Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study
Travel activities are embodied as people's needs to be physically present at certain locations. The development of Information and Communication Technologies (ICTs, such as mobile phones) has introduced new data sources for modeling human activities. Based on the scattered spatiotemporal points...
Ausführliche Beschreibung
Autor*in: |
Yuan, Yihong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016 Taylor & Francis 2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of geographical information science - London [u.a.] : Taylor & Francis, 1987, 30(2016), 8, Seite 1594 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2016 ; number:8 ; pages:1594 |
Links: |
---|
DOI / URN: |
10.1080/13658816.2016.1143555 |
---|
Katalog-ID: |
OLC1980442622 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1980442622 | ||
003 | DE-627 | ||
005 | 20220216202759.0 | ||
007 | tu | ||
008 | 160816s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/13658816.2016.1143555 |2 doi | |
028 | 5 | 2 | |a PQ20161201 |
035 | |a (DE-627)OLC1980442622 | ||
035 | |a (DE-599)GBVOLC1980442622 | ||
035 | |a (PRQ)i1379-4311e1eea56c12576855ffd79f52a19b362d0c1c32a0021f0e0b1207f424bfb0 | ||
035 | |a (KEY)0159829520160000030000801594analyzingthedistributionofhumanactivityspacefrommo | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 550 |q DNB |
084 | |a 74.48 |2 bkl | ||
100 | 1 | |a Yuan, Yihong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Travel activities are embodied as people's needs to be physically present at certain locations. The development of Information and Communication Technologies (ICTs, such as mobile phones) has introduced new data sources for modeling human activities. Based on the scattered spatiotemporal points provided in mobile phone datasets, it is feasible to study the patterns (e.g., the scale, shape, and regularity) of human activities. In this paper, we propose methods for analyzing the distribution of human activity space from both individual and urban perspectives based on mobile phone data. The Weibull distribution is utilized to model three predefined measurements of activity space (radius, shape index, and entropy). The correlation between demographic factors (age and gender) and the usage of urban space is also tested to reveal underlying patterns. The results of this research will enhance the understanding of human activities in different urban systems and demographic groups, as well as providing novel methods to expand the important and widely applicable area of geographic knowledge discovery in the age of instant access. | ||
540 | |a Nutzungsrecht: © 2016 Taylor & Francis 2016 | ||
650 | 4 | |a mobile phones | |
650 | 4 | |a data mining | |
650 | 4 | |a Big (geo)data | |
650 | 4 | |a Weibull distribution | |
650 | 4 | |a human mobility | |
650 | 4 | |a Activity space | |
650 | 4 | |a Data mining | |
650 | 4 | |a Big Data | |
650 | 4 | |a Geographic information science | |
650 | 4 | |a Cellular telephones | |
700 | 1 | |a Raubal, Martin |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal of geographical information science |d London [u.a.] : Taylor & Francis, 1987 |g 30(2016), 8, Seite 1594 |w (DE-627)129244368 |w (DE-600)58915-9 |w (DE-576)017944023 |x 1365-8816 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2016 |g number:8 |g pages:1594 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/13658816.2016.1143555 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1143555 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1784223601 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_4305 | ||
936 | b | k | |a 74.48 |q AVZ |
951 | |a AR | ||
952 | |d 30 |j 2016 |e 8 |h 1594 |
author_variant |
y y yy |
---|---|
matchkey_str |
article:13658816:2016----::nlznteitiuinfuaatvtsaermoiehnuaennii |
hierarchy_sort_str |
2016 |
bklnumber |
74.48 |
publishDate |
2016 |
allfields |
10.1080/13658816.2016.1143555 doi PQ20161201 (DE-627)OLC1980442622 (DE-599)GBVOLC1980442622 (PRQ)i1379-4311e1eea56c12576855ffd79f52a19b362d0c1c32a0021f0e0b1207f424bfb0 (KEY)0159829520160000030000801594analyzingthedistributionofhumanactivityspacefrommo DE-627 ger DE-627 rakwb eng 004 550 DNB 74.48 bkl Yuan, Yihong verfasserin aut Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Travel activities are embodied as people's needs to be physically present at certain locations. The development of Information and Communication Technologies (ICTs, such as mobile phones) has introduced new data sources for modeling human activities. Based on the scattered spatiotemporal points provided in mobile phone datasets, it is feasible to study the patterns (e.g., the scale, shape, and regularity) of human activities. In this paper, we propose methods for analyzing the distribution of human activity space from both individual and urban perspectives based on mobile phone data. The Weibull distribution is utilized to model three predefined measurements of activity space (radius, shape index, and entropy). The correlation between demographic factors (age and gender) and the usage of urban space is also tested to reveal underlying patterns. The results of this research will enhance the understanding of human activities in different urban systems and demographic groups, as well as providing novel methods to expand the important and widely applicable area of geographic knowledge discovery in the age of instant access. Nutzungsrecht: © 2016 Taylor & Francis 2016 mobile phones data mining Big (geo)data Weibull distribution human mobility Activity space Data mining Big Data Geographic information science Cellular telephones Raubal, Martin oth Enthalten in International journal of geographical information science London [u.a.] : Taylor & Francis, 1987 30(2016), 8, Seite 1594 (DE-627)129244368 (DE-600)58915-9 (DE-576)017944023 1365-8816 nnns volume:30 year:2016 number:8 pages:1594 http://dx.doi.org/10.1080/13658816.2016.1143555 Volltext http://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1143555 http://search.proquest.com/docview/1784223601 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-MAT SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2011 GBV_ILN_4305 74.48 AVZ AR 30 2016 8 1594 |
spelling |
10.1080/13658816.2016.1143555 doi PQ20161201 (DE-627)OLC1980442622 (DE-599)GBVOLC1980442622 (PRQ)i1379-4311e1eea56c12576855ffd79f52a19b362d0c1c32a0021f0e0b1207f424bfb0 (KEY)0159829520160000030000801594analyzingthedistributionofhumanactivityspacefrommo DE-627 ger DE-627 rakwb eng 004 550 DNB 74.48 bkl Yuan, Yihong verfasserin aut Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Travel activities are embodied as people's needs to be physically present at certain locations. The development of Information and Communication Technologies (ICTs, such as mobile phones) has introduced new data sources for modeling human activities. Based on the scattered spatiotemporal points provided in mobile phone datasets, it is feasible to study the patterns (e.g., the scale, shape, and regularity) of human activities. In this paper, we propose methods for analyzing the distribution of human activity space from both individual and urban perspectives based on mobile phone data. The Weibull distribution is utilized to model three predefined measurements of activity space (radius, shape index, and entropy). The correlation between demographic factors (age and gender) and the usage of urban space is also tested to reveal underlying patterns. The results of this research will enhance the understanding of human activities in different urban systems and demographic groups, as well as providing novel methods to expand the important and widely applicable area of geographic knowledge discovery in the age of instant access. Nutzungsrecht: © 2016 Taylor & Francis 2016 mobile phones data mining Big (geo)data Weibull distribution human mobility Activity space Data mining Big Data Geographic information science Cellular telephones Raubal, Martin oth Enthalten in International journal of geographical information science London [u.a.] : Taylor & Francis, 1987 30(2016), 8, Seite 1594 (DE-627)129244368 (DE-600)58915-9 (DE-576)017944023 1365-8816 nnns volume:30 year:2016 number:8 pages:1594 http://dx.doi.org/10.1080/13658816.2016.1143555 Volltext http://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1143555 http://search.proquest.com/docview/1784223601 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-MAT SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2011 GBV_ILN_4305 74.48 AVZ AR 30 2016 8 1594 |
allfields_unstemmed |
10.1080/13658816.2016.1143555 doi PQ20161201 (DE-627)OLC1980442622 (DE-599)GBVOLC1980442622 (PRQ)i1379-4311e1eea56c12576855ffd79f52a19b362d0c1c32a0021f0e0b1207f424bfb0 (KEY)0159829520160000030000801594analyzingthedistributionofhumanactivityspacefrommo DE-627 ger DE-627 rakwb eng 004 550 DNB 74.48 bkl Yuan, Yihong verfasserin aut Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Travel activities are embodied as people's needs to be physically present at certain locations. The development of Information and Communication Technologies (ICTs, such as mobile phones) has introduced new data sources for modeling human activities. Based on the scattered spatiotemporal points provided in mobile phone datasets, it is feasible to study the patterns (e.g., the scale, shape, and regularity) of human activities. In this paper, we propose methods for analyzing the distribution of human activity space from both individual and urban perspectives based on mobile phone data. The Weibull distribution is utilized to model three predefined measurements of activity space (radius, shape index, and entropy). The correlation between demographic factors (age and gender) and the usage of urban space is also tested to reveal underlying patterns. The results of this research will enhance the understanding of human activities in different urban systems and demographic groups, as well as providing novel methods to expand the important and widely applicable area of geographic knowledge discovery in the age of instant access. Nutzungsrecht: © 2016 Taylor & Francis 2016 mobile phones data mining Big (geo)data Weibull distribution human mobility Activity space Data mining Big Data Geographic information science Cellular telephones Raubal, Martin oth Enthalten in International journal of geographical information science London [u.a.] : Taylor & Francis, 1987 30(2016), 8, Seite 1594 (DE-627)129244368 (DE-600)58915-9 (DE-576)017944023 1365-8816 nnns volume:30 year:2016 number:8 pages:1594 http://dx.doi.org/10.1080/13658816.2016.1143555 Volltext http://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1143555 http://search.proquest.com/docview/1784223601 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-MAT SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2011 GBV_ILN_4305 74.48 AVZ AR 30 2016 8 1594 |
allfieldsGer |
10.1080/13658816.2016.1143555 doi PQ20161201 (DE-627)OLC1980442622 (DE-599)GBVOLC1980442622 (PRQ)i1379-4311e1eea56c12576855ffd79f52a19b362d0c1c32a0021f0e0b1207f424bfb0 (KEY)0159829520160000030000801594analyzingthedistributionofhumanactivityspacefrommo DE-627 ger DE-627 rakwb eng 004 550 DNB 74.48 bkl Yuan, Yihong verfasserin aut Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Travel activities are embodied as people's needs to be physically present at certain locations. The development of Information and Communication Technologies (ICTs, such as mobile phones) has introduced new data sources for modeling human activities. Based on the scattered spatiotemporal points provided in mobile phone datasets, it is feasible to study the patterns (e.g., the scale, shape, and regularity) of human activities. In this paper, we propose methods for analyzing the distribution of human activity space from both individual and urban perspectives based on mobile phone data. The Weibull distribution is utilized to model three predefined measurements of activity space (radius, shape index, and entropy). The correlation between demographic factors (age and gender) and the usage of urban space is also tested to reveal underlying patterns. The results of this research will enhance the understanding of human activities in different urban systems and demographic groups, as well as providing novel methods to expand the important and widely applicable area of geographic knowledge discovery in the age of instant access. Nutzungsrecht: © 2016 Taylor & Francis 2016 mobile phones data mining Big (geo)data Weibull distribution human mobility Activity space Data mining Big Data Geographic information science Cellular telephones Raubal, Martin oth Enthalten in International journal of geographical information science London [u.a.] : Taylor & Francis, 1987 30(2016), 8, Seite 1594 (DE-627)129244368 (DE-600)58915-9 (DE-576)017944023 1365-8816 nnns volume:30 year:2016 number:8 pages:1594 http://dx.doi.org/10.1080/13658816.2016.1143555 Volltext http://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1143555 http://search.proquest.com/docview/1784223601 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-MAT SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2011 GBV_ILN_4305 74.48 AVZ AR 30 2016 8 1594 |
allfieldsSound |
10.1080/13658816.2016.1143555 doi PQ20161201 (DE-627)OLC1980442622 (DE-599)GBVOLC1980442622 (PRQ)i1379-4311e1eea56c12576855ffd79f52a19b362d0c1c32a0021f0e0b1207f424bfb0 (KEY)0159829520160000030000801594analyzingthedistributionofhumanactivityspacefrommo DE-627 ger DE-627 rakwb eng 004 550 DNB 74.48 bkl Yuan, Yihong verfasserin aut Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Travel activities are embodied as people's needs to be physically present at certain locations. The development of Information and Communication Technologies (ICTs, such as mobile phones) has introduced new data sources for modeling human activities. Based on the scattered spatiotemporal points provided in mobile phone datasets, it is feasible to study the patterns (e.g., the scale, shape, and regularity) of human activities. In this paper, we propose methods for analyzing the distribution of human activity space from both individual and urban perspectives based on mobile phone data. The Weibull distribution is utilized to model three predefined measurements of activity space (radius, shape index, and entropy). The correlation between demographic factors (age and gender) and the usage of urban space is also tested to reveal underlying patterns. The results of this research will enhance the understanding of human activities in different urban systems and demographic groups, as well as providing novel methods to expand the important and widely applicable area of geographic knowledge discovery in the age of instant access. Nutzungsrecht: © 2016 Taylor & Francis 2016 mobile phones data mining Big (geo)data Weibull distribution human mobility Activity space Data mining Big Data Geographic information science Cellular telephones Raubal, Martin oth Enthalten in International journal of geographical information science London [u.a.] : Taylor & Francis, 1987 30(2016), 8, Seite 1594 (DE-627)129244368 (DE-600)58915-9 (DE-576)017944023 1365-8816 nnns volume:30 year:2016 number:8 pages:1594 http://dx.doi.org/10.1080/13658816.2016.1143555 Volltext http://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1143555 http://search.proquest.com/docview/1784223601 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-MAT SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2011 GBV_ILN_4305 74.48 AVZ AR 30 2016 8 1594 |
language |
English |
source |
Enthalten in International journal of geographical information science 30(2016), 8, Seite 1594 volume:30 year:2016 number:8 pages:1594 |
sourceStr |
Enthalten in International journal of geographical information science 30(2016), 8, Seite 1594 volume:30 year:2016 number:8 pages:1594 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
mobile phones data mining Big (geo)data Weibull distribution human mobility Activity space Data mining Big Data Geographic information science Cellular telephones |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
International journal of geographical information science |
authorswithroles_txt_mv |
Yuan, Yihong @@aut@@ Raubal, Martin @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129244368 |
dewey-sort |
14 |
id |
OLC1980442622 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980442622</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216202759.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/13658816.2016.1143555</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980442622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980442622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1379-4311e1eea56c12576855ffd79f52a19b362d0c1c32a0021f0e0b1207f424bfb0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0159829520160000030000801594analyzingthedistributionofhumanactivityspacefrommo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.48</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yuan, Yihong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Travel activities are embodied as people's needs to be physically present at certain locations. The development of Information and Communication Technologies (ICTs, such as mobile phones) has introduced new data sources for modeling human activities. Based on the scattered spatiotemporal points provided in mobile phone datasets, it is feasible to study the patterns (e.g., the scale, shape, and regularity) of human activities. In this paper, we propose methods for analyzing the distribution of human activity space from both individual and urban perspectives based on mobile phone data. The Weibull distribution is utilized to model three predefined measurements of activity space (radius, shape index, and entropy). The correlation between demographic factors (age and gender) and the usage of urban space is also tested to reveal underlying patterns. The results of this research will enhance the understanding of human activities in different urban systems and demographic groups, as well as providing novel methods to expand the important and widely applicable area of geographic knowledge discovery in the age of instant access.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Taylor & Francis 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile phones</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big (geo)data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weibull distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">human mobility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activity space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geographic information science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellular telephones</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raubal, Martin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of geographical information science</subfield><subfield code="d">London [u.a.] : Taylor & Francis, 1987</subfield><subfield code="g">30(2016), 8, Seite 1594</subfield><subfield code="w">(DE-627)129244368</subfield><subfield code="w">(DE-600)58915-9</subfield><subfield code="w">(DE-576)017944023</subfield><subfield code="x">1365-8816</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:1594</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/13658816.2016.1143555</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1143555</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1784223601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.48</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2016</subfield><subfield code="e">8</subfield><subfield code="h">1594</subfield></datafield></record></collection>
|
author |
Yuan, Yihong |
spellingShingle |
Yuan, Yihong ddc 004 bkl 74.48 misc mobile phones misc data mining misc Big (geo)data misc Weibull distribution misc human mobility misc Activity space misc Data mining misc Big Data misc Geographic information science misc Cellular telephones Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study |
authorStr |
Yuan, Yihong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129244368 |
format |
Article |
dewey-ones |
004 - Data processing & computer science 550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1365-8816 |
topic_title |
004 550 DNB 74.48 bkl Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study mobile phones data mining Big (geo)data Weibull distribution human mobility Activity space Data mining Big Data Geographic information science Cellular telephones |
topic |
ddc 004 bkl 74.48 misc mobile phones misc data mining misc Big (geo)data misc Weibull distribution misc human mobility misc Activity space misc Data mining misc Big Data misc Geographic information science misc Cellular telephones |
topic_unstemmed |
ddc 004 bkl 74.48 misc mobile phones misc data mining misc Big (geo)data misc Weibull distribution misc human mobility misc Activity space misc Data mining misc Big Data misc Geographic information science misc Cellular telephones |
topic_browse |
ddc 004 bkl 74.48 misc mobile phones misc data mining misc Big (geo)data misc Weibull distribution misc human mobility misc Activity space misc Data mining misc Big Data misc Geographic information science misc Cellular telephones |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m r mr |
hierarchy_parent_title |
International journal of geographical information science |
hierarchy_parent_id |
129244368 |
dewey-tens |
000 - Computer science, knowledge & systems 550 - Earth sciences & geology |
hierarchy_top_title |
International journal of geographical information science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129244368 (DE-600)58915-9 (DE-576)017944023 |
title |
Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study |
ctrlnum |
(DE-627)OLC1980442622 (DE-599)GBVOLC1980442622 (PRQ)i1379-4311e1eea56c12576855ffd79f52a19b362d0c1c32a0021f0e0b1207f424bfb0 (KEY)0159829520160000030000801594analyzingthedistributionofhumanactivityspacefrommo |
title_full |
Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study |
author_sort |
Yuan, Yihong |
journal |
International journal of geographical information science |
journalStr |
International journal of geographical information science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1594 |
author_browse |
Yuan, Yihong |
container_volume |
30 |
class |
004 550 DNB 74.48 bkl |
format_se |
Aufsätze |
author-letter |
Yuan, Yihong |
doi_str_mv |
10.1080/13658816.2016.1143555 |
dewey-full |
004 550 |
title_sort |
analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study |
title_auth |
Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study |
abstract |
Travel activities are embodied as people's needs to be physically present at certain locations. The development of Information and Communication Technologies (ICTs, such as mobile phones) has introduced new data sources for modeling human activities. Based on the scattered spatiotemporal points provided in mobile phone datasets, it is feasible to study the patterns (e.g., the scale, shape, and regularity) of human activities. In this paper, we propose methods for analyzing the distribution of human activity space from both individual and urban perspectives based on mobile phone data. The Weibull distribution is utilized to model three predefined measurements of activity space (radius, shape index, and entropy). The correlation between demographic factors (age and gender) and the usage of urban space is also tested to reveal underlying patterns. The results of this research will enhance the understanding of human activities in different urban systems and demographic groups, as well as providing novel methods to expand the important and widely applicable area of geographic knowledge discovery in the age of instant access. |
abstractGer |
Travel activities are embodied as people's needs to be physically present at certain locations. The development of Information and Communication Technologies (ICTs, such as mobile phones) has introduced new data sources for modeling human activities. Based on the scattered spatiotemporal points provided in mobile phone datasets, it is feasible to study the patterns (e.g., the scale, shape, and regularity) of human activities. In this paper, we propose methods for analyzing the distribution of human activity space from both individual and urban perspectives based on mobile phone data. The Weibull distribution is utilized to model three predefined measurements of activity space (radius, shape index, and entropy). The correlation between demographic factors (age and gender) and the usage of urban space is also tested to reveal underlying patterns. The results of this research will enhance the understanding of human activities in different urban systems and demographic groups, as well as providing novel methods to expand the important and widely applicable area of geographic knowledge discovery in the age of instant access. |
abstract_unstemmed |
Travel activities are embodied as people's needs to be physically present at certain locations. The development of Information and Communication Technologies (ICTs, such as mobile phones) has introduced new data sources for modeling human activities. Based on the scattered spatiotemporal points provided in mobile phone datasets, it is feasible to study the patterns (e.g., the scale, shape, and regularity) of human activities. In this paper, we propose methods for analyzing the distribution of human activity space from both individual and urban perspectives based on mobile phone data. The Weibull distribution is utilized to model three predefined measurements of activity space (radius, shape index, and entropy). The correlation between demographic factors (age and gender) and the usage of urban space is also tested to reveal underlying patterns. The results of this research will enhance the understanding of human activities in different urban systems and demographic groups, as well as providing novel methods to expand the important and widely applicable area of geographic knowledge discovery in the age of instant access. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-MAT SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_21 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2011 GBV_ILN_4305 |
container_issue |
8 |
title_short |
Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study |
url |
http://dx.doi.org/10.1080/13658816.2016.1143555 http://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1143555 http://search.proquest.com/docview/1784223601 |
remote_bool |
false |
author2 |
Raubal, Martin |
author2Str |
Raubal, Martin |
ppnlink |
129244368 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1080/13658816.2016.1143555 |
up_date |
2024-07-04T03:06:31.286Z |
_version_ |
1803616142020837376 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980442622</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216202759.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/13658816.2016.1143555</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980442622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980442622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1379-4311e1eea56c12576855ffd79f52a19b362d0c1c32a0021f0e0b1207f424bfb0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0159829520160000030000801594analyzingthedistributionofhumanactivityspacefrommo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.48</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yuan, Yihong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Travel activities are embodied as people's needs to be physically present at certain locations. The development of Information and Communication Technologies (ICTs, such as mobile phones) has introduced new data sources for modeling human activities. Based on the scattered spatiotemporal points provided in mobile phone datasets, it is feasible to study the patterns (e.g., the scale, shape, and regularity) of human activities. In this paper, we propose methods for analyzing the distribution of human activity space from both individual and urban perspectives based on mobile phone data. The Weibull distribution is utilized to model three predefined measurements of activity space (radius, shape index, and entropy). The correlation between demographic factors (age and gender) and the usage of urban space is also tested to reveal underlying patterns. The results of this research will enhance the understanding of human activities in different urban systems and demographic groups, as well as providing novel methods to expand the important and widely applicable area of geographic knowledge discovery in the age of instant access.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Taylor & Francis 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile phones</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big (geo)data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weibull distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">human mobility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activity space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geographic information science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellular telephones</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raubal, Martin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of geographical information science</subfield><subfield code="d">London [u.a.] : Taylor & Francis, 1987</subfield><subfield code="g">30(2016), 8, Seite 1594</subfield><subfield code="w">(DE-627)129244368</subfield><subfield code="w">(DE-600)58915-9</subfield><subfield code="w">(DE-576)017944023</subfield><subfield code="x">1365-8816</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:1594</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/13658816.2016.1143555</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1143555</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1784223601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.48</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2016</subfield><subfield code="e">8</subfield><subfield code="h">1594</subfield></datafield></record></collection>
|
score |
7.4021244 |