On generalized moment identity and its applications: a unified approach
In this paper, we obtain a generalized moment identity for the case when the distributions of the random variables are not necessarily purely discrete or absolutely continuous. The proposed identity is useful to find the generator which has been used for the approximation of distributions by Stein...
Ausführliche Beschreibung
Autor*in: |
Kattumannil, Sudheesh K [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2015 Taylor & Francis 2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Statistics - Abingdon, Oxon [u.a.] : Taylor & Francis, 1985, 50(2016), 5, Seite 1149-1160 |
---|---|
Übergeordnetes Werk: |
volume:50 ; year:2016 ; number:5 ; pages:1149-1160 |
Links: |
---|
DOI / URN: |
10.1080/02331888.2015.1119150 |
---|
Katalog-ID: |
OLC1982304561 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1982304561 | ||
003 | DE-627 | ||
005 | 20230714214252.0 | ||
007 | tu | ||
008 | 161013s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/02331888.2015.1119150 |2 doi | |
028 | 5 | 2 | |a PQ20161201 |
035 | |a (DE-627)OLC1982304561 | ||
035 | |a (DE-599)GBVOLC1982304561 | ||
035 | |a (PRQ)c1262-a6af537ab5f7d508126a528bb58b3183a940d29c86026afbdb301e0b4e3d955e0 | ||
035 | |a (KEY)0092533020160000050000501149ongeneralizedmomentidentityanditsapplicationsaunif | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 15 |a 27 |a 310 |q DNB |
082 | 0 | 4 | |a 510 |q AVZ |
100 | 1 | |a Kattumannil, Sudheesh K |e verfasserin |4 aut | |
245 | 1 | 0 | |a On generalized moment identity and its applications: a unified approach |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, we obtain a generalized moment identity for the case when the distributions of the random variables are not necessarily purely discrete or absolutely continuous. The proposed identity is useful to find the generator which has been used for the approximation of distributions by Stein's method. Apparently, a new approach is discussed for the approximation of distributions by Stein's method. We bring the characterization based on the relationship between conditional expectations and hazard measure in our unified framework. As an application, a new lower bound to the mean-squared error is obtained and it is compared with Bayesian Cramer-Rao bound. | ||
540 | |a Nutzungsrecht: © 2015 Taylor & Francis 2015 | ||
650 | 4 | |a Stein's identity | |
650 | 4 | |a conditional variance | |
650 | 4 | |a unbiased estimation | |
650 | 4 | |a reliability analysis | |
650 | 4 | |a Bayesian Cramer-Rao bound | |
650 | 4 | |a moment identity | |
700 | 1 | |a Dewan, Isha |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Statistics |d Abingdon, Oxon [u.a.] : Taylor & Francis, 1985 |g 50(2016), 5, Seite 1149-1160 |w (DE-627)130630934 |w (DE-600)798366-9 |w (DE-576)016136500 |x 0233-1888 |7 nnns |
773 | 1 | 8 | |g volume:50 |g year:2016 |g number:5 |g pages:1149-1160 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/02331888.2015.1119150 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/02331888.2015.1119150 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_4036 | ||
951 | |a AR | ||
952 | |d 50 |j 2016 |e 5 |h 1149-1160 |
author_variant |
s k k sk skk |
---|---|
matchkey_str |
article:02331888:2016----::neeaiemmniettadtapiain |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1080/02331888.2015.1119150 doi PQ20161201 (DE-627)OLC1982304561 (DE-599)GBVOLC1982304561 (PRQ)c1262-a6af537ab5f7d508126a528bb58b3183a940d29c86026afbdb301e0b4e3d955e0 (KEY)0092533020160000050000501149ongeneralizedmomentidentityanditsapplicationsaunif DE-627 ger DE-627 rakwb eng 15 27 310 DNB 510 AVZ Kattumannil, Sudheesh K verfasserin aut On generalized moment identity and its applications: a unified approach 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we obtain a generalized moment identity for the case when the distributions of the random variables are not necessarily purely discrete or absolutely continuous. The proposed identity is useful to find the generator which has been used for the approximation of distributions by Stein's method. Apparently, a new approach is discussed for the approximation of distributions by Stein's method. We bring the characterization based on the relationship between conditional expectations and hazard measure in our unified framework. As an application, a new lower bound to the mean-squared error is obtained and it is compared with Bayesian Cramer-Rao bound. Nutzungsrecht: © 2015 Taylor & Francis 2015 Stein's identity conditional variance unbiased estimation reliability analysis Bayesian Cramer-Rao bound moment identity Dewan, Isha oth Enthalten in Statistics Abingdon, Oxon [u.a.] : Taylor & Francis, 1985 50(2016), 5, Seite 1149-1160 (DE-627)130630934 (DE-600)798366-9 (DE-576)016136500 0233-1888 nnns volume:50 year:2016 number:5 pages:1149-1160 http://dx.doi.org/10.1080/02331888.2015.1119150 Volltext http://www.tandfonline.com/doi/abs/10.1080/02331888.2015.1119150 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_4036 AR 50 2016 5 1149-1160 |
spelling |
10.1080/02331888.2015.1119150 doi PQ20161201 (DE-627)OLC1982304561 (DE-599)GBVOLC1982304561 (PRQ)c1262-a6af537ab5f7d508126a528bb58b3183a940d29c86026afbdb301e0b4e3d955e0 (KEY)0092533020160000050000501149ongeneralizedmomentidentityanditsapplicationsaunif DE-627 ger DE-627 rakwb eng 15 27 310 DNB 510 AVZ Kattumannil, Sudheesh K verfasserin aut On generalized moment identity and its applications: a unified approach 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we obtain a generalized moment identity for the case when the distributions of the random variables are not necessarily purely discrete or absolutely continuous. The proposed identity is useful to find the generator which has been used for the approximation of distributions by Stein's method. Apparently, a new approach is discussed for the approximation of distributions by Stein's method. We bring the characterization based on the relationship between conditional expectations and hazard measure in our unified framework. As an application, a new lower bound to the mean-squared error is obtained and it is compared with Bayesian Cramer-Rao bound. Nutzungsrecht: © 2015 Taylor & Francis 2015 Stein's identity conditional variance unbiased estimation reliability analysis Bayesian Cramer-Rao bound moment identity Dewan, Isha oth Enthalten in Statistics Abingdon, Oxon [u.a.] : Taylor & Francis, 1985 50(2016), 5, Seite 1149-1160 (DE-627)130630934 (DE-600)798366-9 (DE-576)016136500 0233-1888 nnns volume:50 year:2016 number:5 pages:1149-1160 http://dx.doi.org/10.1080/02331888.2015.1119150 Volltext http://www.tandfonline.com/doi/abs/10.1080/02331888.2015.1119150 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_4036 AR 50 2016 5 1149-1160 |
allfields_unstemmed |
10.1080/02331888.2015.1119150 doi PQ20161201 (DE-627)OLC1982304561 (DE-599)GBVOLC1982304561 (PRQ)c1262-a6af537ab5f7d508126a528bb58b3183a940d29c86026afbdb301e0b4e3d955e0 (KEY)0092533020160000050000501149ongeneralizedmomentidentityanditsapplicationsaunif DE-627 ger DE-627 rakwb eng 15 27 310 DNB 510 AVZ Kattumannil, Sudheesh K verfasserin aut On generalized moment identity and its applications: a unified approach 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we obtain a generalized moment identity for the case when the distributions of the random variables are not necessarily purely discrete or absolutely continuous. The proposed identity is useful to find the generator which has been used for the approximation of distributions by Stein's method. Apparently, a new approach is discussed for the approximation of distributions by Stein's method. We bring the characterization based on the relationship between conditional expectations and hazard measure in our unified framework. As an application, a new lower bound to the mean-squared error is obtained and it is compared with Bayesian Cramer-Rao bound. Nutzungsrecht: © 2015 Taylor & Francis 2015 Stein's identity conditional variance unbiased estimation reliability analysis Bayesian Cramer-Rao bound moment identity Dewan, Isha oth Enthalten in Statistics Abingdon, Oxon [u.a.] : Taylor & Francis, 1985 50(2016), 5, Seite 1149-1160 (DE-627)130630934 (DE-600)798366-9 (DE-576)016136500 0233-1888 nnns volume:50 year:2016 number:5 pages:1149-1160 http://dx.doi.org/10.1080/02331888.2015.1119150 Volltext http://www.tandfonline.com/doi/abs/10.1080/02331888.2015.1119150 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_4036 AR 50 2016 5 1149-1160 |
allfieldsGer |
10.1080/02331888.2015.1119150 doi PQ20161201 (DE-627)OLC1982304561 (DE-599)GBVOLC1982304561 (PRQ)c1262-a6af537ab5f7d508126a528bb58b3183a940d29c86026afbdb301e0b4e3d955e0 (KEY)0092533020160000050000501149ongeneralizedmomentidentityanditsapplicationsaunif DE-627 ger DE-627 rakwb eng 15 27 310 DNB 510 AVZ Kattumannil, Sudheesh K verfasserin aut On generalized moment identity and its applications: a unified approach 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we obtain a generalized moment identity for the case when the distributions of the random variables are not necessarily purely discrete or absolutely continuous. The proposed identity is useful to find the generator which has been used for the approximation of distributions by Stein's method. Apparently, a new approach is discussed for the approximation of distributions by Stein's method. We bring the characterization based on the relationship between conditional expectations and hazard measure in our unified framework. As an application, a new lower bound to the mean-squared error is obtained and it is compared with Bayesian Cramer-Rao bound. Nutzungsrecht: © 2015 Taylor & Francis 2015 Stein's identity conditional variance unbiased estimation reliability analysis Bayesian Cramer-Rao bound moment identity Dewan, Isha oth Enthalten in Statistics Abingdon, Oxon [u.a.] : Taylor & Francis, 1985 50(2016), 5, Seite 1149-1160 (DE-627)130630934 (DE-600)798366-9 (DE-576)016136500 0233-1888 nnns volume:50 year:2016 number:5 pages:1149-1160 http://dx.doi.org/10.1080/02331888.2015.1119150 Volltext http://www.tandfonline.com/doi/abs/10.1080/02331888.2015.1119150 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_4036 AR 50 2016 5 1149-1160 |
allfieldsSound |
10.1080/02331888.2015.1119150 doi PQ20161201 (DE-627)OLC1982304561 (DE-599)GBVOLC1982304561 (PRQ)c1262-a6af537ab5f7d508126a528bb58b3183a940d29c86026afbdb301e0b4e3d955e0 (KEY)0092533020160000050000501149ongeneralizedmomentidentityanditsapplicationsaunif DE-627 ger DE-627 rakwb eng 15 27 310 DNB 510 AVZ Kattumannil, Sudheesh K verfasserin aut On generalized moment identity and its applications: a unified approach 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we obtain a generalized moment identity for the case when the distributions of the random variables are not necessarily purely discrete or absolutely continuous. The proposed identity is useful to find the generator which has been used for the approximation of distributions by Stein's method. Apparently, a new approach is discussed for the approximation of distributions by Stein's method. We bring the characterization based on the relationship between conditional expectations and hazard measure in our unified framework. As an application, a new lower bound to the mean-squared error is obtained and it is compared with Bayesian Cramer-Rao bound. Nutzungsrecht: © 2015 Taylor & Francis 2015 Stein's identity conditional variance unbiased estimation reliability analysis Bayesian Cramer-Rao bound moment identity Dewan, Isha oth Enthalten in Statistics Abingdon, Oxon [u.a.] : Taylor & Francis, 1985 50(2016), 5, Seite 1149-1160 (DE-627)130630934 (DE-600)798366-9 (DE-576)016136500 0233-1888 nnns volume:50 year:2016 number:5 pages:1149-1160 http://dx.doi.org/10.1080/02331888.2015.1119150 Volltext http://www.tandfonline.com/doi/abs/10.1080/02331888.2015.1119150 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_4036 AR 50 2016 5 1149-1160 |
language |
English |
source |
Enthalten in Statistics 50(2016), 5, Seite 1149-1160 volume:50 year:2016 number:5 pages:1149-1160 |
sourceStr |
Enthalten in Statistics 50(2016), 5, Seite 1149-1160 volume:50 year:2016 number:5 pages:1149-1160 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Stein's identity conditional variance unbiased estimation reliability analysis Bayesian Cramer-Rao bound moment identity |
dewey-raw |
15 |
isfreeaccess_bool |
false |
container_title |
Statistics |
authorswithroles_txt_mv |
Kattumannil, Sudheesh K @@aut@@ Dewan, Isha @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130630934 |
dewey-sort |
215 |
id |
OLC1982304561 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1982304561</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714214252.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/02331888.2015.1119150</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1982304561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1982304561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1262-a6af537ab5f7d508126a528bb58b3183a940d29c86026afbdb301e0b4e3d955e0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0092533020160000050000501149ongeneralizedmomentidentityanditsapplicationsaunif</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">15</subfield><subfield code="a">27</subfield><subfield code="a">310</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kattumannil, Sudheesh K</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On generalized moment identity and its applications: a unified approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we obtain a generalized moment identity for the case when the distributions of the random variables are not necessarily purely discrete or absolutely continuous. The proposed identity is useful to find the generator which has been used for the approximation of distributions by Stein's method. Apparently, a new approach is discussed for the approximation of distributions by Stein's method. We bring the characterization based on the relationship between conditional expectations and hazard measure in our unified framework. As an application, a new lower bound to the mean-squared error is obtained and it is compared with Bayesian Cramer-Rao bound.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 Taylor & Francis 2015</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stein's identity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conditional variance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unbiased estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reliability analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian Cramer-Rao bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">moment identity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dewan, Isha</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Statistics</subfield><subfield code="d">Abingdon, Oxon [u.a.] : Taylor & Francis, 1985</subfield><subfield code="g">50(2016), 5, Seite 1149-1160</subfield><subfield code="w">(DE-627)130630934</subfield><subfield code="w">(DE-600)798366-9</subfield><subfield code="w">(DE-576)016136500</subfield><subfield code="x">0233-1888</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1149-1160</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/02331888.2015.1119150</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/02331888.2015.1119150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">1149-1160</subfield></datafield></record></collection>
|
author |
Kattumannil, Sudheesh K |
spellingShingle |
Kattumannil, Sudheesh K ddc 15 ddc 510 misc Stein's identity misc conditional variance misc unbiased estimation misc reliability analysis misc Bayesian Cramer-Rao bound misc moment identity On generalized moment identity and its applications: a unified approach |
authorStr |
Kattumannil, Sudheesh K |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130630934 |
format |
Article |
dewey-ones |
015 - Bibliographies of works from specific places 027 - General libraries 310 - Collections of general statistics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0233-1888 |
topic_title |
15 27 310 DNB 510 AVZ On generalized moment identity and its applications: a unified approach Stein's identity conditional variance unbiased estimation reliability analysis Bayesian Cramer-Rao bound moment identity |
topic |
ddc 15 ddc 510 misc Stein's identity misc conditional variance misc unbiased estimation misc reliability analysis misc Bayesian Cramer-Rao bound misc moment identity |
topic_unstemmed |
ddc 15 ddc 510 misc Stein's identity misc conditional variance misc unbiased estimation misc reliability analysis misc Bayesian Cramer-Rao bound misc moment identity |
topic_browse |
ddc 15 ddc 510 misc Stein's identity misc conditional variance misc unbiased estimation misc reliability analysis misc Bayesian Cramer-Rao bound misc moment identity |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
i d id |
hierarchy_parent_title |
Statistics |
hierarchy_parent_id |
130630934 |
dewey-tens |
010 - Bibliographies 020 - Library & information sciences 310 - Statistics 510 - Mathematics |
hierarchy_top_title |
Statistics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130630934 (DE-600)798366-9 (DE-576)016136500 |
title |
On generalized moment identity and its applications: a unified approach |
ctrlnum |
(DE-627)OLC1982304561 (DE-599)GBVOLC1982304561 (PRQ)c1262-a6af537ab5f7d508126a528bb58b3183a940d29c86026afbdb301e0b4e3d955e0 (KEY)0092533020160000050000501149ongeneralizedmomentidentityanditsapplicationsaunif |
title_full |
On generalized moment identity and its applications: a unified approach |
author_sort |
Kattumannil, Sudheesh K |
journal |
Statistics |
journalStr |
Statistics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 300 - Social sciences 500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1149 |
author_browse |
Kattumannil, Sudheesh K |
container_volume |
50 |
class |
15 27 310 DNB 510 AVZ |
format_se |
Aufsätze |
author-letter |
Kattumannil, Sudheesh K |
doi_str_mv |
10.1080/02331888.2015.1119150 |
dewey-full |
15 27 310 510 |
title_sort |
on generalized moment identity and its applications: a unified approach |
title_auth |
On generalized moment identity and its applications: a unified approach |
abstract |
In this paper, we obtain a generalized moment identity for the case when the distributions of the random variables are not necessarily purely discrete or absolutely continuous. The proposed identity is useful to find the generator which has been used for the approximation of distributions by Stein's method. Apparently, a new approach is discussed for the approximation of distributions by Stein's method. We bring the characterization based on the relationship between conditional expectations and hazard measure in our unified framework. As an application, a new lower bound to the mean-squared error is obtained and it is compared with Bayesian Cramer-Rao bound. |
abstractGer |
In this paper, we obtain a generalized moment identity for the case when the distributions of the random variables are not necessarily purely discrete or absolutely continuous. The proposed identity is useful to find the generator which has been used for the approximation of distributions by Stein's method. Apparently, a new approach is discussed for the approximation of distributions by Stein's method. We bring the characterization based on the relationship between conditional expectations and hazard measure in our unified framework. As an application, a new lower bound to the mean-squared error is obtained and it is compared with Bayesian Cramer-Rao bound. |
abstract_unstemmed |
In this paper, we obtain a generalized moment identity for the case when the distributions of the random variables are not necessarily purely discrete or absolutely continuous. The proposed identity is useful to find the generator which has been used for the approximation of distributions by Stein's method. Apparently, a new approach is discussed for the approximation of distributions by Stein's method. We bring the characterization based on the relationship between conditional expectations and hazard measure in our unified framework. As an application, a new lower bound to the mean-squared error is obtained and it is compared with Bayesian Cramer-Rao bound. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2010 GBV_ILN_4036 |
container_issue |
5 |
title_short |
On generalized moment identity and its applications: a unified approach |
url |
http://dx.doi.org/10.1080/02331888.2015.1119150 http://www.tandfonline.com/doi/abs/10.1080/02331888.2015.1119150 |
remote_bool |
false |
author2 |
Dewan, Isha |
author2Str |
Dewan, Isha |
ppnlink |
130630934 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1080/02331888.2015.1119150 |
up_date |
2024-07-03T16:44:29.975Z |
_version_ |
1803577007776202752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1982304561</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714214252.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/02331888.2015.1119150</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1982304561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1982304561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1262-a6af537ab5f7d508126a528bb58b3183a940d29c86026afbdb301e0b4e3d955e0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0092533020160000050000501149ongeneralizedmomentidentityanditsapplicationsaunif</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">15</subfield><subfield code="a">27</subfield><subfield code="a">310</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kattumannil, Sudheesh K</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On generalized moment identity and its applications: a unified approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we obtain a generalized moment identity for the case when the distributions of the random variables are not necessarily purely discrete or absolutely continuous. The proposed identity is useful to find the generator which has been used for the approximation of distributions by Stein's method. Apparently, a new approach is discussed for the approximation of distributions by Stein's method. We bring the characterization based on the relationship between conditional expectations and hazard measure in our unified framework. As an application, a new lower bound to the mean-squared error is obtained and it is compared with Bayesian Cramer-Rao bound.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 Taylor & Francis 2015</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stein's identity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conditional variance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unbiased estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reliability analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian Cramer-Rao bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">moment identity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dewan, Isha</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Statistics</subfield><subfield code="d">Abingdon, Oxon [u.a.] : Taylor & Francis, 1985</subfield><subfield code="g">50(2016), 5, Seite 1149-1160</subfield><subfield code="w">(DE-627)130630934</subfield><subfield code="w">(DE-600)798366-9</subfield><subfield code="w">(DE-576)016136500</subfield><subfield code="x">0233-1888</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1149-1160</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/02331888.2015.1119150</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/02331888.2015.1119150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">1149-1160</subfield></datafield></record></collection>
|
score |
7.4024153 |