A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs
In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distor...
Ausführliche Beschreibung
Autor*in: |
Lee, Bumshik [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on image processing - New York, NY : Inst., 1992, 25(2016), 8, Seite 3787-3800 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2016 ; number:8 ; pages:3787-3800 |
Links: |
---|
DOI / URN: |
10.1109/TIP.2016.2579559 |
---|
Katalog-ID: |
OLC1980588074 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1980588074 | ||
003 | DE-627 | ||
005 | 20230714205624.0 | ||
007 | tu | ||
008 | 160816s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TIP.2016.2579559 |2 doi | |
028 | 5 | 2 | |a PQ20160815 |
035 | |a (DE-627)OLC1980588074 | ||
035 | |a (DE-599)GBVOLC1980588074 | ||
035 | |a (PRQ)c1161-5d04793acab978f2210eba0848256c4d4bc2220ae0d517dfed629b98826827f0 | ||
035 | |a (KEY)0213811520160000025000803787culevelrateanddistortionestimationschemeforrdoofha | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 620 |q DNB |
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Lee, Bumshik |e verfasserin |4 aut | |
245 | 1 | 2 | |a A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distortion estimation. Since HEVC adopts quadtree structures of coding blocks with hierarchical coding depths, it becomes more difficult to estimate accurate rate and distortion values without actually performing transform, quantization, inverse transform, de-quantization, and entropy coding. Furthermore, DCT for rate-distortion optimization (RDO) is computationally high, because it requires a number of multiplication and addition operations for various transform block sizes of 4-, 8-, 16-, and 32-orders and requires recursive computations to decide the optimal depths of CU or transform unit. Therefore, full RDO-based encoding is highly complex, especially for low-power implementation of HEVC encoders. In this paper, a rate and distortion estimation scheme is proposed in CU levels based on a low-complexity integer DCT that can be computed in terms of WHT whose coefficients are produced in prediction stages. For rate and distortion estimation in CU levels, two orthogonal matrices of <inline-formula> <tex-math notation="LaTeX">4\times 4 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula>, which are applied to WHT that are newly designed in a butterfly structure only with addition and shift operations. By applying the integer DCT based on the WHT and newly designed transforms in each CU block, the texture rate can precisely be estimated after quantization using the number of non-zero quantized coefficients and the distortion can also be precisely estimated in transform domain without de-quantization and inverse transform required. In addition, a non-texture rate estimation is proposed by using a pseudoentropy code to obtain accurate total rate estimates. The proposed rate and the distortion estimation scheme can effectively be used for HW-friendly implementation of HEVC encoders with 9.8% loss over HEVC full RDO, which much less than 20.3% and 30.2% loss of a conventional approach and Hadamard-only scheme, respectively. | ||
650 | 4 | |a Image coding | |
650 | 4 | |a Hadamard transform | |
650 | 4 | |a Rate-distortion optimization | |
650 | 4 | |a Encoding | |
650 | 4 | |a Distortion | |
650 | 4 | |a integer DCT | |
650 | 4 | |a HEVC | |
650 | 4 | |a rate estimation | |
650 | 4 | |a Estimation | |
650 | 4 | |a Rate distortion theory | |
650 | 4 | |a Discrete cosine transforms | |
650 | 4 | |a distortion estimation | |
650 | 4 | |a Estimation theory | |
650 | 4 | |a Usage | |
650 | 4 | |a Mathematical optimization | |
700 | 1 | |a Kim, Munchurl |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on image processing |d New York, NY : Inst., 1992 |g 25(2016), 8, Seite 3787-3800 |w (DE-627)131074458 |w (DE-600)1111265-7 |w (DE-576)029165008 |x 1057-7149 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2016 |g number:8 |g pages:3787-3800 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TIP.2016.2579559 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7488286 |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/27305681 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2005 | ||
936 | b | k | |a 54.00 |q AVZ |
951 | |a AR | ||
952 | |d 25 |j 2016 |e 8 |h 3787-3800 |
author_variant |
b l bl |
---|---|
matchkey_str |
article:10577149:2016----::clvlaendsotoetmtoshmfrdohrwrfinlhvecdru |
hierarchy_sort_str |
2016 |
bklnumber |
54.00 |
publishDate |
2016 |
allfields |
10.1109/TIP.2016.2579559 doi PQ20160815 (DE-627)OLC1980588074 (DE-599)GBVOLC1980588074 (PRQ)c1161-5d04793acab978f2210eba0848256c4d4bc2220ae0d517dfed629b98826827f0 (KEY)0213811520160000025000803787culevelrateanddistortionestimationschemeforrdoofha DE-627 ger DE-627 rakwb eng 004 620 DNB 54.00 bkl Lee, Bumshik verfasserin aut A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distortion estimation. Since HEVC adopts quadtree structures of coding blocks with hierarchical coding depths, it becomes more difficult to estimate accurate rate and distortion values without actually performing transform, quantization, inverse transform, de-quantization, and entropy coding. Furthermore, DCT for rate-distortion optimization (RDO) is computationally high, because it requires a number of multiplication and addition operations for various transform block sizes of 4-, 8-, 16-, and 32-orders and requires recursive computations to decide the optimal depths of CU or transform unit. Therefore, full RDO-based encoding is highly complex, especially for low-power implementation of HEVC encoders. In this paper, a rate and distortion estimation scheme is proposed in CU levels based on a low-complexity integer DCT that can be computed in terms of WHT whose coefficients are produced in prediction stages. For rate and distortion estimation in CU levels, two orthogonal matrices of <inline-formula> <tex-math notation="LaTeX">4\times 4 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula>, which are applied to WHT that are newly designed in a butterfly structure only with addition and shift operations. By applying the integer DCT based on the WHT and newly designed transforms in each CU block, the texture rate can precisely be estimated after quantization using the number of non-zero quantized coefficients and the distortion can also be precisely estimated in transform domain without de-quantization and inverse transform required. In addition, a non-texture rate estimation is proposed by using a pseudoentropy code to obtain accurate total rate estimates. The proposed rate and the distortion estimation scheme can effectively be used for HW-friendly implementation of HEVC encoders with 9.8% loss over HEVC full RDO, which much less than 20.3% and 30.2% loss of a conventional approach and Hadamard-only scheme, respectively. Image coding Hadamard transform Rate-distortion optimization Encoding Distortion integer DCT HEVC rate estimation Estimation Rate distortion theory Discrete cosine transforms distortion estimation Estimation theory Usage Mathematical optimization Kim, Munchurl oth Enthalten in IEEE transactions on image processing New York, NY : Inst., 1992 25(2016), 8, Seite 3787-3800 (DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 1057-7149 nnns volume:25 year:2016 number:8 pages:3787-3800 http://dx.doi.org/10.1109/TIP.2016.2579559 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7488286 http://www.ncbi.nlm.nih.gov/pubmed/27305681 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 54.00 AVZ AR 25 2016 8 3787-3800 |
spelling |
10.1109/TIP.2016.2579559 doi PQ20160815 (DE-627)OLC1980588074 (DE-599)GBVOLC1980588074 (PRQ)c1161-5d04793acab978f2210eba0848256c4d4bc2220ae0d517dfed629b98826827f0 (KEY)0213811520160000025000803787culevelrateanddistortionestimationschemeforrdoofha DE-627 ger DE-627 rakwb eng 004 620 DNB 54.00 bkl Lee, Bumshik verfasserin aut A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distortion estimation. Since HEVC adopts quadtree structures of coding blocks with hierarchical coding depths, it becomes more difficult to estimate accurate rate and distortion values without actually performing transform, quantization, inverse transform, de-quantization, and entropy coding. Furthermore, DCT for rate-distortion optimization (RDO) is computationally high, because it requires a number of multiplication and addition operations for various transform block sizes of 4-, 8-, 16-, and 32-orders and requires recursive computations to decide the optimal depths of CU or transform unit. Therefore, full RDO-based encoding is highly complex, especially for low-power implementation of HEVC encoders. In this paper, a rate and distortion estimation scheme is proposed in CU levels based on a low-complexity integer DCT that can be computed in terms of WHT whose coefficients are produced in prediction stages. For rate and distortion estimation in CU levels, two orthogonal matrices of <inline-formula> <tex-math notation="LaTeX">4\times 4 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula>, which are applied to WHT that are newly designed in a butterfly structure only with addition and shift operations. By applying the integer DCT based on the WHT and newly designed transforms in each CU block, the texture rate can precisely be estimated after quantization using the number of non-zero quantized coefficients and the distortion can also be precisely estimated in transform domain without de-quantization and inverse transform required. In addition, a non-texture rate estimation is proposed by using a pseudoentropy code to obtain accurate total rate estimates. The proposed rate and the distortion estimation scheme can effectively be used for HW-friendly implementation of HEVC encoders with 9.8% loss over HEVC full RDO, which much less than 20.3% and 30.2% loss of a conventional approach and Hadamard-only scheme, respectively. Image coding Hadamard transform Rate-distortion optimization Encoding Distortion integer DCT HEVC rate estimation Estimation Rate distortion theory Discrete cosine transforms distortion estimation Estimation theory Usage Mathematical optimization Kim, Munchurl oth Enthalten in IEEE transactions on image processing New York, NY : Inst., 1992 25(2016), 8, Seite 3787-3800 (DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 1057-7149 nnns volume:25 year:2016 number:8 pages:3787-3800 http://dx.doi.org/10.1109/TIP.2016.2579559 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7488286 http://www.ncbi.nlm.nih.gov/pubmed/27305681 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 54.00 AVZ AR 25 2016 8 3787-3800 |
allfields_unstemmed |
10.1109/TIP.2016.2579559 doi PQ20160815 (DE-627)OLC1980588074 (DE-599)GBVOLC1980588074 (PRQ)c1161-5d04793acab978f2210eba0848256c4d4bc2220ae0d517dfed629b98826827f0 (KEY)0213811520160000025000803787culevelrateanddistortionestimationschemeforrdoofha DE-627 ger DE-627 rakwb eng 004 620 DNB 54.00 bkl Lee, Bumshik verfasserin aut A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distortion estimation. Since HEVC adopts quadtree structures of coding blocks with hierarchical coding depths, it becomes more difficult to estimate accurate rate and distortion values without actually performing transform, quantization, inverse transform, de-quantization, and entropy coding. Furthermore, DCT for rate-distortion optimization (RDO) is computationally high, because it requires a number of multiplication and addition operations for various transform block sizes of 4-, 8-, 16-, and 32-orders and requires recursive computations to decide the optimal depths of CU or transform unit. Therefore, full RDO-based encoding is highly complex, especially for low-power implementation of HEVC encoders. In this paper, a rate and distortion estimation scheme is proposed in CU levels based on a low-complexity integer DCT that can be computed in terms of WHT whose coefficients are produced in prediction stages. For rate and distortion estimation in CU levels, two orthogonal matrices of <inline-formula> <tex-math notation="LaTeX">4\times 4 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula>, which are applied to WHT that are newly designed in a butterfly structure only with addition and shift operations. By applying the integer DCT based on the WHT and newly designed transforms in each CU block, the texture rate can precisely be estimated after quantization using the number of non-zero quantized coefficients and the distortion can also be precisely estimated in transform domain without de-quantization and inverse transform required. In addition, a non-texture rate estimation is proposed by using a pseudoentropy code to obtain accurate total rate estimates. The proposed rate and the distortion estimation scheme can effectively be used for HW-friendly implementation of HEVC encoders with 9.8% loss over HEVC full RDO, which much less than 20.3% and 30.2% loss of a conventional approach and Hadamard-only scheme, respectively. Image coding Hadamard transform Rate-distortion optimization Encoding Distortion integer DCT HEVC rate estimation Estimation Rate distortion theory Discrete cosine transforms distortion estimation Estimation theory Usage Mathematical optimization Kim, Munchurl oth Enthalten in IEEE transactions on image processing New York, NY : Inst., 1992 25(2016), 8, Seite 3787-3800 (DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 1057-7149 nnns volume:25 year:2016 number:8 pages:3787-3800 http://dx.doi.org/10.1109/TIP.2016.2579559 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7488286 http://www.ncbi.nlm.nih.gov/pubmed/27305681 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 54.00 AVZ AR 25 2016 8 3787-3800 |
allfieldsGer |
10.1109/TIP.2016.2579559 doi PQ20160815 (DE-627)OLC1980588074 (DE-599)GBVOLC1980588074 (PRQ)c1161-5d04793acab978f2210eba0848256c4d4bc2220ae0d517dfed629b98826827f0 (KEY)0213811520160000025000803787culevelrateanddistortionestimationschemeforrdoofha DE-627 ger DE-627 rakwb eng 004 620 DNB 54.00 bkl Lee, Bumshik verfasserin aut A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distortion estimation. Since HEVC adopts quadtree structures of coding blocks with hierarchical coding depths, it becomes more difficult to estimate accurate rate and distortion values without actually performing transform, quantization, inverse transform, de-quantization, and entropy coding. Furthermore, DCT for rate-distortion optimization (RDO) is computationally high, because it requires a number of multiplication and addition operations for various transform block sizes of 4-, 8-, 16-, and 32-orders and requires recursive computations to decide the optimal depths of CU or transform unit. Therefore, full RDO-based encoding is highly complex, especially for low-power implementation of HEVC encoders. In this paper, a rate and distortion estimation scheme is proposed in CU levels based on a low-complexity integer DCT that can be computed in terms of WHT whose coefficients are produced in prediction stages. For rate and distortion estimation in CU levels, two orthogonal matrices of <inline-formula> <tex-math notation="LaTeX">4\times 4 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula>, which are applied to WHT that are newly designed in a butterfly structure only with addition and shift operations. By applying the integer DCT based on the WHT and newly designed transforms in each CU block, the texture rate can precisely be estimated after quantization using the number of non-zero quantized coefficients and the distortion can also be precisely estimated in transform domain without de-quantization and inverse transform required. In addition, a non-texture rate estimation is proposed by using a pseudoentropy code to obtain accurate total rate estimates. The proposed rate and the distortion estimation scheme can effectively be used for HW-friendly implementation of HEVC encoders with 9.8% loss over HEVC full RDO, which much less than 20.3% and 30.2% loss of a conventional approach and Hadamard-only scheme, respectively. Image coding Hadamard transform Rate-distortion optimization Encoding Distortion integer DCT HEVC rate estimation Estimation Rate distortion theory Discrete cosine transforms distortion estimation Estimation theory Usage Mathematical optimization Kim, Munchurl oth Enthalten in IEEE transactions on image processing New York, NY : Inst., 1992 25(2016), 8, Seite 3787-3800 (DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 1057-7149 nnns volume:25 year:2016 number:8 pages:3787-3800 http://dx.doi.org/10.1109/TIP.2016.2579559 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7488286 http://www.ncbi.nlm.nih.gov/pubmed/27305681 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 54.00 AVZ AR 25 2016 8 3787-3800 |
allfieldsSound |
10.1109/TIP.2016.2579559 doi PQ20160815 (DE-627)OLC1980588074 (DE-599)GBVOLC1980588074 (PRQ)c1161-5d04793acab978f2210eba0848256c4d4bc2220ae0d517dfed629b98826827f0 (KEY)0213811520160000025000803787culevelrateanddistortionestimationschemeforrdoofha DE-627 ger DE-627 rakwb eng 004 620 DNB 54.00 bkl Lee, Bumshik verfasserin aut A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distortion estimation. Since HEVC adopts quadtree structures of coding blocks with hierarchical coding depths, it becomes more difficult to estimate accurate rate and distortion values without actually performing transform, quantization, inverse transform, de-quantization, and entropy coding. Furthermore, DCT for rate-distortion optimization (RDO) is computationally high, because it requires a number of multiplication and addition operations for various transform block sizes of 4-, 8-, 16-, and 32-orders and requires recursive computations to decide the optimal depths of CU or transform unit. Therefore, full RDO-based encoding is highly complex, especially for low-power implementation of HEVC encoders. In this paper, a rate and distortion estimation scheme is proposed in CU levels based on a low-complexity integer DCT that can be computed in terms of WHT whose coefficients are produced in prediction stages. For rate and distortion estimation in CU levels, two orthogonal matrices of <inline-formula> <tex-math notation="LaTeX">4\times 4 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula>, which are applied to WHT that are newly designed in a butterfly structure only with addition and shift operations. By applying the integer DCT based on the WHT and newly designed transforms in each CU block, the texture rate can precisely be estimated after quantization using the number of non-zero quantized coefficients and the distortion can also be precisely estimated in transform domain without de-quantization and inverse transform required. In addition, a non-texture rate estimation is proposed by using a pseudoentropy code to obtain accurate total rate estimates. The proposed rate and the distortion estimation scheme can effectively be used for HW-friendly implementation of HEVC encoders with 9.8% loss over HEVC full RDO, which much less than 20.3% and 30.2% loss of a conventional approach and Hadamard-only scheme, respectively. Image coding Hadamard transform Rate-distortion optimization Encoding Distortion integer DCT HEVC rate estimation Estimation Rate distortion theory Discrete cosine transforms distortion estimation Estimation theory Usage Mathematical optimization Kim, Munchurl oth Enthalten in IEEE transactions on image processing New York, NY : Inst., 1992 25(2016), 8, Seite 3787-3800 (DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 1057-7149 nnns volume:25 year:2016 number:8 pages:3787-3800 http://dx.doi.org/10.1109/TIP.2016.2579559 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7488286 http://www.ncbi.nlm.nih.gov/pubmed/27305681 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 54.00 AVZ AR 25 2016 8 3787-3800 |
language |
English |
source |
Enthalten in IEEE transactions on image processing 25(2016), 8, Seite 3787-3800 volume:25 year:2016 number:8 pages:3787-3800 |
sourceStr |
Enthalten in IEEE transactions on image processing 25(2016), 8, Seite 3787-3800 volume:25 year:2016 number:8 pages:3787-3800 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Image coding Hadamard transform Rate-distortion optimization Encoding Distortion integer DCT HEVC rate estimation Estimation Rate distortion theory Discrete cosine transforms distortion estimation Estimation theory Usage Mathematical optimization |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on image processing |
authorswithroles_txt_mv |
Lee, Bumshik @@aut@@ Kim, Munchurl @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
131074458 |
dewey-sort |
14 |
id |
OLC1980588074 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980588074</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714205624.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIP.2016.2579559</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980588074</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980588074</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1161-5d04793acab978f2210eba0848256c4d4bc2220ae0d517dfed629b98826827f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0213811520160000025000803787culevelrateanddistortionestimationschemeforrdoofha</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Bumshik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distortion estimation. Since HEVC adopts quadtree structures of coding blocks with hierarchical coding depths, it becomes more difficult to estimate accurate rate and distortion values without actually performing transform, quantization, inverse transform, de-quantization, and entropy coding. Furthermore, DCT for rate-distortion optimization (RDO) is computationally high, because it requires a number of multiplication and addition operations for various transform block sizes of 4-, 8-, 16-, and 32-orders and requires recursive computations to decide the optimal depths of CU or transform unit. Therefore, full RDO-based encoding is highly complex, especially for low-power implementation of HEVC encoders. In this paper, a rate and distortion estimation scheme is proposed in CU levels based on a low-complexity integer DCT that can be computed in terms of WHT whose coefficients are produced in prediction stages. For rate and distortion estimation in CU levels, two orthogonal matrices of <inline-formula> <tex-math notation="LaTeX">4\times 4 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula>, which are applied to WHT that are newly designed in a butterfly structure only with addition and shift operations. By applying the integer DCT based on the WHT and newly designed transforms in each CU block, the texture rate can precisely be estimated after quantization using the number of non-zero quantized coefficients and the distortion can also be precisely estimated in transform domain without de-quantization and inverse transform required. In addition, a non-texture rate estimation is proposed by using a pseudoentropy code to obtain accurate total rate estimates. The proposed rate and the distortion estimation scheme can effectively be used for HW-friendly implementation of HEVC encoders with 9.8% loss over HEVC full RDO, which much less than 20.3% and 30.2% loss of a conventional approach and Hadamard-only scheme, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hadamard transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rate-distortion optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Encoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distortion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integer DCT</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HEVC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rate estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rate distortion theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete cosine transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distortion estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Munchurl</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on image processing</subfield><subfield code="d">New York, NY : Inst., 1992</subfield><subfield code="g">25(2016), 8, Seite 3787-3800</subfield><subfield code="w">(DE-627)131074458</subfield><subfield code="w">(DE-600)1111265-7</subfield><subfield code="w">(DE-576)029165008</subfield><subfield code="x">1057-7149</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:3787-3800</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIP.2016.2579559</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7488286</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/27305681</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2016</subfield><subfield code="e">8</subfield><subfield code="h">3787-3800</subfield></datafield></record></collection>
|
author |
Lee, Bumshik |
spellingShingle |
Lee, Bumshik ddc 004 bkl 54.00 misc Image coding misc Hadamard transform misc Rate-distortion optimization misc Encoding misc Distortion misc integer DCT misc HEVC misc rate estimation misc Estimation misc Rate distortion theory misc Discrete cosine transforms misc distortion estimation misc Estimation theory misc Usage misc Mathematical optimization A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs |
authorStr |
Lee, Bumshik |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131074458 |
format |
Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1057-7149 |
topic_title |
004 620 DNB 54.00 bkl A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs Image coding Hadamard transform Rate-distortion optimization Encoding Distortion integer DCT HEVC rate estimation Estimation Rate distortion theory Discrete cosine transforms distortion estimation Estimation theory Usage Mathematical optimization |
topic |
ddc 004 bkl 54.00 misc Image coding misc Hadamard transform misc Rate-distortion optimization misc Encoding misc Distortion misc integer DCT misc HEVC misc rate estimation misc Estimation misc Rate distortion theory misc Discrete cosine transforms misc distortion estimation misc Estimation theory misc Usage misc Mathematical optimization |
topic_unstemmed |
ddc 004 bkl 54.00 misc Image coding misc Hadamard transform misc Rate-distortion optimization misc Encoding misc Distortion misc integer DCT misc HEVC misc rate estimation misc Estimation misc Rate distortion theory misc Discrete cosine transforms misc distortion estimation misc Estimation theory misc Usage misc Mathematical optimization |
topic_browse |
ddc 004 bkl 54.00 misc Image coding misc Hadamard transform misc Rate-distortion optimization misc Encoding misc Distortion misc integer DCT misc HEVC misc rate estimation misc Estimation misc Rate distortion theory misc Discrete cosine transforms misc distortion estimation misc Estimation theory misc Usage misc Mathematical optimization |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m k mk |
hierarchy_parent_title |
IEEE transactions on image processing |
hierarchy_parent_id |
131074458 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
IEEE transactions on image processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131074458 (DE-600)1111265-7 (DE-576)029165008 |
title |
A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs |
ctrlnum |
(DE-627)OLC1980588074 (DE-599)GBVOLC1980588074 (PRQ)c1161-5d04793acab978f2210eba0848256c4d4bc2220ae0d517dfed629b98826827f0 (KEY)0213811520160000025000803787culevelrateanddistortionestimationschemeforrdoofha |
title_full |
A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs |
author_sort |
Lee, Bumshik |
journal |
IEEE transactions on image processing |
journalStr |
IEEE transactions on image processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
3787 |
author_browse |
Lee, Bumshik |
container_volume |
25 |
class |
004 620 DNB 54.00 bkl |
format_se |
Aufsätze |
author-letter |
Lee, Bumshik |
doi_str_mv |
10.1109/TIP.2016.2579559 |
dewey-full |
004 620 |
title_sort |
cu-level rate and distortion estimation scheme for rdo of hardware-friendly hevc encoders using low-complexity integer dcts |
title_auth |
A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs |
abstract |
In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distortion estimation. Since HEVC adopts quadtree structures of coding blocks with hierarchical coding depths, it becomes more difficult to estimate accurate rate and distortion values without actually performing transform, quantization, inverse transform, de-quantization, and entropy coding. Furthermore, DCT for rate-distortion optimization (RDO) is computationally high, because it requires a number of multiplication and addition operations for various transform block sizes of 4-, 8-, 16-, and 32-orders and requires recursive computations to decide the optimal depths of CU or transform unit. Therefore, full RDO-based encoding is highly complex, especially for low-power implementation of HEVC encoders. In this paper, a rate and distortion estimation scheme is proposed in CU levels based on a low-complexity integer DCT that can be computed in terms of WHT whose coefficients are produced in prediction stages. For rate and distortion estimation in CU levels, two orthogonal matrices of <inline-formula> <tex-math notation="LaTeX">4\times 4 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula>, which are applied to WHT that are newly designed in a butterfly structure only with addition and shift operations. By applying the integer DCT based on the WHT and newly designed transforms in each CU block, the texture rate can precisely be estimated after quantization using the number of non-zero quantized coefficients and the distortion can also be precisely estimated in transform domain without de-quantization and inverse transform required. In addition, a non-texture rate estimation is proposed by using a pseudoentropy code to obtain accurate total rate estimates. The proposed rate and the distortion estimation scheme can effectively be used for HW-friendly implementation of HEVC encoders with 9.8% loss over HEVC full RDO, which much less than 20.3% and 30.2% loss of a conventional approach and Hadamard-only scheme, respectively. |
abstractGer |
In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distortion estimation. Since HEVC adopts quadtree structures of coding blocks with hierarchical coding depths, it becomes more difficult to estimate accurate rate and distortion values without actually performing transform, quantization, inverse transform, de-quantization, and entropy coding. Furthermore, DCT for rate-distortion optimization (RDO) is computationally high, because it requires a number of multiplication and addition operations for various transform block sizes of 4-, 8-, 16-, and 32-orders and requires recursive computations to decide the optimal depths of CU or transform unit. Therefore, full RDO-based encoding is highly complex, especially for low-power implementation of HEVC encoders. In this paper, a rate and distortion estimation scheme is proposed in CU levels based on a low-complexity integer DCT that can be computed in terms of WHT whose coefficients are produced in prediction stages. For rate and distortion estimation in CU levels, two orthogonal matrices of <inline-formula> <tex-math notation="LaTeX">4\times 4 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula>, which are applied to WHT that are newly designed in a butterfly structure only with addition and shift operations. By applying the integer DCT based on the WHT and newly designed transforms in each CU block, the texture rate can precisely be estimated after quantization using the number of non-zero quantized coefficients and the distortion can also be precisely estimated in transform domain without de-quantization and inverse transform required. In addition, a non-texture rate estimation is proposed by using a pseudoentropy code to obtain accurate total rate estimates. The proposed rate and the distortion estimation scheme can effectively be used for HW-friendly implementation of HEVC encoders with 9.8% loss over HEVC full RDO, which much less than 20.3% and 30.2% loss of a conventional approach and Hadamard-only scheme, respectively. |
abstract_unstemmed |
In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distortion estimation. Since HEVC adopts quadtree structures of coding blocks with hierarchical coding depths, it becomes more difficult to estimate accurate rate and distortion values without actually performing transform, quantization, inverse transform, de-quantization, and entropy coding. Furthermore, DCT for rate-distortion optimization (RDO) is computationally high, because it requires a number of multiplication and addition operations for various transform block sizes of 4-, 8-, 16-, and 32-orders and requires recursive computations to decide the optimal depths of CU or transform unit. Therefore, full RDO-based encoding is highly complex, especially for low-power implementation of HEVC encoders. In this paper, a rate and distortion estimation scheme is proposed in CU levels based on a low-complexity integer DCT that can be computed in terms of WHT whose coefficients are produced in prediction stages. For rate and distortion estimation in CU levels, two orthogonal matrices of <inline-formula> <tex-math notation="LaTeX">4\times 4 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula>, which are applied to WHT that are newly designed in a butterfly structure only with addition and shift operations. By applying the integer DCT based on the WHT and newly designed transforms in each CU block, the texture rate can precisely be estimated after quantization using the number of non-zero quantized coefficients and the distortion can also be precisely estimated in transform domain without de-quantization and inverse transform required. In addition, a non-texture rate estimation is proposed by using a pseudoentropy code to obtain accurate total rate estimates. The proposed rate and the distortion estimation scheme can effectively be used for HW-friendly implementation of HEVC encoders with 9.8% loss over HEVC full RDO, which much less than 20.3% and 30.2% loss of a conventional approach and Hadamard-only scheme, respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2005 |
container_issue |
8 |
title_short |
A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs |
url |
http://dx.doi.org/10.1109/TIP.2016.2579559 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7488286 http://www.ncbi.nlm.nih.gov/pubmed/27305681 |
remote_bool |
false |
author2 |
Kim, Munchurl |
author2Str |
Kim, Munchurl |
ppnlink |
131074458 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/TIP.2016.2579559 |
up_date |
2024-07-04T03:23:20.912Z |
_version_ |
1803617200692527104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980588074</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714205624.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIP.2016.2579559</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980588074</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980588074</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1161-5d04793acab978f2210eba0848256c4d4bc2220ae0d517dfed629b98826827f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0213811520160000025000803787culevelrateanddistortionestimationschemeforrdoofha</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Bumshik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distortion estimation. Since HEVC adopts quadtree structures of coding blocks with hierarchical coding depths, it becomes more difficult to estimate accurate rate and distortion values without actually performing transform, quantization, inverse transform, de-quantization, and entropy coding. Furthermore, DCT for rate-distortion optimization (RDO) is computationally high, because it requires a number of multiplication and addition operations for various transform block sizes of 4-, 8-, 16-, and 32-orders and requires recursive computations to decide the optimal depths of CU or transform unit. Therefore, full RDO-based encoding is highly complex, especially for low-power implementation of HEVC encoders. In this paper, a rate and distortion estimation scheme is proposed in CU levels based on a low-complexity integer DCT that can be computed in terms of WHT whose coefficients are produced in prediction stages. For rate and distortion estimation in CU levels, two orthogonal matrices of <inline-formula> <tex-math notation="LaTeX">4\times 4 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">8\times 8 </tex-math></inline-formula>, which are applied to WHT that are newly designed in a butterfly structure only with addition and shift operations. By applying the integer DCT based on the WHT and newly designed transforms in each CU block, the texture rate can precisely be estimated after quantization using the number of non-zero quantized coefficients and the distortion can also be precisely estimated in transform domain without de-quantization and inverse transform required. In addition, a non-texture rate estimation is proposed by using a pseudoentropy code to obtain accurate total rate estimates. The proposed rate and the distortion estimation scheme can effectively be used for HW-friendly implementation of HEVC encoders with 9.8% loss over HEVC full RDO, which much less than 20.3% and 30.2% loss of a conventional approach and Hadamard-only scheme, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hadamard transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rate-distortion optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Encoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distortion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integer DCT</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HEVC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rate estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rate distortion theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete cosine transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distortion estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Munchurl</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on image processing</subfield><subfield code="d">New York, NY : Inst., 1992</subfield><subfield code="g">25(2016), 8, Seite 3787-3800</subfield><subfield code="w">(DE-627)131074458</subfield><subfield code="w">(DE-600)1111265-7</subfield><subfield code="w">(DE-576)029165008</subfield><subfield code="x">1057-7149</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:3787-3800</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIP.2016.2579559</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7488286</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/27305681</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2016</subfield><subfield code="e">8</subfield><subfield code="h">3787-3800</subfield></datafield></record></collection>
|
score |
7.402231 |