On the Distribution Estimation of Power Threshold Garch Processes
The aim of this article is to estimate the probability distribution of power threshold generalized autoregressive conditional heteroskedasticity processes by establishing bounds for their finite dimensional laws. These bounds only depend on the parameters of the model and on the distribution functio...
Ausführliche Beschreibung
Autor*in: |
Gonçalves, Esmeralda [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2016 Wiley Publishing Ltd |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of time series analysis - Oxford : Wiley-Blackwell, 1980, 37(2016), 5, Seite 579-602 |
---|---|
Übergeordnetes Werk: |
volume:37 ; year:2016 ; number:5 ; pages:579-602 |
Links: |
---|
DOI / URN: |
10.1111/jtsa.12173 |
---|
Katalog-ID: |
OLC1982383518 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1982383518 | ||
003 | DE-627 | ||
005 | 20220215181535.0 | ||
007 | tu | ||
008 | 161013s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1111/jtsa.12173 |2 doi | |
028 | 5 | 2 | |a PQ20170206 |
035 | |a (DE-627)OLC1982383518 | ||
035 | |a (DE-599)GBVOLC1982383518 | ||
035 | |a (PRQ)p1593-45defbce3e1c3674ab595ac73e95cdbb2a781f799f99226959c1cde00ceee9f20 | ||
035 | |a (KEY)0102813820160000037000500579onthedistributionestimationofpowerthresholdgarchpr | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DNB |
084 | |a 31.73 |2 bkl | ||
100 | 1 | |a Gonçalves, Esmeralda |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the Distribution Estimation of Power Threshold Garch Processes |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The aim of this article is to estimate the probability distribution of power threshold generalized autoregressive conditional heteroskedasticity processes by establishing bounds for their finite dimensional laws. These bounds only depend on the parameters of the model and on the distribution function of its independent generating process. The application of this study to some particular models allows us to conjecture that this procedure is an adequate alternative to the corresponding estimation using the empirical distribution functions, particularly useful in the development of control charts for this kind of models. | ||
540 | |a Nutzungsrecht: Copyright © 2016 Wiley Publishing Ltd | ||
650 | 4 | |a threshold GARCH processes | |
650 | 4 | |a Finite dimensional laws | |
650 | 4 | |a Studies | |
650 | 4 | |a Estimating techniques | |
650 | 4 | |a Stochastic models | |
650 | 4 | |a Probability distribution | |
650 | 4 | |a Time series | |
700 | 1 | |a Leite, Joana |4 oth | |
700 | 1 | |a Mendes‐Lopes, NazarÉ |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of time series analysis |d Oxford : Wiley-Blackwell, 1980 |g 37(2016), 5, Seite 579-602 |w (DE-627)130624454 |w (DE-600)796625-8 |w (DE-576)016130901 |x 0143-9782 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2016 |g number:5 |g pages:579-602 |
856 | 4 | 1 | |u http://dx.doi.org/10.1111/jtsa.12173 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1111/jtsa.12173/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1806618143 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2015 | ||
936 | b | k | |a 31.73 |q AVZ |
951 | |a AR | ||
952 | |d 37 |j 2016 |e 5 |h 579-602 |
author_variant |
e g eg |
---|---|
matchkey_str |
article:01439782:2016----::nhdsrbtoetmtoopwrhehl |
hierarchy_sort_str |
2016 |
bklnumber |
31.73 |
publishDate |
2016 |
allfields |
10.1111/jtsa.12173 doi PQ20170206 (DE-627)OLC1982383518 (DE-599)GBVOLC1982383518 (PRQ)p1593-45defbce3e1c3674ab595ac73e95cdbb2a781f799f99226959c1cde00ceee9f20 (KEY)0102813820160000037000500579onthedistributionestimationofpowerthresholdgarchpr DE-627 ger DE-627 rakwb eng 510 DNB 31.73 bkl Gonçalves, Esmeralda verfasserin aut On the Distribution Estimation of Power Threshold Garch Processes 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The aim of this article is to estimate the probability distribution of power threshold generalized autoregressive conditional heteroskedasticity processes by establishing bounds for their finite dimensional laws. These bounds only depend on the parameters of the model and on the distribution function of its independent generating process. The application of this study to some particular models allows us to conjecture that this procedure is an adequate alternative to the corresponding estimation using the empirical distribution functions, particularly useful in the development of control charts for this kind of models. Nutzungsrecht: Copyright © 2016 Wiley Publishing Ltd threshold GARCH processes Finite dimensional laws Studies Estimating techniques Stochastic models Probability distribution Time series Leite, Joana oth Mendes‐Lopes, NazarÉ oth Enthalten in Journal of time series analysis Oxford : Wiley-Blackwell, 1980 37(2016), 5, Seite 579-602 (DE-627)130624454 (DE-600)796625-8 (DE-576)016130901 0143-9782 nnns volume:37 year:2016 number:5 pages:579-602 http://dx.doi.org/10.1111/jtsa.12173 Volltext http://onlinelibrary.wiley.com/doi/10.1111/jtsa.12173/abstract http://search.proquest.com/docview/1806618143 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_26 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2015 31.73 AVZ AR 37 2016 5 579-602 |
spelling |
10.1111/jtsa.12173 doi PQ20170206 (DE-627)OLC1982383518 (DE-599)GBVOLC1982383518 (PRQ)p1593-45defbce3e1c3674ab595ac73e95cdbb2a781f799f99226959c1cde00ceee9f20 (KEY)0102813820160000037000500579onthedistributionestimationofpowerthresholdgarchpr DE-627 ger DE-627 rakwb eng 510 DNB 31.73 bkl Gonçalves, Esmeralda verfasserin aut On the Distribution Estimation of Power Threshold Garch Processes 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The aim of this article is to estimate the probability distribution of power threshold generalized autoregressive conditional heteroskedasticity processes by establishing bounds for their finite dimensional laws. These bounds only depend on the parameters of the model and on the distribution function of its independent generating process. The application of this study to some particular models allows us to conjecture that this procedure is an adequate alternative to the corresponding estimation using the empirical distribution functions, particularly useful in the development of control charts for this kind of models. Nutzungsrecht: Copyright © 2016 Wiley Publishing Ltd threshold GARCH processes Finite dimensional laws Studies Estimating techniques Stochastic models Probability distribution Time series Leite, Joana oth Mendes‐Lopes, NazarÉ oth Enthalten in Journal of time series analysis Oxford : Wiley-Blackwell, 1980 37(2016), 5, Seite 579-602 (DE-627)130624454 (DE-600)796625-8 (DE-576)016130901 0143-9782 nnns volume:37 year:2016 number:5 pages:579-602 http://dx.doi.org/10.1111/jtsa.12173 Volltext http://onlinelibrary.wiley.com/doi/10.1111/jtsa.12173/abstract http://search.proquest.com/docview/1806618143 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_26 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2015 31.73 AVZ AR 37 2016 5 579-602 |
allfields_unstemmed |
10.1111/jtsa.12173 doi PQ20170206 (DE-627)OLC1982383518 (DE-599)GBVOLC1982383518 (PRQ)p1593-45defbce3e1c3674ab595ac73e95cdbb2a781f799f99226959c1cde00ceee9f20 (KEY)0102813820160000037000500579onthedistributionestimationofpowerthresholdgarchpr DE-627 ger DE-627 rakwb eng 510 DNB 31.73 bkl Gonçalves, Esmeralda verfasserin aut On the Distribution Estimation of Power Threshold Garch Processes 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The aim of this article is to estimate the probability distribution of power threshold generalized autoregressive conditional heteroskedasticity processes by establishing bounds for their finite dimensional laws. These bounds only depend on the parameters of the model and on the distribution function of its independent generating process. The application of this study to some particular models allows us to conjecture that this procedure is an adequate alternative to the corresponding estimation using the empirical distribution functions, particularly useful in the development of control charts for this kind of models. Nutzungsrecht: Copyright © 2016 Wiley Publishing Ltd threshold GARCH processes Finite dimensional laws Studies Estimating techniques Stochastic models Probability distribution Time series Leite, Joana oth Mendes‐Lopes, NazarÉ oth Enthalten in Journal of time series analysis Oxford : Wiley-Blackwell, 1980 37(2016), 5, Seite 579-602 (DE-627)130624454 (DE-600)796625-8 (DE-576)016130901 0143-9782 nnns volume:37 year:2016 number:5 pages:579-602 http://dx.doi.org/10.1111/jtsa.12173 Volltext http://onlinelibrary.wiley.com/doi/10.1111/jtsa.12173/abstract http://search.proquest.com/docview/1806618143 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_26 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2015 31.73 AVZ AR 37 2016 5 579-602 |
allfieldsGer |
10.1111/jtsa.12173 doi PQ20170206 (DE-627)OLC1982383518 (DE-599)GBVOLC1982383518 (PRQ)p1593-45defbce3e1c3674ab595ac73e95cdbb2a781f799f99226959c1cde00ceee9f20 (KEY)0102813820160000037000500579onthedistributionestimationofpowerthresholdgarchpr DE-627 ger DE-627 rakwb eng 510 DNB 31.73 bkl Gonçalves, Esmeralda verfasserin aut On the Distribution Estimation of Power Threshold Garch Processes 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The aim of this article is to estimate the probability distribution of power threshold generalized autoregressive conditional heteroskedasticity processes by establishing bounds for their finite dimensional laws. These bounds only depend on the parameters of the model and on the distribution function of its independent generating process. The application of this study to some particular models allows us to conjecture that this procedure is an adequate alternative to the corresponding estimation using the empirical distribution functions, particularly useful in the development of control charts for this kind of models. Nutzungsrecht: Copyright © 2016 Wiley Publishing Ltd threshold GARCH processes Finite dimensional laws Studies Estimating techniques Stochastic models Probability distribution Time series Leite, Joana oth Mendes‐Lopes, NazarÉ oth Enthalten in Journal of time series analysis Oxford : Wiley-Blackwell, 1980 37(2016), 5, Seite 579-602 (DE-627)130624454 (DE-600)796625-8 (DE-576)016130901 0143-9782 nnns volume:37 year:2016 number:5 pages:579-602 http://dx.doi.org/10.1111/jtsa.12173 Volltext http://onlinelibrary.wiley.com/doi/10.1111/jtsa.12173/abstract http://search.proquest.com/docview/1806618143 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_26 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2015 31.73 AVZ AR 37 2016 5 579-602 |
allfieldsSound |
10.1111/jtsa.12173 doi PQ20170206 (DE-627)OLC1982383518 (DE-599)GBVOLC1982383518 (PRQ)p1593-45defbce3e1c3674ab595ac73e95cdbb2a781f799f99226959c1cde00ceee9f20 (KEY)0102813820160000037000500579onthedistributionestimationofpowerthresholdgarchpr DE-627 ger DE-627 rakwb eng 510 DNB 31.73 bkl Gonçalves, Esmeralda verfasserin aut On the Distribution Estimation of Power Threshold Garch Processes 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The aim of this article is to estimate the probability distribution of power threshold generalized autoregressive conditional heteroskedasticity processes by establishing bounds for their finite dimensional laws. These bounds only depend on the parameters of the model and on the distribution function of its independent generating process. The application of this study to some particular models allows us to conjecture that this procedure is an adequate alternative to the corresponding estimation using the empirical distribution functions, particularly useful in the development of control charts for this kind of models. Nutzungsrecht: Copyright © 2016 Wiley Publishing Ltd threshold GARCH processes Finite dimensional laws Studies Estimating techniques Stochastic models Probability distribution Time series Leite, Joana oth Mendes‐Lopes, NazarÉ oth Enthalten in Journal of time series analysis Oxford : Wiley-Blackwell, 1980 37(2016), 5, Seite 579-602 (DE-627)130624454 (DE-600)796625-8 (DE-576)016130901 0143-9782 nnns volume:37 year:2016 number:5 pages:579-602 http://dx.doi.org/10.1111/jtsa.12173 Volltext http://onlinelibrary.wiley.com/doi/10.1111/jtsa.12173/abstract http://search.proquest.com/docview/1806618143 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_26 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2015 31.73 AVZ AR 37 2016 5 579-602 |
language |
English |
source |
Enthalten in Journal of time series analysis 37(2016), 5, Seite 579-602 volume:37 year:2016 number:5 pages:579-602 |
sourceStr |
Enthalten in Journal of time series analysis 37(2016), 5, Seite 579-602 volume:37 year:2016 number:5 pages:579-602 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
threshold GARCH processes Finite dimensional laws Studies Estimating techniques Stochastic models Probability distribution Time series |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of time series analysis |
authorswithroles_txt_mv |
Gonçalves, Esmeralda @@aut@@ Leite, Joana @@oth@@ Mendes‐Lopes, NazarÉ @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130624454 |
dewey-sort |
3510 |
id |
OLC1982383518 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1982383518</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215181535.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/jtsa.12173</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1982383518</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1982383518</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1593-45defbce3e1c3674ab595ac73e95cdbb2a781f799f99226959c1cde00ceee9f20</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0102813820160000037000500579onthedistributionestimationofpowerthresholdgarchpr</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gonçalves, Esmeralda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Distribution Estimation of Power Threshold Garch Processes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of this article is to estimate the probability distribution of power threshold generalized autoregressive conditional heteroskedasticity processes by establishing bounds for their finite dimensional laws. These bounds only depend on the parameters of the model and on the distribution function of its independent generating process. The application of this study to some particular models allows us to conjecture that this procedure is an adequate alternative to the corresponding estimation using the empirical distribution functions, particularly useful in the development of control charts for this kind of models.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 Wiley Publishing Ltd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">threshold GARCH processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite dimensional laws</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimating techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leite, Joana</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mendes‐Lopes, NazarÉ</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of time series analysis</subfield><subfield code="d">Oxford : Wiley-Blackwell, 1980</subfield><subfield code="g">37(2016), 5, Seite 579-602</subfield><subfield code="w">(DE-627)130624454</subfield><subfield code="w">(DE-600)796625-8</subfield><subfield code="w">(DE-576)016130901</subfield><subfield code="x">0143-9782</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:579-602</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1111/jtsa.12173</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1111/jtsa.12173/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1806618143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">579-602</subfield></datafield></record></collection>
|
author |
Gonçalves, Esmeralda |
spellingShingle |
Gonçalves, Esmeralda ddc 510 bkl 31.73 misc threshold GARCH processes misc Finite dimensional laws misc Studies misc Estimating techniques misc Stochastic models misc Probability distribution misc Time series On the Distribution Estimation of Power Threshold Garch Processes |
authorStr |
Gonçalves, Esmeralda |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130624454 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0143-9782 |
topic_title |
510 DNB 31.73 bkl On the Distribution Estimation of Power Threshold Garch Processes threshold GARCH processes Finite dimensional laws Studies Estimating techniques Stochastic models Probability distribution Time series |
topic |
ddc 510 bkl 31.73 misc threshold GARCH processes misc Finite dimensional laws misc Studies misc Estimating techniques misc Stochastic models misc Probability distribution misc Time series |
topic_unstemmed |
ddc 510 bkl 31.73 misc threshold GARCH processes misc Finite dimensional laws misc Studies misc Estimating techniques misc Stochastic models misc Probability distribution misc Time series |
topic_browse |
ddc 510 bkl 31.73 misc threshold GARCH processes misc Finite dimensional laws misc Studies misc Estimating techniques misc Stochastic models misc Probability distribution misc Time series |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j l jl n m nm |
hierarchy_parent_title |
Journal of time series analysis |
hierarchy_parent_id |
130624454 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of time series analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130624454 (DE-600)796625-8 (DE-576)016130901 |
title |
On the Distribution Estimation of Power Threshold Garch Processes |
ctrlnum |
(DE-627)OLC1982383518 (DE-599)GBVOLC1982383518 (PRQ)p1593-45defbce3e1c3674ab595ac73e95cdbb2a781f799f99226959c1cde00ceee9f20 (KEY)0102813820160000037000500579onthedistributionestimationofpowerthresholdgarchpr |
title_full |
On the Distribution Estimation of Power Threshold Garch Processes |
author_sort |
Gonçalves, Esmeralda |
journal |
Journal of time series analysis |
journalStr |
Journal of time series analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
579 |
author_browse |
Gonçalves, Esmeralda |
container_volume |
37 |
class |
510 DNB 31.73 bkl |
format_se |
Aufsätze |
author-letter |
Gonçalves, Esmeralda |
doi_str_mv |
10.1111/jtsa.12173 |
dewey-full |
510 |
title_sort |
on the distribution estimation of power threshold garch processes |
title_auth |
On the Distribution Estimation of Power Threshold Garch Processes |
abstract |
The aim of this article is to estimate the probability distribution of power threshold generalized autoregressive conditional heteroskedasticity processes by establishing bounds for their finite dimensional laws. These bounds only depend on the parameters of the model and on the distribution function of its independent generating process. The application of this study to some particular models allows us to conjecture that this procedure is an adequate alternative to the corresponding estimation using the empirical distribution functions, particularly useful in the development of control charts for this kind of models. |
abstractGer |
The aim of this article is to estimate the probability distribution of power threshold generalized autoregressive conditional heteroskedasticity processes by establishing bounds for their finite dimensional laws. These bounds only depend on the parameters of the model and on the distribution function of its independent generating process. The application of this study to some particular models allows us to conjecture that this procedure is an adequate alternative to the corresponding estimation using the empirical distribution functions, particularly useful in the development of control charts for this kind of models. |
abstract_unstemmed |
The aim of this article is to estimate the probability distribution of power threshold generalized autoregressive conditional heteroskedasticity processes by establishing bounds for their finite dimensional laws. These bounds only depend on the parameters of the model and on the distribution function of its independent generating process. The application of this study to some particular models allows us to conjecture that this procedure is an adequate alternative to the corresponding estimation using the empirical distribution functions, particularly useful in the development of control charts for this kind of models. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_26 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2015 |
container_issue |
5 |
title_short |
On the Distribution Estimation of Power Threshold Garch Processes |
url |
http://dx.doi.org/10.1111/jtsa.12173 http://onlinelibrary.wiley.com/doi/10.1111/jtsa.12173/abstract http://search.proquest.com/docview/1806618143 |
remote_bool |
false |
author2 |
Leite, Joana Mendes‐Lopes, NazarÉ |
author2Str |
Leite, Joana Mendes‐Lopes, NazarÉ |
ppnlink |
130624454 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1111/jtsa.12173 |
up_date |
2024-07-03T17:03:15.148Z |
_version_ |
1803578187604557824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1982383518</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215181535.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/jtsa.12173</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1982383518</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1982383518</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1593-45defbce3e1c3674ab595ac73e95cdbb2a781f799f99226959c1cde00ceee9f20</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0102813820160000037000500579onthedistributionestimationofpowerthresholdgarchpr</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gonçalves, Esmeralda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Distribution Estimation of Power Threshold Garch Processes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of this article is to estimate the probability distribution of power threshold generalized autoregressive conditional heteroskedasticity processes by establishing bounds for their finite dimensional laws. These bounds only depend on the parameters of the model and on the distribution function of its independent generating process. The application of this study to some particular models allows us to conjecture that this procedure is an adequate alternative to the corresponding estimation using the empirical distribution functions, particularly useful in the development of control charts for this kind of models.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 Wiley Publishing Ltd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">threshold GARCH processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite dimensional laws</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimating techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leite, Joana</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mendes‐Lopes, NazarÉ</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of time series analysis</subfield><subfield code="d">Oxford : Wiley-Blackwell, 1980</subfield><subfield code="g">37(2016), 5, Seite 579-602</subfield><subfield code="w">(DE-627)130624454</subfield><subfield code="w">(DE-600)796625-8</subfield><subfield code="w">(DE-576)016130901</subfield><subfield code="x">0143-9782</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:579-602</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1111/jtsa.12173</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1111/jtsa.12173/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1806618143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">579-602</subfield></datafield></record></collection>
|
score |
7.401168 |