A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars
Hollow silicon nanopillars (HSiNPs) have been fabricated from a single crystal silicon wafer by a series of standard top-down microfabrication processes, specifically by an ambient temperature Bosch process using the nanosphere beads as the mask. The dimensions of the hollow silicon nanopillars can...
Ausführliche Beschreibung
Autor*in: |
He, Yuan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of microelectromechanical systems - New York, NY : IEEE, 1992, 25(2016), 4, Seite 662-667 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2016 ; number:4 ; pages:662-667 |
Links: |
---|
DOI / URN: |
10.1109/JMEMS.2016.2582341 |
---|
Katalog-ID: |
OLC1980588686 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1980588686 | ||
003 | DE-627 | ||
005 | 20230714205626.0 | ||
007 | tu | ||
008 | 160816s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/JMEMS.2016.2582341 |2 doi | |
028 | 5 | 2 | |a PQ20160815 |
035 | |a (DE-627)OLC1980588686 | ||
035 | |a (DE-599)GBVOLC1980588686 | ||
035 | |a (PRQ)c1010-e8c333e334e4a8951578429f022ca9272d20353b1413579492e6c1e5d52608080 | ||
035 | |a (KEY)0213815820160000025000400662topdownfabricationprocessforverticalhollowsiliconn | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
100 | 1 | |a He, Yuan |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Hollow silicon nanopillars (HSiNPs) have been fabricated from a single crystal silicon wafer by a series of standard top-down microfabrication processes, specifically by an ambient temperature Bosch process using the nanosphere beads as the mask. The dimensions of the hollow silicon nanopillars can be tuned with an outer diameter in the range of hundreds of nanometers and inner diameter from 70 to 700 nm. The density of the HSiNPs can be as high as <inline-formula> <tex-math notation="LaTeX">1.3 \,\, \times \,\, 10^{8} </tex-math></inline-formula>/cm 2 and their height-to-width aspect ratio can be as high as 20. The ratio of the wall thickness to the outer diameter of the HSiNPs can be tuned from 1/3 to 1/16. This process could be adapted or modified to fabricate hollow nanopillars from different semiconductors, oxides, and metals, thereby offering a generic method for fabricating hollow nanopillars. [2016-0021] | ||
650 | 4 | |a silicon nanotubes | |
650 | 4 | |a Silicon | |
650 | 4 | |a Nanotubes | |
650 | 4 | |a nanosphere beads | |
650 | 4 | |a Passivation | |
650 | 4 | |a hollow silicon nanopillars | |
650 | 4 | |a Plasmas | |
650 | 4 | |a Etching | |
650 | 4 | |a Nanobioscience | |
650 | 4 | |a Bosch process | |
650 | 4 | |a Silicon wafers | |
700 | 1 | |a Che, Xiangchen |4 oth | |
700 | 1 | |a Que, Long |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of microelectromechanical systems |d New York, NY : IEEE, 1992 |g 25(2016), 4, Seite 662-667 |w (DE-627)131059963 |w (DE-600)1106644-1 |w (DE-576)032853254 |x 1057-7157 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2016 |g number:4 |g pages:662-667 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/JMEMS.2016.2582341 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7502175 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
951 | |a AR | ||
952 | |d 25 |j 2016 |e 4 |h 662-667 |
author_variant |
y h yh |
---|---|
matchkey_str |
article:10577157:2016----::tponarctopoesovriahlos |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/JMEMS.2016.2582341 doi PQ20160815 (DE-627)OLC1980588686 (DE-599)GBVOLC1980588686 (PRQ)c1010-e8c333e334e4a8951578429f022ca9272d20353b1413579492e6c1e5d52608080 (KEY)0213815820160000025000400662topdownfabricationprocessforverticalhollowsiliconn DE-627 ger DE-627 rakwb eng 620 DNB He, Yuan verfasserin aut A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Hollow silicon nanopillars (HSiNPs) have been fabricated from a single crystal silicon wafer by a series of standard top-down microfabrication processes, specifically by an ambient temperature Bosch process using the nanosphere beads as the mask. The dimensions of the hollow silicon nanopillars can be tuned with an outer diameter in the range of hundreds of nanometers and inner diameter from 70 to 700 nm. The density of the HSiNPs can be as high as <inline-formula> <tex-math notation="LaTeX">1.3 \,\, \times \,\, 10^{8} </tex-math></inline-formula>/cm 2 and their height-to-width aspect ratio can be as high as 20. The ratio of the wall thickness to the outer diameter of the HSiNPs can be tuned from 1/3 to 1/16. This process could be adapted or modified to fabricate hollow nanopillars from different semiconductors, oxides, and metals, thereby offering a generic method for fabricating hollow nanopillars. [2016-0021] silicon nanotubes Silicon Nanotubes nanosphere beads Passivation hollow silicon nanopillars Plasmas Etching Nanobioscience Bosch process Silicon wafers Che, Xiangchen oth Que, Long oth Enthalten in Journal of microelectromechanical systems New York, NY : IEEE, 1992 25(2016), 4, Seite 662-667 (DE-627)131059963 (DE-600)1106644-1 (DE-576)032853254 1057-7157 nnns volume:25 year:2016 number:4 pages:662-667 http://dx.doi.org/10.1109/JMEMS.2016.2582341 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7502175 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_150 AR 25 2016 4 662-667 |
spelling |
10.1109/JMEMS.2016.2582341 doi PQ20160815 (DE-627)OLC1980588686 (DE-599)GBVOLC1980588686 (PRQ)c1010-e8c333e334e4a8951578429f022ca9272d20353b1413579492e6c1e5d52608080 (KEY)0213815820160000025000400662topdownfabricationprocessforverticalhollowsiliconn DE-627 ger DE-627 rakwb eng 620 DNB He, Yuan verfasserin aut A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Hollow silicon nanopillars (HSiNPs) have been fabricated from a single crystal silicon wafer by a series of standard top-down microfabrication processes, specifically by an ambient temperature Bosch process using the nanosphere beads as the mask. The dimensions of the hollow silicon nanopillars can be tuned with an outer diameter in the range of hundreds of nanometers and inner diameter from 70 to 700 nm. The density of the HSiNPs can be as high as <inline-formula> <tex-math notation="LaTeX">1.3 \,\, \times \,\, 10^{8} </tex-math></inline-formula>/cm 2 and their height-to-width aspect ratio can be as high as 20. The ratio of the wall thickness to the outer diameter of the HSiNPs can be tuned from 1/3 to 1/16. This process could be adapted or modified to fabricate hollow nanopillars from different semiconductors, oxides, and metals, thereby offering a generic method for fabricating hollow nanopillars. [2016-0021] silicon nanotubes Silicon Nanotubes nanosphere beads Passivation hollow silicon nanopillars Plasmas Etching Nanobioscience Bosch process Silicon wafers Che, Xiangchen oth Que, Long oth Enthalten in Journal of microelectromechanical systems New York, NY : IEEE, 1992 25(2016), 4, Seite 662-667 (DE-627)131059963 (DE-600)1106644-1 (DE-576)032853254 1057-7157 nnns volume:25 year:2016 number:4 pages:662-667 http://dx.doi.org/10.1109/JMEMS.2016.2582341 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7502175 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_150 AR 25 2016 4 662-667 |
allfields_unstemmed |
10.1109/JMEMS.2016.2582341 doi PQ20160815 (DE-627)OLC1980588686 (DE-599)GBVOLC1980588686 (PRQ)c1010-e8c333e334e4a8951578429f022ca9272d20353b1413579492e6c1e5d52608080 (KEY)0213815820160000025000400662topdownfabricationprocessforverticalhollowsiliconn DE-627 ger DE-627 rakwb eng 620 DNB He, Yuan verfasserin aut A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Hollow silicon nanopillars (HSiNPs) have been fabricated from a single crystal silicon wafer by a series of standard top-down microfabrication processes, specifically by an ambient temperature Bosch process using the nanosphere beads as the mask. The dimensions of the hollow silicon nanopillars can be tuned with an outer diameter in the range of hundreds of nanometers and inner diameter from 70 to 700 nm. The density of the HSiNPs can be as high as <inline-formula> <tex-math notation="LaTeX">1.3 \,\, \times \,\, 10^{8} </tex-math></inline-formula>/cm 2 and their height-to-width aspect ratio can be as high as 20. The ratio of the wall thickness to the outer diameter of the HSiNPs can be tuned from 1/3 to 1/16. This process could be adapted or modified to fabricate hollow nanopillars from different semiconductors, oxides, and metals, thereby offering a generic method for fabricating hollow nanopillars. [2016-0021] silicon nanotubes Silicon Nanotubes nanosphere beads Passivation hollow silicon nanopillars Plasmas Etching Nanobioscience Bosch process Silicon wafers Che, Xiangchen oth Que, Long oth Enthalten in Journal of microelectromechanical systems New York, NY : IEEE, 1992 25(2016), 4, Seite 662-667 (DE-627)131059963 (DE-600)1106644-1 (DE-576)032853254 1057-7157 nnns volume:25 year:2016 number:4 pages:662-667 http://dx.doi.org/10.1109/JMEMS.2016.2582341 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7502175 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_150 AR 25 2016 4 662-667 |
allfieldsGer |
10.1109/JMEMS.2016.2582341 doi PQ20160815 (DE-627)OLC1980588686 (DE-599)GBVOLC1980588686 (PRQ)c1010-e8c333e334e4a8951578429f022ca9272d20353b1413579492e6c1e5d52608080 (KEY)0213815820160000025000400662topdownfabricationprocessforverticalhollowsiliconn DE-627 ger DE-627 rakwb eng 620 DNB He, Yuan verfasserin aut A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Hollow silicon nanopillars (HSiNPs) have been fabricated from a single crystal silicon wafer by a series of standard top-down microfabrication processes, specifically by an ambient temperature Bosch process using the nanosphere beads as the mask. The dimensions of the hollow silicon nanopillars can be tuned with an outer diameter in the range of hundreds of nanometers and inner diameter from 70 to 700 nm. The density of the HSiNPs can be as high as <inline-formula> <tex-math notation="LaTeX">1.3 \,\, \times \,\, 10^{8} </tex-math></inline-formula>/cm 2 and their height-to-width aspect ratio can be as high as 20. The ratio of the wall thickness to the outer diameter of the HSiNPs can be tuned from 1/3 to 1/16. This process could be adapted or modified to fabricate hollow nanopillars from different semiconductors, oxides, and metals, thereby offering a generic method for fabricating hollow nanopillars. [2016-0021] silicon nanotubes Silicon Nanotubes nanosphere beads Passivation hollow silicon nanopillars Plasmas Etching Nanobioscience Bosch process Silicon wafers Che, Xiangchen oth Que, Long oth Enthalten in Journal of microelectromechanical systems New York, NY : IEEE, 1992 25(2016), 4, Seite 662-667 (DE-627)131059963 (DE-600)1106644-1 (DE-576)032853254 1057-7157 nnns volume:25 year:2016 number:4 pages:662-667 http://dx.doi.org/10.1109/JMEMS.2016.2582341 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7502175 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_150 AR 25 2016 4 662-667 |
allfieldsSound |
10.1109/JMEMS.2016.2582341 doi PQ20160815 (DE-627)OLC1980588686 (DE-599)GBVOLC1980588686 (PRQ)c1010-e8c333e334e4a8951578429f022ca9272d20353b1413579492e6c1e5d52608080 (KEY)0213815820160000025000400662topdownfabricationprocessforverticalhollowsiliconn DE-627 ger DE-627 rakwb eng 620 DNB He, Yuan verfasserin aut A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Hollow silicon nanopillars (HSiNPs) have been fabricated from a single crystal silicon wafer by a series of standard top-down microfabrication processes, specifically by an ambient temperature Bosch process using the nanosphere beads as the mask. The dimensions of the hollow silicon nanopillars can be tuned with an outer diameter in the range of hundreds of nanometers and inner diameter from 70 to 700 nm. The density of the HSiNPs can be as high as <inline-formula> <tex-math notation="LaTeX">1.3 \,\, \times \,\, 10^{8} </tex-math></inline-formula>/cm 2 and their height-to-width aspect ratio can be as high as 20. The ratio of the wall thickness to the outer diameter of the HSiNPs can be tuned from 1/3 to 1/16. This process could be adapted or modified to fabricate hollow nanopillars from different semiconductors, oxides, and metals, thereby offering a generic method for fabricating hollow nanopillars. [2016-0021] silicon nanotubes Silicon Nanotubes nanosphere beads Passivation hollow silicon nanopillars Plasmas Etching Nanobioscience Bosch process Silicon wafers Che, Xiangchen oth Que, Long oth Enthalten in Journal of microelectromechanical systems New York, NY : IEEE, 1992 25(2016), 4, Seite 662-667 (DE-627)131059963 (DE-600)1106644-1 (DE-576)032853254 1057-7157 nnns volume:25 year:2016 number:4 pages:662-667 http://dx.doi.org/10.1109/JMEMS.2016.2582341 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7502175 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_150 AR 25 2016 4 662-667 |
language |
English |
source |
Enthalten in Journal of microelectromechanical systems 25(2016), 4, Seite 662-667 volume:25 year:2016 number:4 pages:662-667 |
sourceStr |
Enthalten in Journal of microelectromechanical systems 25(2016), 4, Seite 662-667 volume:25 year:2016 number:4 pages:662-667 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
silicon nanotubes Silicon Nanotubes nanosphere beads Passivation hollow silicon nanopillars Plasmas Etching Nanobioscience Bosch process Silicon wafers |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of microelectromechanical systems |
authorswithroles_txt_mv |
He, Yuan @@aut@@ Che, Xiangchen @@oth@@ Que, Long @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
131059963 |
dewey-sort |
3620 |
id |
OLC1980588686 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980588686</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714205626.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JMEMS.2016.2582341</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980588686</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980588686</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1010-e8c333e334e4a8951578429f022ca9272d20353b1413579492e6c1e5d52608080</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0213815820160000025000400662topdownfabricationprocessforverticalhollowsiliconn</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">He, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hollow silicon nanopillars (HSiNPs) have been fabricated from a single crystal silicon wafer by a series of standard top-down microfabrication processes, specifically by an ambient temperature Bosch process using the nanosphere beads as the mask. The dimensions of the hollow silicon nanopillars can be tuned with an outer diameter in the range of hundreds of nanometers and inner diameter from 70 to 700 nm. The density of the HSiNPs can be as high as <inline-formula> <tex-math notation="LaTeX">1.3 \,\, \times \,\, 10^{8} </tex-math></inline-formula>/cm 2 and their height-to-width aspect ratio can be as high as 20. The ratio of the wall thickness to the outer diameter of the HSiNPs can be tuned from 1/3 to 1/16. This process could be adapted or modified to fabricate hollow nanopillars from different semiconductors, oxides, and metals, thereby offering a generic method for fabricating hollow nanopillars. [2016-0021]</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silicon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanosphere beads</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passivation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hollow silicon nanopillars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Etching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanobioscience</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bosch process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon wafers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Che, Xiangchen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Que, Long</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of microelectromechanical systems</subfield><subfield code="d">New York, NY : IEEE, 1992</subfield><subfield code="g">25(2016), 4, Seite 662-667</subfield><subfield code="w">(DE-627)131059963</subfield><subfield code="w">(DE-600)1106644-1</subfield><subfield code="w">(DE-576)032853254</subfield><subfield code="x">1057-7157</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:662-667</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JMEMS.2016.2582341</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7502175</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">662-667</subfield></datafield></record></collection>
|
author |
He, Yuan |
spellingShingle |
He, Yuan ddc 620 misc silicon nanotubes misc Silicon misc Nanotubes misc nanosphere beads misc Passivation misc hollow silicon nanopillars misc Plasmas misc Etching misc Nanobioscience misc Bosch process misc Silicon wafers A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars |
authorStr |
He, Yuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131059963 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1057-7157 |
topic_title |
620 DNB A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars silicon nanotubes Silicon Nanotubes nanosphere beads Passivation hollow silicon nanopillars Plasmas Etching Nanobioscience Bosch process Silicon wafers |
topic |
ddc 620 misc silicon nanotubes misc Silicon misc Nanotubes misc nanosphere beads misc Passivation misc hollow silicon nanopillars misc Plasmas misc Etching misc Nanobioscience misc Bosch process misc Silicon wafers |
topic_unstemmed |
ddc 620 misc silicon nanotubes misc Silicon misc Nanotubes misc nanosphere beads misc Passivation misc hollow silicon nanopillars misc Plasmas misc Etching misc Nanobioscience misc Bosch process misc Silicon wafers |
topic_browse |
ddc 620 misc silicon nanotubes misc Silicon misc Nanotubes misc nanosphere beads misc Passivation misc hollow silicon nanopillars misc Plasmas misc Etching misc Nanobioscience misc Bosch process misc Silicon wafers |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
x c xc l q lq |
hierarchy_parent_title |
Journal of microelectromechanical systems |
hierarchy_parent_id |
131059963 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Journal of microelectromechanical systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131059963 (DE-600)1106644-1 (DE-576)032853254 |
title |
A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars |
ctrlnum |
(DE-627)OLC1980588686 (DE-599)GBVOLC1980588686 (PRQ)c1010-e8c333e334e4a8951578429f022ca9272d20353b1413579492e6c1e5d52608080 (KEY)0213815820160000025000400662topdownfabricationprocessforverticalhollowsiliconn |
title_full |
A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars |
author_sort |
He, Yuan |
journal |
Journal of microelectromechanical systems |
journalStr |
Journal of microelectromechanical systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
662 |
author_browse |
He, Yuan |
container_volume |
25 |
class |
620 DNB |
format_se |
Aufsätze |
author-letter |
He, Yuan |
doi_str_mv |
10.1109/JMEMS.2016.2582341 |
dewey-full |
620 |
title_sort |
top-down fabrication process for vertical hollow silicon nanopillars |
title_auth |
A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars |
abstract |
Hollow silicon nanopillars (HSiNPs) have been fabricated from a single crystal silicon wafer by a series of standard top-down microfabrication processes, specifically by an ambient temperature Bosch process using the nanosphere beads as the mask. The dimensions of the hollow silicon nanopillars can be tuned with an outer diameter in the range of hundreds of nanometers and inner diameter from 70 to 700 nm. The density of the HSiNPs can be as high as <inline-formula> <tex-math notation="LaTeX">1.3 \,\, \times \,\, 10^{8} </tex-math></inline-formula>/cm 2 and their height-to-width aspect ratio can be as high as 20. The ratio of the wall thickness to the outer diameter of the HSiNPs can be tuned from 1/3 to 1/16. This process could be adapted or modified to fabricate hollow nanopillars from different semiconductors, oxides, and metals, thereby offering a generic method for fabricating hollow nanopillars. [2016-0021] |
abstractGer |
Hollow silicon nanopillars (HSiNPs) have been fabricated from a single crystal silicon wafer by a series of standard top-down microfabrication processes, specifically by an ambient temperature Bosch process using the nanosphere beads as the mask. The dimensions of the hollow silicon nanopillars can be tuned with an outer diameter in the range of hundreds of nanometers and inner diameter from 70 to 700 nm. The density of the HSiNPs can be as high as <inline-formula> <tex-math notation="LaTeX">1.3 \,\, \times \,\, 10^{8} </tex-math></inline-formula>/cm 2 and their height-to-width aspect ratio can be as high as 20. The ratio of the wall thickness to the outer diameter of the HSiNPs can be tuned from 1/3 to 1/16. This process could be adapted or modified to fabricate hollow nanopillars from different semiconductors, oxides, and metals, thereby offering a generic method for fabricating hollow nanopillars. [2016-0021] |
abstract_unstemmed |
Hollow silicon nanopillars (HSiNPs) have been fabricated from a single crystal silicon wafer by a series of standard top-down microfabrication processes, specifically by an ambient temperature Bosch process using the nanosphere beads as the mask. The dimensions of the hollow silicon nanopillars can be tuned with an outer diameter in the range of hundreds of nanometers and inner diameter from 70 to 700 nm. The density of the HSiNPs can be as high as <inline-formula> <tex-math notation="LaTeX">1.3 \,\, \times \,\, 10^{8} </tex-math></inline-formula>/cm 2 and their height-to-width aspect ratio can be as high as 20. The ratio of the wall thickness to the outer diameter of the HSiNPs can be tuned from 1/3 to 1/16. This process could be adapted or modified to fabricate hollow nanopillars from different semiconductors, oxides, and metals, thereby offering a generic method for fabricating hollow nanopillars. [2016-0021] |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_150 |
container_issue |
4 |
title_short |
A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars |
url |
http://dx.doi.org/10.1109/JMEMS.2016.2582341 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7502175 |
remote_bool |
false |
author2 |
Che, Xiangchen Que, Long |
author2Str |
Che, Xiangchen Que, Long |
ppnlink |
131059963 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/JMEMS.2016.2582341 |
up_date |
2024-07-04T03:23:26.463Z |
_version_ |
1803617206496395264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1980588686</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714205626.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160816s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JMEMS.2016.2582341</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1980588686</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1980588686</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1010-e8c333e334e4a8951578429f022ca9272d20353b1413579492e6c1e5d52608080</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0213815820160000025000400662topdownfabricationprocessforverticalhollowsiliconn</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">He, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hollow silicon nanopillars (HSiNPs) have been fabricated from a single crystal silicon wafer by a series of standard top-down microfabrication processes, specifically by an ambient temperature Bosch process using the nanosphere beads as the mask. The dimensions of the hollow silicon nanopillars can be tuned with an outer diameter in the range of hundreds of nanometers and inner diameter from 70 to 700 nm. The density of the HSiNPs can be as high as <inline-formula> <tex-math notation="LaTeX">1.3 \,\, \times \,\, 10^{8} </tex-math></inline-formula>/cm 2 and their height-to-width aspect ratio can be as high as 20. The ratio of the wall thickness to the outer diameter of the HSiNPs can be tuned from 1/3 to 1/16. This process could be adapted or modified to fabricate hollow nanopillars from different semiconductors, oxides, and metals, thereby offering a generic method for fabricating hollow nanopillars. [2016-0021]</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silicon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanosphere beads</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passivation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hollow silicon nanopillars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Etching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanobioscience</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bosch process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon wafers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Che, Xiangchen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Que, Long</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of microelectromechanical systems</subfield><subfield code="d">New York, NY : IEEE, 1992</subfield><subfield code="g">25(2016), 4, Seite 662-667</subfield><subfield code="w">(DE-627)131059963</subfield><subfield code="w">(DE-600)1106644-1</subfield><subfield code="w">(DE-576)032853254</subfield><subfield code="x">1057-7157</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:662-667</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JMEMS.2016.2582341</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7502175</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">662-667</subfield></datafield></record></collection>
|
score |
7.4001474 |