution‐free precedence control charts with improved runs‐rules
Distribution‐free (nonparametric) control charts are helpful in applications where we do not have enough information about the underlying distribution. The Shewhart precedence charts is a class of Phase I nonparametric charts for location. One of these charts, called the median precedence chart (Med...
Ausführliche Beschreibung
Autor*in: |
Malela‐Majika, J.‐C [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Applied stochastic models in business and industry - Chichester : Wiley, 1999, 32(2016), 4, Seite 423-439 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2016 ; number:4 ; pages:423-439 |
Links: |
---|
DOI / URN: |
10.1002/asmb.2159 |
---|
Katalog-ID: |
OLC1980400822 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1980400822 | ||
003 | DE-627 | ||
005 | 20220215123225.0 | ||
007 | tu | ||
008 | 160816s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/asmb.2159 |2 doi | |
028 | 5 | 2 | |a PQ20160815 |
035 | |a (DE-627)OLC1980400822 | ||
035 | |a (DE-599)GBVOLC1980400822 | ||
035 | |a (PRQ)s649-5c9edb9d251e958563911edbcd8fc29c2249229b1e00fd499e9163b91527f9983 | ||
035 | |a (KEY)0142620620160000032000400423distributionfreeprecedencecontrolchartswithimprove | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DNB |
084 | |a 31.70 |2 bkl | ||
084 | |a 31.73 |2 bkl | ||
084 | |a 85.03 |2 bkl | ||
100 | 1 | |a Malela‐Majika, J.‐C |e verfasserin |4 aut | |
245 | 1 | 0 | |a Distribution‐free precedence control charts with improved runs‐rules |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Distribution‐free (nonparametric) control charts are helpful in applications where we do not have enough information about the underlying distribution. The Shewhart precedence charts is a class of Phase I nonparametric charts for location. One of these charts, called the median precedence chart (Med chart hereafter), uses the median of the test sample as the charting statistic, whereas another chart, called the minimum precedence chart (Min chart hereafter), uses the minimum. In this paper, we first study the comparative performance of the Min and the Med charts, respectively, in terms of their in‐control and out‐of‐control run‐length properties in an extensive simulation study. It is seen that neither chart is best as each has its strength in certain situations. Next, we consider enhancing their performance by adding some supplementary runs‐rules. It is seen that the new charts present very attractive run‐length properties, that is, they outperform their competitors in many situations. A summary and some concluding remarks are given. Copyright © 2016 John Wiley & Sons, Ltd. | ||
540 | |a Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. | ||
650 | 4 | |a improved modified runs‐rules | |
650 | 4 | |a nonparametric | |
650 | 4 | |a order statistics | |
650 | 4 | |a improved runs‐rules | |
700 | 1 | |a Chakraborti, S |4 oth | |
700 | 1 | |a Graham, M. A |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Applied stochastic models in business and industry |d Chichester : Wiley, 1999 |g 32(2016), 4, Seite 423-439 |w (DE-627)308443675 |w (DE-600)1501781-3 |w (DE-576)082463638 |x 1524-1904 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2016 |g number:4 |g pages:423-439 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/asmb.2159 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/asmb.2159/abstract |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 31.70 |q AVZ |
936 | b | k | |a 31.73 |q AVZ |
936 | b | k | |a 85.03 |q AVZ |
951 | |a AR | ||
952 | |d 32 |j 2016 |e 4 |h 423-439 |
author_variant |
j m jm |
---|---|
matchkey_str |
article:15241904:2016----::itiuinrercdneotocatwti |
hierarchy_sort_str |
2016 |
bklnumber |
31.70 31.73 85.03 |
publishDate |
2016 |
allfields |
10.1002/asmb.2159 doi PQ20160815 (DE-627)OLC1980400822 (DE-599)GBVOLC1980400822 (PRQ)s649-5c9edb9d251e958563911edbcd8fc29c2249229b1e00fd499e9163b91527f9983 (KEY)0142620620160000032000400423distributionfreeprecedencecontrolchartswithimprove DE-627 ger DE-627 rakwb eng 510 DNB 31.70 bkl 31.73 bkl 85.03 bkl Malela‐Majika, J.‐C verfasserin aut Distribution‐free precedence control charts with improved runs‐rules 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Distribution‐free (nonparametric) control charts are helpful in applications where we do not have enough information about the underlying distribution. The Shewhart precedence charts is a class of Phase I nonparametric charts for location. One of these charts, called the median precedence chart (Med chart hereafter), uses the median of the test sample as the charting statistic, whereas another chart, called the minimum precedence chart (Min chart hereafter), uses the minimum. In this paper, we first study the comparative performance of the Min and the Med charts, respectively, in terms of their in‐control and out‐of‐control run‐length properties in an extensive simulation study. It is seen that neither chart is best as each has its strength in certain situations. Next, we consider enhancing their performance by adding some supplementary runs‐rules. It is seen that the new charts present very attractive run‐length properties, that is, they outperform their competitors in many situations. A summary and some concluding remarks are given. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. improved modified runs‐rules nonparametric order statistics improved runs‐rules Chakraborti, S oth Graham, M. A oth Enthalten in Applied stochastic models in business and industry Chichester : Wiley, 1999 32(2016), 4, Seite 423-439 (DE-627)308443675 (DE-600)1501781-3 (DE-576)082463638 1524-1904 nnns volume:32 year:2016 number:4 pages:423-439 http://dx.doi.org/10.1002/asmb.2159 Volltext http://onlinelibrary.wiley.com/doi/10.1002/asmb.2159/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_60 GBV_ILN_70 31.70 AVZ 31.73 AVZ 85.03 AVZ AR 32 2016 4 423-439 |
spelling |
10.1002/asmb.2159 doi PQ20160815 (DE-627)OLC1980400822 (DE-599)GBVOLC1980400822 (PRQ)s649-5c9edb9d251e958563911edbcd8fc29c2249229b1e00fd499e9163b91527f9983 (KEY)0142620620160000032000400423distributionfreeprecedencecontrolchartswithimprove DE-627 ger DE-627 rakwb eng 510 DNB 31.70 bkl 31.73 bkl 85.03 bkl Malela‐Majika, J.‐C verfasserin aut Distribution‐free precedence control charts with improved runs‐rules 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Distribution‐free (nonparametric) control charts are helpful in applications where we do not have enough information about the underlying distribution. The Shewhart precedence charts is a class of Phase I nonparametric charts for location. One of these charts, called the median precedence chart (Med chart hereafter), uses the median of the test sample as the charting statistic, whereas another chart, called the minimum precedence chart (Min chart hereafter), uses the minimum. In this paper, we first study the comparative performance of the Min and the Med charts, respectively, in terms of their in‐control and out‐of‐control run‐length properties in an extensive simulation study. It is seen that neither chart is best as each has its strength in certain situations. Next, we consider enhancing their performance by adding some supplementary runs‐rules. It is seen that the new charts present very attractive run‐length properties, that is, they outperform their competitors in many situations. A summary and some concluding remarks are given. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. improved modified runs‐rules nonparametric order statistics improved runs‐rules Chakraborti, S oth Graham, M. A oth Enthalten in Applied stochastic models in business and industry Chichester : Wiley, 1999 32(2016), 4, Seite 423-439 (DE-627)308443675 (DE-600)1501781-3 (DE-576)082463638 1524-1904 nnns volume:32 year:2016 number:4 pages:423-439 http://dx.doi.org/10.1002/asmb.2159 Volltext http://onlinelibrary.wiley.com/doi/10.1002/asmb.2159/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_60 GBV_ILN_70 31.70 AVZ 31.73 AVZ 85.03 AVZ AR 32 2016 4 423-439 |
allfields_unstemmed |
10.1002/asmb.2159 doi PQ20160815 (DE-627)OLC1980400822 (DE-599)GBVOLC1980400822 (PRQ)s649-5c9edb9d251e958563911edbcd8fc29c2249229b1e00fd499e9163b91527f9983 (KEY)0142620620160000032000400423distributionfreeprecedencecontrolchartswithimprove DE-627 ger DE-627 rakwb eng 510 DNB 31.70 bkl 31.73 bkl 85.03 bkl Malela‐Majika, J.‐C verfasserin aut Distribution‐free precedence control charts with improved runs‐rules 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Distribution‐free (nonparametric) control charts are helpful in applications where we do not have enough information about the underlying distribution. The Shewhart precedence charts is a class of Phase I nonparametric charts for location. One of these charts, called the median precedence chart (Med chart hereafter), uses the median of the test sample as the charting statistic, whereas another chart, called the minimum precedence chart (Min chart hereafter), uses the minimum. In this paper, we first study the comparative performance of the Min and the Med charts, respectively, in terms of their in‐control and out‐of‐control run‐length properties in an extensive simulation study. It is seen that neither chart is best as each has its strength in certain situations. Next, we consider enhancing their performance by adding some supplementary runs‐rules. It is seen that the new charts present very attractive run‐length properties, that is, they outperform their competitors in many situations. A summary and some concluding remarks are given. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. improved modified runs‐rules nonparametric order statistics improved runs‐rules Chakraborti, S oth Graham, M. A oth Enthalten in Applied stochastic models in business and industry Chichester : Wiley, 1999 32(2016), 4, Seite 423-439 (DE-627)308443675 (DE-600)1501781-3 (DE-576)082463638 1524-1904 nnns volume:32 year:2016 number:4 pages:423-439 http://dx.doi.org/10.1002/asmb.2159 Volltext http://onlinelibrary.wiley.com/doi/10.1002/asmb.2159/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_60 GBV_ILN_70 31.70 AVZ 31.73 AVZ 85.03 AVZ AR 32 2016 4 423-439 |
allfieldsGer |
10.1002/asmb.2159 doi PQ20160815 (DE-627)OLC1980400822 (DE-599)GBVOLC1980400822 (PRQ)s649-5c9edb9d251e958563911edbcd8fc29c2249229b1e00fd499e9163b91527f9983 (KEY)0142620620160000032000400423distributionfreeprecedencecontrolchartswithimprove DE-627 ger DE-627 rakwb eng 510 DNB 31.70 bkl 31.73 bkl 85.03 bkl Malela‐Majika, J.‐C verfasserin aut Distribution‐free precedence control charts with improved runs‐rules 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Distribution‐free (nonparametric) control charts are helpful in applications where we do not have enough information about the underlying distribution. The Shewhart precedence charts is a class of Phase I nonparametric charts for location. One of these charts, called the median precedence chart (Med chart hereafter), uses the median of the test sample as the charting statistic, whereas another chart, called the minimum precedence chart (Min chart hereafter), uses the minimum. In this paper, we first study the comparative performance of the Min and the Med charts, respectively, in terms of their in‐control and out‐of‐control run‐length properties in an extensive simulation study. It is seen that neither chart is best as each has its strength in certain situations. Next, we consider enhancing their performance by adding some supplementary runs‐rules. It is seen that the new charts present very attractive run‐length properties, that is, they outperform their competitors in many situations. A summary and some concluding remarks are given. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. improved modified runs‐rules nonparametric order statistics improved runs‐rules Chakraborti, S oth Graham, M. A oth Enthalten in Applied stochastic models in business and industry Chichester : Wiley, 1999 32(2016), 4, Seite 423-439 (DE-627)308443675 (DE-600)1501781-3 (DE-576)082463638 1524-1904 nnns volume:32 year:2016 number:4 pages:423-439 http://dx.doi.org/10.1002/asmb.2159 Volltext http://onlinelibrary.wiley.com/doi/10.1002/asmb.2159/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_60 GBV_ILN_70 31.70 AVZ 31.73 AVZ 85.03 AVZ AR 32 2016 4 423-439 |
allfieldsSound |
10.1002/asmb.2159 doi PQ20160815 (DE-627)OLC1980400822 (DE-599)GBVOLC1980400822 (PRQ)s649-5c9edb9d251e958563911edbcd8fc29c2249229b1e00fd499e9163b91527f9983 (KEY)0142620620160000032000400423distributionfreeprecedencecontrolchartswithimprove DE-627 ger DE-627 rakwb eng 510 DNB 31.70 bkl 31.73 bkl 85.03 bkl Malela‐Majika, J.‐C verfasserin aut Distribution‐free precedence control charts with improved runs‐rules 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Distribution‐free (nonparametric) control charts are helpful in applications where we do not have enough information about the underlying distribution. The Shewhart precedence charts is a class of Phase I nonparametric charts for location. One of these charts, called the median precedence chart (Med chart hereafter), uses the median of the test sample as the charting statistic, whereas another chart, called the minimum precedence chart (Min chart hereafter), uses the minimum. In this paper, we first study the comparative performance of the Min and the Med charts, respectively, in terms of their in‐control and out‐of‐control run‐length properties in an extensive simulation study. It is seen that neither chart is best as each has its strength in certain situations. Next, we consider enhancing their performance by adding some supplementary runs‐rules. It is seen that the new charts present very attractive run‐length properties, that is, they outperform their competitors in many situations. A summary and some concluding remarks are given. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. improved modified runs‐rules nonparametric order statistics improved runs‐rules Chakraborti, S oth Graham, M. A oth Enthalten in Applied stochastic models in business and industry Chichester : Wiley, 1999 32(2016), 4, Seite 423-439 (DE-627)308443675 (DE-600)1501781-3 (DE-576)082463638 1524-1904 nnns volume:32 year:2016 number:4 pages:423-439 http://dx.doi.org/10.1002/asmb.2159 Volltext http://onlinelibrary.wiley.com/doi/10.1002/asmb.2159/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_60 GBV_ILN_70 31.70 AVZ 31.73 AVZ 85.03 AVZ AR 32 2016 4 423-439 |
language |
English |
source |
Enthalten in Applied stochastic models in business and industry 32(2016), 4, Seite 423-439 volume:32 year:2016 number:4 pages:423-439 |
sourceStr |
Enthalten in Applied stochastic models in business and industry 32(2016), 4, Seite 423-439 volume:32 year:2016 number:4 pages:423-439 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
improved modified runs‐rules nonparametric order statistics improved runs‐rules |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Applied stochastic models in business and industry |
authorswithroles_txt_mv |
Malela‐Majika, J.‐C @@aut@@ Chakraborti, S @@oth@@ Graham, M. A @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
308443675 |
dewey-sort |
3510 |
id |
OLC1980400822 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980400822</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215123225.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/asmb.2159</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980400822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980400822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)s649-5c9edb9d251e958563911edbcd8fc29c2249229b1e00fd499e9163b91527f9983</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0142620620160000032000400423distributionfreeprecedencecontrolchartswithimprove</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Malela‐Majika, J.‐C</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distribution‐free precedence control charts with improved runs‐rules</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Distribution‐free (nonparametric) control charts are helpful in applications where we do not have enough information about the underlying distribution. The Shewhart precedence charts is a class of Phase I nonparametric charts for location. One of these charts, called the median precedence chart (Med chart hereafter), uses the median of the test sample as the charting statistic, whereas another chart, called the minimum precedence chart (Min chart hereafter), uses the minimum. In this paper, we first study the comparative performance of the Min and the Med charts, respectively, in terms of their in‐control and out‐of‐control run‐length properties in an extensive simulation study. It is seen that neither chart is best as each has its strength in certain situations. Next, we consider enhancing their performance by adding some supplementary runs‐rules. It is seen that the new charts present very attractive run‐length properties, that is, they outperform their competitors in many situations. A summary and some concluding remarks are given. Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">improved modified runs‐rules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonparametric</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">order statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">improved runs‐rules</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborti, S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Graham, M. A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied stochastic models in business and industry</subfield><subfield code="d">Chichester : Wiley, 1999</subfield><subfield code="g">32(2016), 4, Seite 423-439</subfield><subfield code="w">(DE-627)308443675</subfield><subfield code="w">(DE-600)1501781-3</subfield><subfield code="w">(DE-576)082463638</subfield><subfield code="x">1524-1904</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:423-439</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/asmb.2159</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/asmb.2159/abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.03</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">423-439</subfield></datafield></record></collection>
|
author |
Malela‐Majika, J.‐C |
spellingShingle |
Malela‐Majika, J.‐C ddc 510 bkl 31.70 bkl 31.73 bkl 85.03 misc improved modified runs‐rules misc nonparametric misc order statistics misc improved runs‐rules Distribution‐free precedence control charts with improved runs‐rules |
authorStr |
Malela‐Majika, J.‐C |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)308443675 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1524-1904 |
topic_title |
510 DNB 31.70 bkl 31.73 bkl 85.03 bkl Distribution‐free precedence control charts with improved runs‐rules improved modified runs‐rules nonparametric order statistics improved runs‐rules |
topic |
ddc 510 bkl 31.70 bkl 31.73 bkl 85.03 misc improved modified runs‐rules misc nonparametric misc order statistics misc improved runs‐rules |
topic_unstemmed |
ddc 510 bkl 31.70 bkl 31.73 bkl 85.03 misc improved modified runs‐rules misc nonparametric misc order statistics misc improved runs‐rules |
topic_browse |
ddc 510 bkl 31.70 bkl 31.73 bkl 85.03 misc improved modified runs‐rules misc nonparametric misc order statistics misc improved runs‐rules |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
s c sc m a g ma mag |
hierarchy_parent_title |
Applied stochastic models in business and industry |
hierarchy_parent_id |
308443675 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Applied stochastic models in business and industry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)308443675 (DE-600)1501781-3 (DE-576)082463638 |
title |
Distribution‐free precedence control charts with improved runs‐rules |
ctrlnum |
(DE-627)OLC1980400822 (DE-599)GBVOLC1980400822 (PRQ)s649-5c9edb9d251e958563911edbcd8fc29c2249229b1e00fd499e9163b91527f9983 (KEY)0142620620160000032000400423distributionfreeprecedencecontrolchartswithimprove |
title_full |
Distribution‐free precedence control charts with improved runs‐rules |
author_sort |
Malela‐Majika, J.‐C |
journal |
Applied stochastic models in business and industry |
journalStr |
Applied stochastic models in business and industry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
423 |
author_browse |
Malela‐Majika, J.‐C |
container_volume |
32 |
class |
510 DNB 31.70 bkl 31.73 bkl 85.03 bkl |
format_se |
Aufsätze |
author-letter |
Malela‐Majika, J.‐C |
doi_str_mv |
10.1002/asmb.2159 |
dewey-full |
510 |
title_sort |
distribution‐free precedence control charts with improved runs‐rules |
title_auth |
Distribution‐free precedence control charts with improved runs‐rules |
abstract |
Distribution‐free (nonparametric) control charts are helpful in applications where we do not have enough information about the underlying distribution. The Shewhart precedence charts is a class of Phase I nonparametric charts for location. One of these charts, called the median precedence chart (Med chart hereafter), uses the median of the test sample as the charting statistic, whereas another chart, called the minimum precedence chart (Min chart hereafter), uses the minimum. In this paper, we first study the comparative performance of the Min and the Med charts, respectively, in terms of their in‐control and out‐of‐control run‐length properties in an extensive simulation study. It is seen that neither chart is best as each has its strength in certain situations. Next, we consider enhancing their performance by adding some supplementary runs‐rules. It is seen that the new charts present very attractive run‐length properties, that is, they outperform their competitors in many situations. A summary and some concluding remarks are given. Copyright © 2016 John Wiley & Sons, Ltd. |
abstractGer |
Distribution‐free (nonparametric) control charts are helpful in applications where we do not have enough information about the underlying distribution. The Shewhart precedence charts is a class of Phase I nonparametric charts for location. One of these charts, called the median precedence chart (Med chart hereafter), uses the median of the test sample as the charting statistic, whereas another chart, called the minimum precedence chart (Min chart hereafter), uses the minimum. In this paper, we first study the comparative performance of the Min and the Med charts, respectively, in terms of their in‐control and out‐of‐control run‐length properties in an extensive simulation study. It is seen that neither chart is best as each has its strength in certain situations. Next, we consider enhancing their performance by adding some supplementary runs‐rules. It is seen that the new charts present very attractive run‐length properties, that is, they outperform their competitors in many situations. A summary and some concluding remarks are given. Copyright © 2016 John Wiley & Sons, Ltd. |
abstract_unstemmed |
Distribution‐free (nonparametric) control charts are helpful in applications where we do not have enough information about the underlying distribution. The Shewhart precedence charts is a class of Phase I nonparametric charts for location. One of these charts, called the median precedence chart (Med chart hereafter), uses the median of the test sample as the charting statistic, whereas another chart, called the minimum precedence chart (Min chart hereafter), uses the minimum. In this paper, we first study the comparative performance of the Min and the Med charts, respectively, in terms of their in‐control and out‐of‐control run‐length properties in an extensive simulation study. It is seen that neither chart is best as each has its strength in certain situations. Next, we consider enhancing their performance by adding some supplementary runs‐rules. It is seen that the new charts present very attractive run‐length properties, that is, they outperform their competitors in many situations. A summary and some concluding remarks are given. Copyright © 2016 John Wiley & Sons, Ltd. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_60 GBV_ILN_70 |
container_issue |
4 |
title_short |
Distribution‐free precedence control charts with improved runs‐rules |
url |
http://dx.doi.org/10.1002/asmb.2159 http://onlinelibrary.wiley.com/doi/10.1002/asmb.2159/abstract |
remote_bool |
false |
author2 |
Chakraborti, S Graham, M. A |
author2Str |
Chakraborti, S Graham, M. A |
ppnlink |
308443675 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1002/asmb.2159 |
up_date |
2024-07-04T03:01:47.144Z |
_version_ |
1803615844074258432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980400822</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215123225.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/asmb.2159</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980400822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980400822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)s649-5c9edb9d251e958563911edbcd8fc29c2249229b1e00fd499e9163b91527f9983</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0142620620160000032000400423distributionfreeprecedencecontrolchartswithimprove</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Malela‐Majika, J.‐C</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distribution‐free precedence control charts with improved runs‐rules</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Distribution‐free (nonparametric) control charts are helpful in applications where we do not have enough information about the underlying distribution. The Shewhart precedence charts is a class of Phase I nonparametric charts for location. One of these charts, called the median precedence chart (Med chart hereafter), uses the median of the test sample as the charting statistic, whereas another chart, called the minimum precedence chart (Min chart hereafter), uses the minimum. In this paper, we first study the comparative performance of the Min and the Med charts, respectively, in terms of their in‐control and out‐of‐control run‐length properties in an extensive simulation study. It is seen that neither chart is best as each has its strength in certain situations. Next, we consider enhancing their performance by adding some supplementary runs‐rules. It is seen that the new charts present very attractive run‐length properties, that is, they outperform their competitors in many situations. A summary and some concluding remarks are given. Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">improved modified runs‐rules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonparametric</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">order statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">improved runs‐rules</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborti, S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Graham, M. A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied stochastic models in business and industry</subfield><subfield code="d">Chichester : Wiley, 1999</subfield><subfield code="g">32(2016), 4, Seite 423-439</subfield><subfield code="w">(DE-627)308443675</subfield><subfield code="w">(DE-600)1501781-3</subfield><subfield code="w">(DE-576)082463638</subfield><subfield code="x">1524-1904</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:423-439</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/asmb.2159</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/asmb.2159/abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.03</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">423-439</subfield></datafield></record></collection>
|
score |
7.40086 |