A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations
The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross‐correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory–Scintillation Network Decision Aid (AFRL‐SCINDA) network opera...
Ausführliche Beschreibung
Autor*in: |
Carrano, Charles S [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Radio science - Washington, DC [u.a.] : American Geophysical Union, 1966, 51(2016), 8, Seite 1263-1277 |
---|---|
Übergeordnetes Werk: |
volume:51 ; year:2016 ; number:8 ; pages:1263-1277 |
Links: |
---|
DOI / URN: |
10.1002/2015RS005864 |
---|
Katalog-ID: |
OLC198164248X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC198164248X | ||
003 | DE-627 | ||
005 | 20220219112245.0 | ||
007 | tu | ||
008 | 161013s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/2015RS005864 |2 doi | |
028 | 5 | 2 | |a PQ20161012 |
035 | |a (DE-627)OLC198164248X | ||
035 | |a (DE-599)GBVOLC198164248X | ||
035 | |a (PRQ)p952-8237f3e28420e4a10ede81189d4e632086efc0b650006e8df1aa705801f9286d0 | ||
035 | |a (KEY)0041276720160000051000801263techniqueforinferringzonalirregularitydriftfromsin | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 070 |q DNB |
100 | 1 | |a Carrano, Charles S |e verfasserin |4 aut | |
245 | 1 | 2 | |a A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross‐correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory–Scintillation Network Decision Aid (AFRL‐SCINDA) network operates a small number of very high frequency (VHF) spaced‐receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL‐SCINDA network (25–30) and the Low‐Latitude Ionospheric Sensor Network (35–50), but the receivers are too widely separated from each other for cross‐correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single‐station GNSS measurements of S 4 , σ φ , and the propagation geometry. Unlike the spaced‐receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σ φ to S 4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced‐receiver measurements of zonal irregularity drift obtained from the AFRL‐SCINDA network. While the spaced‐receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors. We infer zonal irregularity drift from single‐station GNSS measurements of S4 and sigma‐phi Geometric control of scintillation differs between satellites, but inferred zonal drift does not GNSS‐estimated zonal drift compares favorably with VHF spaced‐receiver measurements | ||
540 | |a Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. | ||
650 | 4 | |a zonal irregularity drift | |
650 | 4 | |a AFRL‐SCINDA | |
650 | 4 | |a equatorial plasma bubbles | |
650 | 4 | |a scintillation | |
650 | 4 | |a LISN | |
650 | 4 | |a GNSS receiver | |
650 | 4 | |a Satellites | |
700 | 1 | |a Groves, Keith M |4 oth | |
700 | 1 | |a Rino, Charles L |4 oth | |
700 | 1 | |a Doherty, Patricia H |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Radio science |d Washington, DC [u.a.] : American Geophysical Union, 1966 |g 51(2016), 8, Seite 1263-1277 |w (DE-627)129488941 |w (DE-600)205763-3 |w (DE-576)014881934 |x 0048-6604 |7 nnns |
773 | 1 | 8 | |g volume:51 |g year:2016 |g number:8 |g pages:1263-1277 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/2015RS005864 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/2015RS005864/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1819936279 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OLC-AST | ||
912 | |a SSG-OLC-MKW | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 51 |j 2016 |e 8 |h 1263-1277 |
author_variant |
c s c cs csc |
---|---|
matchkey_str |
article:00486604:2016----::tcnqeoifrigoairglrtditrmigettogsmaueetoitn |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1002/2015RS005864 doi PQ20161012 (DE-627)OLC198164248X (DE-599)GBVOLC198164248X (PRQ)p952-8237f3e28420e4a10ede81189d4e632086efc0b650006e8df1aa705801f9286d0 (KEY)0041276720160000051000801263techniqueforinferringzonalirregularitydriftfromsin DE-627 ger DE-627 rakwb eng 620 070 DNB Carrano, Charles S verfasserin aut A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross‐correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory–Scintillation Network Decision Aid (AFRL‐SCINDA) network operates a small number of very high frequency (VHF) spaced‐receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL‐SCINDA network (25–30) and the Low‐Latitude Ionospheric Sensor Network (35–50), but the receivers are too widely separated from each other for cross‐correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single‐station GNSS measurements of S 4 , σ φ , and the propagation geometry. Unlike the spaced‐receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σ φ to S 4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced‐receiver measurements of zonal irregularity drift obtained from the AFRL‐SCINDA network. While the spaced‐receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors. We infer zonal irregularity drift from single‐station GNSS measurements of S4 and sigma‐phi Geometric control of scintillation differs between satellites, but inferred zonal drift does not GNSS‐estimated zonal drift compares favorably with VHF spaced‐receiver measurements Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. zonal irregularity drift AFRL‐SCINDA equatorial plasma bubbles scintillation LISN GNSS receiver Satellites Groves, Keith M oth Rino, Charles L oth Doherty, Patricia H oth Enthalten in Radio science Washington, DC [u.a.] : American Geophysical Union, 1966 51(2016), 8, Seite 1263-1277 (DE-627)129488941 (DE-600)205763-3 (DE-576)014881934 0048-6604 nnns volume:51 year:2016 number:8 pages:1263-1277 http://dx.doi.org/10.1002/2015RS005864 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015RS005864/abstract http://search.proquest.com/docview/1819936279 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-AST SSG-OLC-MKW SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_24 GBV_ILN_62 GBV_ILN_70 AR 51 2016 8 1263-1277 |
spelling |
10.1002/2015RS005864 doi PQ20161012 (DE-627)OLC198164248X (DE-599)GBVOLC198164248X (PRQ)p952-8237f3e28420e4a10ede81189d4e632086efc0b650006e8df1aa705801f9286d0 (KEY)0041276720160000051000801263techniqueforinferringzonalirregularitydriftfromsin DE-627 ger DE-627 rakwb eng 620 070 DNB Carrano, Charles S verfasserin aut A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross‐correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory–Scintillation Network Decision Aid (AFRL‐SCINDA) network operates a small number of very high frequency (VHF) spaced‐receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL‐SCINDA network (25–30) and the Low‐Latitude Ionospheric Sensor Network (35–50), but the receivers are too widely separated from each other for cross‐correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single‐station GNSS measurements of S 4 , σ φ , and the propagation geometry. Unlike the spaced‐receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σ φ to S 4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced‐receiver measurements of zonal irregularity drift obtained from the AFRL‐SCINDA network. While the spaced‐receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors. We infer zonal irregularity drift from single‐station GNSS measurements of S4 and sigma‐phi Geometric control of scintillation differs between satellites, but inferred zonal drift does not GNSS‐estimated zonal drift compares favorably with VHF spaced‐receiver measurements Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. zonal irregularity drift AFRL‐SCINDA equatorial plasma bubbles scintillation LISN GNSS receiver Satellites Groves, Keith M oth Rino, Charles L oth Doherty, Patricia H oth Enthalten in Radio science Washington, DC [u.a.] : American Geophysical Union, 1966 51(2016), 8, Seite 1263-1277 (DE-627)129488941 (DE-600)205763-3 (DE-576)014881934 0048-6604 nnns volume:51 year:2016 number:8 pages:1263-1277 http://dx.doi.org/10.1002/2015RS005864 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015RS005864/abstract http://search.proquest.com/docview/1819936279 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-AST SSG-OLC-MKW SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_24 GBV_ILN_62 GBV_ILN_70 AR 51 2016 8 1263-1277 |
allfields_unstemmed |
10.1002/2015RS005864 doi PQ20161012 (DE-627)OLC198164248X (DE-599)GBVOLC198164248X (PRQ)p952-8237f3e28420e4a10ede81189d4e632086efc0b650006e8df1aa705801f9286d0 (KEY)0041276720160000051000801263techniqueforinferringzonalirregularitydriftfromsin DE-627 ger DE-627 rakwb eng 620 070 DNB Carrano, Charles S verfasserin aut A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross‐correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory–Scintillation Network Decision Aid (AFRL‐SCINDA) network operates a small number of very high frequency (VHF) spaced‐receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL‐SCINDA network (25–30) and the Low‐Latitude Ionospheric Sensor Network (35–50), but the receivers are too widely separated from each other for cross‐correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single‐station GNSS measurements of S 4 , σ φ , and the propagation geometry. Unlike the spaced‐receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σ φ to S 4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced‐receiver measurements of zonal irregularity drift obtained from the AFRL‐SCINDA network. While the spaced‐receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors. We infer zonal irregularity drift from single‐station GNSS measurements of S4 and sigma‐phi Geometric control of scintillation differs between satellites, but inferred zonal drift does not GNSS‐estimated zonal drift compares favorably with VHF spaced‐receiver measurements Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. zonal irregularity drift AFRL‐SCINDA equatorial plasma bubbles scintillation LISN GNSS receiver Satellites Groves, Keith M oth Rino, Charles L oth Doherty, Patricia H oth Enthalten in Radio science Washington, DC [u.a.] : American Geophysical Union, 1966 51(2016), 8, Seite 1263-1277 (DE-627)129488941 (DE-600)205763-3 (DE-576)014881934 0048-6604 nnns volume:51 year:2016 number:8 pages:1263-1277 http://dx.doi.org/10.1002/2015RS005864 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015RS005864/abstract http://search.proquest.com/docview/1819936279 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-AST SSG-OLC-MKW SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_24 GBV_ILN_62 GBV_ILN_70 AR 51 2016 8 1263-1277 |
allfieldsGer |
10.1002/2015RS005864 doi PQ20161012 (DE-627)OLC198164248X (DE-599)GBVOLC198164248X (PRQ)p952-8237f3e28420e4a10ede81189d4e632086efc0b650006e8df1aa705801f9286d0 (KEY)0041276720160000051000801263techniqueforinferringzonalirregularitydriftfromsin DE-627 ger DE-627 rakwb eng 620 070 DNB Carrano, Charles S verfasserin aut A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross‐correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory–Scintillation Network Decision Aid (AFRL‐SCINDA) network operates a small number of very high frequency (VHF) spaced‐receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL‐SCINDA network (25–30) and the Low‐Latitude Ionospheric Sensor Network (35–50), but the receivers are too widely separated from each other for cross‐correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single‐station GNSS measurements of S 4 , σ φ , and the propagation geometry. Unlike the spaced‐receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σ φ to S 4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced‐receiver measurements of zonal irregularity drift obtained from the AFRL‐SCINDA network. While the spaced‐receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors. We infer zonal irregularity drift from single‐station GNSS measurements of S4 and sigma‐phi Geometric control of scintillation differs between satellites, but inferred zonal drift does not GNSS‐estimated zonal drift compares favorably with VHF spaced‐receiver measurements Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. zonal irregularity drift AFRL‐SCINDA equatorial plasma bubbles scintillation LISN GNSS receiver Satellites Groves, Keith M oth Rino, Charles L oth Doherty, Patricia H oth Enthalten in Radio science Washington, DC [u.a.] : American Geophysical Union, 1966 51(2016), 8, Seite 1263-1277 (DE-627)129488941 (DE-600)205763-3 (DE-576)014881934 0048-6604 nnns volume:51 year:2016 number:8 pages:1263-1277 http://dx.doi.org/10.1002/2015RS005864 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015RS005864/abstract http://search.proquest.com/docview/1819936279 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-AST SSG-OLC-MKW SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_24 GBV_ILN_62 GBV_ILN_70 AR 51 2016 8 1263-1277 |
allfieldsSound |
10.1002/2015RS005864 doi PQ20161012 (DE-627)OLC198164248X (DE-599)GBVOLC198164248X (PRQ)p952-8237f3e28420e4a10ede81189d4e632086efc0b650006e8df1aa705801f9286d0 (KEY)0041276720160000051000801263techniqueforinferringzonalirregularitydriftfromsin DE-627 ger DE-627 rakwb eng 620 070 DNB Carrano, Charles S verfasserin aut A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross‐correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory–Scintillation Network Decision Aid (AFRL‐SCINDA) network operates a small number of very high frequency (VHF) spaced‐receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL‐SCINDA network (25–30) and the Low‐Latitude Ionospheric Sensor Network (35–50), but the receivers are too widely separated from each other for cross‐correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single‐station GNSS measurements of S 4 , σ φ , and the propagation geometry. Unlike the spaced‐receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σ φ to S 4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced‐receiver measurements of zonal irregularity drift obtained from the AFRL‐SCINDA network. While the spaced‐receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors. We infer zonal irregularity drift from single‐station GNSS measurements of S4 and sigma‐phi Geometric control of scintillation differs between satellites, but inferred zonal drift does not GNSS‐estimated zonal drift compares favorably with VHF spaced‐receiver measurements Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. zonal irregularity drift AFRL‐SCINDA equatorial plasma bubbles scintillation LISN GNSS receiver Satellites Groves, Keith M oth Rino, Charles L oth Doherty, Patricia H oth Enthalten in Radio science Washington, DC [u.a.] : American Geophysical Union, 1966 51(2016), 8, Seite 1263-1277 (DE-627)129488941 (DE-600)205763-3 (DE-576)014881934 0048-6604 nnns volume:51 year:2016 number:8 pages:1263-1277 http://dx.doi.org/10.1002/2015RS005864 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015RS005864/abstract http://search.proquest.com/docview/1819936279 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-AST SSG-OLC-MKW SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_24 GBV_ILN_62 GBV_ILN_70 AR 51 2016 8 1263-1277 |
language |
English |
source |
Enthalten in Radio science 51(2016), 8, Seite 1263-1277 volume:51 year:2016 number:8 pages:1263-1277 |
sourceStr |
Enthalten in Radio science 51(2016), 8, Seite 1263-1277 volume:51 year:2016 number:8 pages:1263-1277 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
zonal irregularity drift AFRL‐SCINDA equatorial plasma bubbles scintillation LISN GNSS receiver Satellites |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Radio science |
authorswithroles_txt_mv |
Carrano, Charles S @@aut@@ Groves, Keith M @@oth@@ Rino, Charles L @@oth@@ Doherty, Patricia H @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129488941 |
dewey-sort |
3620 |
id |
OLC198164248X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198164248X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220219112245.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2015RS005864</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198164248X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198164248X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p952-8237f3e28420e4a10ede81189d4e632086efc0b650006e8df1aa705801f9286d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0041276720160000051000801263techniqueforinferringzonalirregularitydriftfromsin</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">070</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Carrano, Charles S</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross‐correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory–Scintillation Network Decision Aid (AFRL‐SCINDA) network operates a small number of very high frequency (VHF) spaced‐receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL‐SCINDA network (25–30) and the Low‐Latitude Ionospheric Sensor Network (35–50), but the receivers are too widely separated from each other for cross‐correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single‐station GNSS measurements of S 4 , σ φ , and the propagation geometry. Unlike the spaced‐receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σ φ to S 4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced‐receiver measurements of zonal irregularity drift obtained from the AFRL‐SCINDA network. While the spaced‐receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors. We infer zonal irregularity drift from single‐station GNSS measurements of S4 and sigma‐phi Geometric control of scintillation differs between satellites, but inferred zonal drift does not GNSS‐estimated zonal drift compares favorably with VHF spaced‐receiver measurements</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zonal irregularity drift</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AFRL‐SCINDA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">equatorial plasma bubbles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scintillation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LISN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GNSS receiver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Satellites</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Groves, Keith M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rino, Charles L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Doherty, Patricia H</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radio science</subfield><subfield code="d">Washington, DC [u.a.] : American Geophysical Union, 1966</subfield><subfield code="g">51(2016), 8, Seite 1263-1277</subfield><subfield code="w">(DE-627)129488941</subfield><subfield code="w">(DE-600)205763-3</subfield><subfield code="w">(DE-576)014881934</subfield><subfield code="x">0048-6604</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:1263-1277</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2015RS005864</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2015RS005864/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1819936279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2016</subfield><subfield code="e">8</subfield><subfield code="h">1263-1277</subfield></datafield></record></collection>
|
author |
Carrano, Charles S |
spellingShingle |
Carrano, Charles S ddc 620 misc zonal irregularity drift misc AFRL‐SCINDA misc equatorial plasma bubbles misc scintillation misc LISN misc GNSS receiver misc Satellites A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations |
authorStr |
Carrano, Charles S |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129488941 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 070 - News media, journalism & publishing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0048-6604 |
topic_title |
620 070 DNB A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations zonal irregularity drift AFRL‐SCINDA equatorial plasma bubbles scintillation LISN GNSS receiver Satellites |
topic |
ddc 620 misc zonal irregularity drift misc AFRL‐SCINDA misc equatorial plasma bubbles misc scintillation misc LISN misc GNSS receiver misc Satellites |
topic_unstemmed |
ddc 620 misc zonal irregularity drift misc AFRL‐SCINDA misc equatorial plasma bubbles misc scintillation misc LISN misc GNSS receiver misc Satellites |
topic_browse |
ddc 620 misc zonal irregularity drift misc AFRL‐SCINDA misc equatorial plasma bubbles misc scintillation misc LISN misc GNSS receiver misc Satellites |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
k m g km kmg c l r cl clr p h d ph phd |
hierarchy_parent_title |
Radio science |
hierarchy_parent_id |
129488941 |
dewey-tens |
620 - Engineering 070 - News media, journalism & publishing |
hierarchy_top_title |
Radio science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129488941 (DE-600)205763-3 (DE-576)014881934 |
title |
A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations |
ctrlnum |
(DE-627)OLC198164248X (DE-599)GBVOLC198164248X (PRQ)p952-8237f3e28420e4a10ede81189d4e632086efc0b650006e8df1aa705801f9286d0 (KEY)0041276720160000051000801263techniqueforinferringzonalirregularitydriftfromsin |
title_full |
A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations |
author_sort |
Carrano, Charles S |
journal |
Radio science |
journalStr |
Radio science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1263 |
author_browse |
Carrano, Charles S |
container_volume |
51 |
class |
620 070 DNB |
format_se |
Aufsätze |
author-letter |
Carrano, Charles S |
doi_str_mv |
10.1002/2015RS005864 |
dewey-full |
620 070 |
title_sort |
technique for inferring zonal irregularity drift from single‐station gnss measurements of intensity (s4) and phase (σφ) scintillations |
title_auth |
A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations |
abstract |
The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross‐correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory–Scintillation Network Decision Aid (AFRL‐SCINDA) network operates a small number of very high frequency (VHF) spaced‐receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL‐SCINDA network (25–30) and the Low‐Latitude Ionospheric Sensor Network (35–50), but the receivers are too widely separated from each other for cross‐correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single‐station GNSS measurements of S 4 , σ φ , and the propagation geometry. Unlike the spaced‐receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σ φ to S 4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced‐receiver measurements of zonal irregularity drift obtained from the AFRL‐SCINDA network. While the spaced‐receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors. We infer zonal irregularity drift from single‐station GNSS measurements of S4 and sigma‐phi Geometric control of scintillation differs between satellites, but inferred zonal drift does not GNSS‐estimated zonal drift compares favorably with VHF spaced‐receiver measurements |
abstractGer |
The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross‐correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory–Scintillation Network Decision Aid (AFRL‐SCINDA) network operates a small number of very high frequency (VHF) spaced‐receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL‐SCINDA network (25–30) and the Low‐Latitude Ionospheric Sensor Network (35–50), but the receivers are too widely separated from each other for cross‐correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single‐station GNSS measurements of S 4 , σ φ , and the propagation geometry. Unlike the spaced‐receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σ φ to S 4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced‐receiver measurements of zonal irregularity drift obtained from the AFRL‐SCINDA network. While the spaced‐receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors. We infer zonal irregularity drift from single‐station GNSS measurements of S4 and sigma‐phi Geometric control of scintillation differs between satellites, but inferred zonal drift does not GNSS‐estimated zonal drift compares favorably with VHF spaced‐receiver measurements |
abstract_unstemmed |
The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross‐correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory–Scintillation Network Decision Aid (AFRL‐SCINDA) network operates a small number of very high frequency (VHF) spaced‐receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL‐SCINDA network (25–30) and the Low‐Latitude Ionospheric Sensor Network (35–50), but the receivers are too widely separated from each other for cross‐correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single‐station GNSS measurements of S 4 , σ φ , and the propagation geometry. Unlike the spaced‐receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σ φ to S 4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced‐receiver measurements of zonal irregularity drift obtained from the AFRL‐SCINDA network. While the spaced‐receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors. We infer zonal irregularity drift from single‐station GNSS measurements of S4 and sigma‐phi Geometric control of scintillation differs between satellites, but inferred zonal drift does not GNSS‐estimated zonal drift compares favorably with VHF spaced‐receiver measurements |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-AST SSG-OLC-MKW SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_24 GBV_ILN_62 GBV_ILN_70 |
container_issue |
8 |
title_short |
A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations |
url |
http://dx.doi.org/10.1002/2015RS005864 http://onlinelibrary.wiley.com/doi/10.1002/2015RS005864/abstract http://search.proquest.com/docview/1819936279 |
remote_bool |
false |
author2 |
Groves, Keith M Rino, Charles L Doherty, Patricia H |
author2Str |
Groves, Keith M Rino, Charles L Doherty, Patricia H |
ppnlink |
129488941 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1002/2015RS005864 |
up_date |
2024-07-03T14:08:18.970Z |
_version_ |
1803567181562118144 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198164248X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220219112245.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2015RS005864</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198164248X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198164248X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p952-8237f3e28420e4a10ede81189d4e632086efc0b650006e8df1aa705801f9286d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0041276720160000051000801263techniqueforinferringzonalirregularitydriftfromsin</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">070</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Carrano, Charles S</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A technique for inferring zonal irregularity drift from single‐station GNSS measurements of intensity (S4) and phase (σφ) scintillations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross‐correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory–Scintillation Network Decision Aid (AFRL‐SCINDA) network operates a small number of very high frequency (VHF) spaced‐receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL‐SCINDA network (25–30) and the Low‐Latitude Ionospheric Sensor Network (35–50), but the receivers are too widely separated from each other for cross‐correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single‐station GNSS measurements of S 4 , σ φ , and the propagation geometry. Unlike the spaced‐receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σ φ to S 4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced‐receiver measurements of zonal irregularity drift obtained from the AFRL‐SCINDA network. While the spaced‐receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors. We infer zonal irregularity drift from single‐station GNSS measurements of S4 and sigma‐phi Geometric control of scintillation differs between satellites, but inferred zonal drift does not GNSS‐estimated zonal drift compares favorably with VHF spaced‐receiver measurements</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zonal irregularity drift</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AFRL‐SCINDA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">equatorial plasma bubbles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scintillation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LISN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GNSS receiver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Satellites</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Groves, Keith M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rino, Charles L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Doherty, Patricia H</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radio science</subfield><subfield code="d">Washington, DC [u.a.] : American Geophysical Union, 1966</subfield><subfield code="g">51(2016), 8, Seite 1263-1277</subfield><subfield code="w">(DE-627)129488941</subfield><subfield code="w">(DE-600)205763-3</subfield><subfield code="w">(DE-576)014881934</subfield><subfield code="x">0048-6604</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:1263-1277</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2015RS005864</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2015RS005864/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1819936279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2016</subfield><subfield code="e">8</subfield><subfield code="h">1263-1277</subfield></datafield></record></collection>
|
score |
7.4011803 |