Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography
The cratonic cores of the continents are remarkably stable and long‐lived features. Their ability to resist destructive tectonic processes is associated with their thick (∼250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formatio...
Ausführliche Beschreibung
Autor*in: |
Boyce, A [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016. The Authors. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of geophysical research / B - Washington, DC : Union, 1978, 121(2016), 7, Seite 5013-5030 |
---|---|
Übergeordnetes Werk: |
volume:121 ; year:2016 ; number:7 ; pages:5013-5030 |
Links: |
---|
DOI / URN: |
10.1002/2016JB012838 |
---|
Katalog-ID: |
OLC1982445211 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1982445211 | ||
003 | DE-627 | ||
005 | 20220221191755.0 | ||
007 | tu | ||
008 | 161013s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/2016JB012838 |2 doi | |
028 | 5 | 2 | |a PQ20161012 |
035 | |a (DE-627)OLC1982445211 | ||
035 | |a (DE-599)GBVOLC1982445211 | ||
035 | |a (PRQ)p1610-8c1e7e7f25fd60b359b39579ecc0422a427e053103abf07eb93f9e27fed536800 | ||
035 | |a (KEY)0108436420160000121000705013subductionbeneathlaurentiamodifiedtheeasternnortha | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a 38.70 |2 bkl | ||
100 | 1 | |a Boyce, A |e verfasserin |4 aut | |
245 | 1 | 0 | |a Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The cratonic cores of the continents are remarkably stable and long‐lived features. Their ability to resist destructive tectonic processes is associated with their thick (∼250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formation mechanism and tectonic stability of cratonic keels remains under debate. To address this issue, we use P wave and S wave relative arrival‐time tomography to constrain upper mantle structure beneath southeast Canada and the northeast USA, a region spanning three quarters of Earth's geological history. Our models show three distinct, broad zones: Seismic wave speeds increase systematically from the Phanerozoic coastal domains, through the Proterozoic Grenville Province, and to the Archean Superior craton in central Québec. We also recover the NW‐SE trending track of the Great Meteor hot spot that crosscuts the major tectonic domains. The decrease in seismic wave speed from Archean to Proterozoic domains across the Grenville Front is consistent with predictions from models of two‐stage keel formation, supporting the idea that keel growth may not have been restricted to Archean times. However, while crustal structure studies suggest that Archean Superior material underlies Grenvillian age rocks up to ∼300 km SE of the Grenville Front, our tomographic models show a near‐vertical boundary in mantle wave speed directly beneath the Grenville Front. We interpret this as evidence for subduction‐driven metasomatic enrichment of the Laurentian cratonic margin, prior to keel stabilization. Variable chemical depletion levels across Archean‐Proterozoic boundaries worldwide may thus be better explained by metasomatic enrichment than inherently less depleted Proterozoic composition at formation. Body wave tomography shows a systematic decrease in wave speed across tectonic boundaries in SE Canada A distinct vertical wave speed boundary is imaged directly beneath the Grenville Front A metasomatized craton edge best explains the vertical wave speed boundary | ||
540 | |a Nutzungsrecht: © 2016. The Authors. | ||
650 | 4 | |a Grenville Orogeny | |
650 | 4 | |a Cratonic Margins | |
650 | 4 | |a Body wave Tomography | |
650 | 4 | |a SE Canada | |
650 | 4 | |a Seismology | |
650 | 4 | |a Plate tectonics | |
650 | 4 | |a Tomography | |
700 | 1 | |a Bastow, I. D |4 oth | |
700 | 1 | |a Darbyshire, F. A |4 oth | |
700 | 1 | |a Ellwood, A. G |4 oth | |
700 | 1 | |a Gilligan, A |4 oth | |
700 | 1 | |a Levin, V |4 oth | |
700 | 1 | |a Menke, W |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of geophysical research / B |d Washington, DC : Union, 1978 |g 121(2016), 7, Seite 5013-5030 |w (DE-627)129366382 |w (DE-600)161666-3 |w (DE-576)014740451 |x 0148-0227 |7 nnns |
773 | 1 | 8 | |g volume:121 |g year:2016 |g number:7 |g pages:5013-5030 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/2016JB012838 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/2016JB012838/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1811847145 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2279 | ||
936 | b | k | |a 38.70 |q AVZ |
951 | |a AR | ||
952 | |d 121 |j 2016 |e 7 |h 5013-5030 |
author_variant |
a b ab |
---|---|
matchkey_str |
article:01480227:2016----::udcineetluetaoiidhesenotaeiacaoiegeiecf |
hierarchy_sort_str |
2016 |
bklnumber |
38.70 |
publishDate |
2016 |
allfields |
10.1002/2016JB012838 doi PQ20161012 (DE-627)OLC1982445211 (DE-599)GBVOLC1982445211 (PRQ)p1610-8c1e7e7f25fd60b359b39579ecc0422a427e053103abf07eb93f9e27fed536800 (KEY)0108436420160000121000705013subductionbeneathlaurentiamodifiedtheeasternnortha DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Boyce, A verfasserin aut Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The cratonic cores of the continents are remarkably stable and long‐lived features. Their ability to resist destructive tectonic processes is associated with their thick (∼250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formation mechanism and tectonic stability of cratonic keels remains under debate. To address this issue, we use P wave and S wave relative arrival‐time tomography to constrain upper mantle structure beneath southeast Canada and the northeast USA, a region spanning three quarters of Earth's geological history. Our models show three distinct, broad zones: Seismic wave speeds increase systematically from the Phanerozoic coastal domains, through the Proterozoic Grenville Province, and to the Archean Superior craton in central Québec. We also recover the NW‐SE trending track of the Great Meteor hot spot that crosscuts the major tectonic domains. The decrease in seismic wave speed from Archean to Proterozoic domains across the Grenville Front is consistent with predictions from models of two‐stage keel formation, supporting the idea that keel growth may not have been restricted to Archean times. However, while crustal structure studies suggest that Archean Superior material underlies Grenvillian age rocks up to ∼300 km SE of the Grenville Front, our tomographic models show a near‐vertical boundary in mantle wave speed directly beneath the Grenville Front. We interpret this as evidence for subduction‐driven metasomatic enrichment of the Laurentian cratonic margin, prior to keel stabilization. Variable chemical depletion levels across Archean‐Proterozoic boundaries worldwide may thus be better explained by metasomatic enrichment than inherently less depleted Proterozoic composition at formation. Body wave tomography shows a systematic decrease in wave speed across tectonic boundaries in SE Canada A distinct vertical wave speed boundary is imaged directly beneath the Grenville Front A metasomatized craton edge best explains the vertical wave speed boundary Nutzungsrecht: © 2016. The Authors. Grenville Orogeny Cratonic Margins Body wave Tomography SE Canada Seismology Plate tectonics Tomography Bastow, I. D oth Darbyshire, F. A oth Ellwood, A. G oth Gilligan, A oth Levin, V oth Menke, W oth Enthalten in Journal of geophysical research / B Washington, DC : Union, 1978 121(2016), 7, Seite 5013-5030 (DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 0148-0227 nnns volume:121 year:2016 number:7 pages:5013-5030 http://dx.doi.org/10.1002/2016JB012838 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016JB012838/abstract http://search.proquest.com/docview/1811847145 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 38.70 AVZ AR 121 2016 7 5013-5030 |
spelling |
10.1002/2016JB012838 doi PQ20161012 (DE-627)OLC1982445211 (DE-599)GBVOLC1982445211 (PRQ)p1610-8c1e7e7f25fd60b359b39579ecc0422a427e053103abf07eb93f9e27fed536800 (KEY)0108436420160000121000705013subductionbeneathlaurentiamodifiedtheeasternnortha DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Boyce, A verfasserin aut Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The cratonic cores of the continents are remarkably stable and long‐lived features. Their ability to resist destructive tectonic processes is associated with their thick (∼250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formation mechanism and tectonic stability of cratonic keels remains under debate. To address this issue, we use P wave and S wave relative arrival‐time tomography to constrain upper mantle structure beneath southeast Canada and the northeast USA, a region spanning three quarters of Earth's geological history. Our models show three distinct, broad zones: Seismic wave speeds increase systematically from the Phanerozoic coastal domains, through the Proterozoic Grenville Province, and to the Archean Superior craton in central Québec. We also recover the NW‐SE trending track of the Great Meteor hot spot that crosscuts the major tectonic domains. The decrease in seismic wave speed from Archean to Proterozoic domains across the Grenville Front is consistent with predictions from models of two‐stage keel formation, supporting the idea that keel growth may not have been restricted to Archean times. However, while crustal structure studies suggest that Archean Superior material underlies Grenvillian age rocks up to ∼300 km SE of the Grenville Front, our tomographic models show a near‐vertical boundary in mantle wave speed directly beneath the Grenville Front. We interpret this as evidence for subduction‐driven metasomatic enrichment of the Laurentian cratonic margin, prior to keel stabilization. Variable chemical depletion levels across Archean‐Proterozoic boundaries worldwide may thus be better explained by metasomatic enrichment than inherently less depleted Proterozoic composition at formation. Body wave tomography shows a systematic decrease in wave speed across tectonic boundaries in SE Canada A distinct vertical wave speed boundary is imaged directly beneath the Grenville Front A metasomatized craton edge best explains the vertical wave speed boundary Nutzungsrecht: © 2016. The Authors. Grenville Orogeny Cratonic Margins Body wave Tomography SE Canada Seismology Plate tectonics Tomography Bastow, I. D oth Darbyshire, F. A oth Ellwood, A. G oth Gilligan, A oth Levin, V oth Menke, W oth Enthalten in Journal of geophysical research / B Washington, DC : Union, 1978 121(2016), 7, Seite 5013-5030 (DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 0148-0227 nnns volume:121 year:2016 number:7 pages:5013-5030 http://dx.doi.org/10.1002/2016JB012838 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016JB012838/abstract http://search.proquest.com/docview/1811847145 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 38.70 AVZ AR 121 2016 7 5013-5030 |
allfields_unstemmed |
10.1002/2016JB012838 doi PQ20161012 (DE-627)OLC1982445211 (DE-599)GBVOLC1982445211 (PRQ)p1610-8c1e7e7f25fd60b359b39579ecc0422a427e053103abf07eb93f9e27fed536800 (KEY)0108436420160000121000705013subductionbeneathlaurentiamodifiedtheeasternnortha DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Boyce, A verfasserin aut Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The cratonic cores of the continents are remarkably stable and long‐lived features. Their ability to resist destructive tectonic processes is associated with their thick (∼250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formation mechanism and tectonic stability of cratonic keels remains under debate. To address this issue, we use P wave and S wave relative arrival‐time tomography to constrain upper mantle structure beneath southeast Canada and the northeast USA, a region spanning three quarters of Earth's geological history. Our models show three distinct, broad zones: Seismic wave speeds increase systematically from the Phanerozoic coastal domains, through the Proterozoic Grenville Province, and to the Archean Superior craton in central Québec. We also recover the NW‐SE trending track of the Great Meteor hot spot that crosscuts the major tectonic domains. The decrease in seismic wave speed from Archean to Proterozoic domains across the Grenville Front is consistent with predictions from models of two‐stage keel formation, supporting the idea that keel growth may not have been restricted to Archean times. However, while crustal structure studies suggest that Archean Superior material underlies Grenvillian age rocks up to ∼300 km SE of the Grenville Front, our tomographic models show a near‐vertical boundary in mantle wave speed directly beneath the Grenville Front. We interpret this as evidence for subduction‐driven metasomatic enrichment of the Laurentian cratonic margin, prior to keel stabilization. Variable chemical depletion levels across Archean‐Proterozoic boundaries worldwide may thus be better explained by metasomatic enrichment than inherently less depleted Proterozoic composition at formation. Body wave tomography shows a systematic decrease in wave speed across tectonic boundaries in SE Canada A distinct vertical wave speed boundary is imaged directly beneath the Grenville Front A metasomatized craton edge best explains the vertical wave speed boundary Nutzungsrecht: © 2016. The Authors. Grenville Orogeny Cratonic Margins Body wave Tomography SE Canada Seismology Plate tectonics Tomography Bastow, I. D oth Darbyshire, F. A oth Ellwood, A. G oth Gilligan, A oth Levin, V oth Menke, W oth Enthalten in Journal of geophysical research / B Washington, DC : Union, 1978 121(2016), 7, Seite 5013-5030 (DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 0148-0227 nnns volume:121 year:2016 number:7 pages:5013-5030 http://dx.doi.org/10.1002/2016JB012838 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016JB012838/abstract http://search.proquest.com/docview/1811847145 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 38.70 AVZ AR 121 2016 7 5013-5030 |
allfieldsGer |
10.1002/2016JB012838 doi PQ20161012 (DE-627)OLC1982445211 (DE-599)GBVOLC1982445211 (PRQ)p1610-8c1e7e7f25fd60b359b39579ecc0422a427e053103abf07eb93f9e27fed536800 (KEY)0108436420160000121000705013subductionbeneathlaurentiamodifiedtheeasternnortha DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Boyce, A verfasserin aut Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The cratonic cores of the continents are remarkably stable and long‐lived features. Their ability to resist destructive tectonic processes is associated with their thick (∼250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formation mechanism and tectonic stability of cratonic keels remains under debate. To address this issue, we use P wave and S wave relative arrival‐time tomography to constrain upper mantle structure beneath southeast Canada and the northeast USA, a region spanning three quarters of Earth's geological history. Our models show three distinct, broad zones: Seismic wave speeds increase systematically from the Phanerozoic coastal domains, through the Proterozoic Grenville Province, and to the Archean Superior craton in central Québec. We also recover the NW‐SE trending track of the Great Meteor hot spot that crosscuts the major tectonic domains. The decrease in seismic wave speed from Archean to Proterozoic domains across the Grenville Front is consistent with predictions from models of two‐stage keel formation, supporting the idea that keel growth may not have been restricted to Archean times. However, while crustal structure studies suggest that Archean Superior material underlies Grenvillian age rocks up to ∼300 km SE of the Grenville Front, our tomographic models show a near‐vertical boundary in mantle wave speed directly beneath the Grenville Front. We interpret this as evidence for subduction‐driven metasomatic enrichment of the Laurentian cratonic margin, prior to keel stabilization. Variable chemical depletion levels across Archean‐Proterozoic boundaries worldwide may thus be better explained by metasomatic enrichment than inherently less depleted Proterozoic composition at formation. Body wave tomography shows a systematic decrease in wave speed across tectonic boundaries in SE Canada A distinct vertical wave speed boundary is imaged directly beneath the Grenville Front A metasomatized craton edge best explains the vertical wave speed boundary Nutzungsrecht: © 2016. The Authors. Grenville Orogeny Cratonic Margins Body wave Tomography SE Canada Seismology Plate tectonics Tomography Bastow, I. D oth Darbyshire, F. A oth Ellwood, A. G oth Gilligan, A oth Levin, V oth Menke, W oth Enthalten in Journal of geophysical research / B Washington, DC : Union, 1978 121(2016), 7, Seite 5013-5030 (DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 0148-0227 nnns volume:121 year:2016 number:7 pages:5013-5030 http://dx.doi.org/10.1002/2016JB012838 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016JB012838/abstract http://search.proquest.com/docview/1811847145 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 38.70 AVZ AR 121 2016 7 5013-5030 |
allfieldsSound |
10.1002/2016JB012838 doi PQ20161012 (DE-627)OLC1982445211 (DE-599)GBVOLC1982445211 (PRQ)p1610-8c1e7e7f25fd60b359b39579ecc0422a427e053103abf07eb93f9e27fed536800 (KEY)0108436420160000121000705013subductionbeneathlaurentiamodifiedtheeasternnortha DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Boyce, A verfasserin aut Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The cratonic cores of the continents are remarkably stable and long‐lived features. Their ability to resist destructive tectonic processes is associated with their thick (∼250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formation mechanism and tectonic stability of cratonic keels remains under debate. To address this issue, we use P wave and S wave relative arrival‐time tomography to constrain upper mantle structure beneath southeast Canada and the northeast USA, a region spanning three quarters of Earth's geological history. Our models show three distinct, broad zones: Seismic wave speeds increase systematically from the Phanerozoic coastal domains, through the Proterozoic Grenville Province, and to the Archean Superior craton in central Québec. We also recover the NW‐SE trending track of the Great Meteor hot spot that crosscuts the major tectonic domains. The decrease in seismic wave speed from Archean to Proterozoic domains across the Grenville Front is consistent with predictions from models of two‐stage keel formation, supporting the idea that keel growth may not have been restricted to Archean times. However, while crustal structure studies suggest that Archean Superior material underlies Grenvillian age rocks up to ∼300 km SE of the Grenville Front, our tomographic models show a near‐vertical boundary in mantle wave speed directly beneath the Grenville Front. We interpret this as evidence for subduction‐driven metasomatic enrichment of the Laurentian cratonic margin, prior to keel stabilization. Variable chemical depletion levels across Archean‐Proterozoic boundaries worldwide may thus be better explained by metasomatic enrichment than inherently less depleted Proterozoic composition at formation. Body wave tomography shows a systematic decrease in wave speed across tectonic boundaries in SE Canada A distinct vertical wave speed boundary is imaged directly beneath the Grenville Front A metasomatized craton edge best explains the vertical wave speed boundary Nutzungsrecht: © 2016. The Authors. Grenville Orogeny Cratonic Margins Body wave Tomography SE Canada Seismology Plate tectonics Tomography Bastow, I. D oth Darbyshire, F. A oth Ellwood, A. G oth Gilligan, A oth Levin, V oth Menke, W oth Enthalten in Journal of geophysical research / B Washington, DC : Union, 1978 121(2016), 7, Seite 5013-5030 (DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 0148-0227 nnns volume:121 year:2016 number:7 pages:5013-5030 http://dx.doi.org/10.1002/2016JB012838 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016JB012838/abstract http://search.proquest.com/docview/1811847145 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 38.70 AVZ AR 121 2016 7 5013-5030 |
language |
English |
source |
Enthalten in Journal of geophysical research / B 121(2016), 7, Seite 5013-5030 volume:121 year:2016 number:7 pages:5013-5030 |
sourceStr |
Enthalten in Journal of geophysical research / B 121(2016), 7, Seite 5013-5030 volume:121 year:2016 number:7 pages:5013-5030 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Grenville Orogeny Cratonic Margins Body wave Tomography SE Canada Seismology Plate tectonics Tomography |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Journal of geophysical research / B |
authorswithroles_txt_mv |
Boyce, A @@aut@@ Bastow, I. D @@oth@@ Darbyshire, F. A @@oth@@ Ellwood, A. G @@oth@@ Gilligan, A @@oth@@ Levin, V @@oth@@ Menke, W @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129366382 |
dewey-sort |
3550 |
id |
OLC1982445211 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1982445211</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221191755.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2016JB012838</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1982445211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1982445211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1610-8c1e7e7f25fd60b359b39579ecc0422a427e053103abf07eb93f9e27fed536800</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108436420160000121000705013subductionbeneathlaurentiamodifiedtheeasternnortha</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boyce, A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The cratonic cores of the continents are remarkably stable and long‐lived features. Their ability to resist destructive tectonic processes is associated with their thick (∼250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formation mechanism and tectonic stability of cratonic keels remains under debate. To address this issue, we use P wave and S wave relative arrival‐time tomography to constrain upper mantle structure beneath southeast Canada and the northeast USA, a region spanning three quarters of Earth's geological history. Our models show three distinct, broad zones: Seismic wave speeds increase systematically from the Phanerozoic coastal domains, through the Proterozoic Grenville Province, and to the Archean Superior craton in central Québec. We also recover the NW‐SE trending track of the Great Meteor hot spot that crosscuts the major tectonic domains. The decrease in seismic wave speed from Archean to Proterozoic domains across the Grenville Front is consistent with predictions from models of two‐stage keel formation, supporting the idea that keel growth may not have been restricted to Archean times. However, while crustal structure studies suggest that Archean Superior material underlies Grenvillian age rocks up to ∼300 km SE of the Grenville Front, our tomographic models show a near‐vertical boundary in mantle wave speed directly beneath the Grenville Front. We interpret this as evidence for subduction‐driven metasomatic enrichment of the Laurentian cratonic margin, prior to keel stabilization. Variable chemical depletion levels across Archean‐Proterozoic boundaries worldwide may thus be better explained by metasomatic enrichment than inherently less depleted Proterozoic composition at formation. Body wave tomography shows a systematic decrease in wave speed across tectonic boundaries in SE Canada A distinct vertical wave speed boundary is imaged directly beneath the Grenville Front A metasomatized craton edge best explains the vertical wave speed boundary</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016. The Authors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grenville Orogeny</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cratonic Margins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Body wave Tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SE Canada</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plate tectonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tomography</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bastow, I. D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Darbyshire, F. A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ellwood, A. G</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gilligan, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Levin, V</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Menke, W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geophysical research / B</subfield><subfield code="d">Washington, DC : Union, 1978</subfield><subfield code="g">121(2016), 7, Seite 5013-5030</subfield><subfield code="w">(DE-627)129366382</subfield><subfield code="w">(DE-600)161666-3</subfield><subfield code="w">(DE-576)014740451</subfield><subfield code="x">0148-0227</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:121</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:5013-5030</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2016JB012838</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2016JB012838/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1811847145</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">121</subfield><subfield code="j">2016</subfield><subfield code="e">7</subfield><subfield code="h">5013-5030</subfield></datafield></record></collection>
|
author |
Boyce, A |
spellingShingle |
Boyce, A ddc 550 bkl 38.70 misc Grenville Orogeny misc Cratonic Margins misc Body wave Tomography misc SE Canada misc Seismology misc Plate tectonics misc Tomography Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography |
authorStr |
Boyce, A |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129366382 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0148-0227 |
topic_title |
550 DNB 38.70 bkl Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography Grenville Orogeny Cratonic Margins Body wave Tomography SE Canada Seismology Plate tectonics Tomography |
topic |
ddc 550 bkl 38.70 misc Grenville Orogeny misc Cratonic Margins misc Body wave Tomography misc SE Canada misc Seismology misc Plate tectonics misc Tomography |
topic_unstemmed |
ddc 550 bkl 38.70 misc Grenville Orogeny misc Cratonic Margins misc Body wave Tomography misc SE Canada misc Seismology misc Plate tectonics misc Tomography |
topic_browse |
ddc 550 bkl 38.70 misc Grenville Orogeny misc Cratonic Margins misc Body wave Tomography misc SE Canada misc Seismology misc Plate tectonics misc Tomography |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
i d b id idb f a d fa fad a g e ag age a g ag v l vl w m wm |
hierarchy_parent_title |
Journal of geophysical research / B |
hierarchy_parent_id |
129366382 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Journal of geophysical research / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 |
title |
Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography |
ctrlnum |
(DE-627)OLC1982445211 (DE-599)GBVOLC1982445211 (PRQ)p1610-8c1e7e7f25fd60b359b39579ecc0422a427e053103abf07eb93f9e27fed536800 (KEY)0108436420160000121000705013subductionbeneathlaurentiamodifiedtheeasternnortha |
title_full |
Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography |
author_sort |
Boyce, A |
journal |
Journal of geophysical research / B |
journalStr |
Journal of geophysical research / B |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
5013 |
author_browse |
Boyce, A |
container_volume |
121 |
class |
550 DNB 38.70 bkl |
format_se |
Aufsätze |
author-letter |
Boyce, A |
doi_str_mv |
10.1002/2016JB012838 |
dewey-full |
550 |
title_sort |
subduction beneath laurentia modified the eastern north american cratonic edge: evidence from p wave and s wave tomography |
title_auth |
Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography |
abstract |
The cratonic cores of the continents are remarkably stable and long‐lived features. Their ability to resist destructive tectonic processes is associated with their thick (∼250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formation mechanism and tectonic stability of cratonic keels remains under debate. To address this issue, we use P wave and S wave relative arrival‐time tomography to constrain upper mantle structure beneath southeast Canada and the northeast USA, a region spanning three quarters of Earth's geological history. Our models show three distinct, broad zones: Seismic wave speeds increase systematically from the Phanerozoic coastal domains, through the Proterozoic Grenville Province, and to the Archean Superior craton in central Québec. We also recover the NW‐SE trending track of the Great Meteor hot spot that crosscuts the major tectonic domains. The decrease in seismic wave speed from Archean to Proterozoic domains across the Grenville Front is consistent with predictions from models of two‐stage keel formation, supporting the idea that keel growth may not have been restricted to Archean times. However, while crustal structure studies suggest that Archean Superior material underlies Grenvillian age rocks up to ∼300 km SE of the Grenville Front, our tomographic models show a near‐vertical boundary in mantle wave speed directly beneath the Grenville Front. We interpret this as evidence for subduction‐driven metasomatic enrichment of the Laurentian cratonic margin, prior to keel stabilization. Variable chemical depletion levels across Archean‐Proterozoic boundaries worldwide may thus be better explained by metasomatic enrichment than inherently less depleted Proterozoic composition at formation. Body wave tomography shows a systematic decrease in wave speed across tectonic boundaries in SE Canada A distinct vertical wave speed boundary is imaged directly beneath the Grenville Front A metasomatized craton edge best explains the vertical wave speed boundary |
abstractGer |
The cratonic cores of the continents are remarkably stable and long‐lived features. Their ability to resist destructive tectonic processes is associated with their thick (∼250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formation mechanism and tectonic stability of cratonic keels remains under debate. To address this issue, we use P wave and S wave relative arrival‐time tomography to constrain upper mantle structure beneath southeast Canada and the northeast USA, a region spanning three quarters of Earth's geological history. Our models show three distinct, broad zones: Seismic wave speeds increase systematically from the Phanerozoic coastal domains, through the Proterozoic Grenville Province, and to the Archean Superior craton in central Québec. We also recover the NW‐SE trending track of the Great Meteor hot spot that crosscuts the major tectonic domains. The decrease in seismic wave speed from Archean to Proterozoic domains across the Grenville Front is consistent with predictions from models of two‐stage keel formation, supporting the idea that keel growth may not have been restricted to Archean times. However, while crustal structure studies suggest that Archean Superior material underlies Grenvillian age rocks up to ∼300 km SE of the Grenville Front, our tomographic models show a near‐vertical boundary in mantle wave speed directly beneath the Grenville Front. We interpret this as evidence for subduction‐driven metasomatic enrichment of the Laurentian cratonic margin, prior to keel stabilization. Variable chemical depletion levels across Archean‐Proterozoic boundaries worldwide may thus be better explained by metasomatic enrichment than inherently less depleted Proterozoic composition at formation. Body wave tomography shows a systematic decrease in wave speed across tectonic boundaries in SE Canada A distinct vertical wave speed boundary is imaged directly beneath the Grenville Front A metasomatized craton edge best explains the vertical wave speed boundary |
abstract_unstemmed |
The cratonic cores of the continents are remarkably stable and long‐lived features. Their ability to resist destructive tectonic processes is associated with their thick (∼250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formation mechanism and tectonic stability of cratonic keels remains under debate. To address this issue, we use P wave and S wave relative arrival‐time tomography to constrain upper mantle structure beneath southeast Canada and the northeast USA, a region spanning three quarters of Earth's geological history. Our models show three distinct, broad zones: Seismic wave speeds increase systematically from the Phanerozoic coastal domains, through the Proterozoic Grenville Province, and to the Archean Superior craton in central Québec. We also recover the NW‐SE trending track of the Great Meteor hot spot that crosscuts the major tectonic domains. The decrease in seismic wave speed from Archean to Proterozoic domains across the Grenville Front is consistent with predictions from models of two‐stage keel formation, supporting the idea that keel growth may not have been restricted to Archean times. However, while crustal structure studies suggest that Archean Superior material underlies Grenvillian age rocks up to ∼300 km SE of the Grenville Front, our tomographic models show a near‐vertical boundary in mantle wave speed directly beneath the Grenville Front. We interpret this as evidence for subduction‐driven metasomatic enrichment of the Laurentian cratonic margin, prior to keel stabilization. Variable chemical depletion levels across Archean‐Proterozoic boundaries worldwide may thus be better explained by metasomatic enrichment than inherently less depleted Proterozoic composition at formation. Body wave tomography shows a systematic decrease in wave speed across tectonic boundaries in SE Canada A distinct vertical wave speed boundary is imaged directly beneath the Grenville Front A metasomatized craton edge best explains the vertical wave speed boundary |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 |
container_issue |
7 |
title_short |
Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography |
url |
http://dx.doi.org/10.1002/2016JB012838 http://onlinelibrary.wiley.com/doi/10.1002/2016JB012838/abstract http://search.proquest.com/docview/1811847145 |
remote_bool |
false |
author2 |
Bastow, I. D Darbyshire, F. A Ellwood, A. G Gilligan, A Levin, V Menke, W |
author2Str |
Bastow, I. D Darbyshire, F. A Ellwood, A. G Gilligan, A Levin, V Menke, W |
ppnlink |
129366382 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1002/2016JB012838 |
up_date |
2024-07-03T17:17:32.241Z |
_version_ |
1803579086330658816 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1982445211</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221191755.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2016JB012838</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1982445211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1982445211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1610-8c1e7e7f25fd60b359b39579ecc0422a427e053103abf07eb93f9e27fed536800</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108436420160000121000705013subductionbeneathlaurentiamodifiedtheeasternnortha</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boyce, A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The cratonic cores of the continents are remarkably stable and long‐lived features. Their ability to resist destructive tectonic processes is associated with their thick (∼250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formation mechanism and tectonic stability of cratonic keels remains under debate. To address this issue, we use P wave and S wave relative arrival‐time tomography to constrain upper mantle structure beneath southeast Canada and the northeast USA, a region spanning three quarters of Earth's geological history. Our models show three distinct, broad zones: Seismic wave speeds increase systematically from the Phanerozoic coastal domains, through the Proterozoic Grenville Province, and to the Archean Superior craton in central Québec. We also recover the NW‐SE trending track of the Great Meteor hot spot that crosscuts the major tectonic domains. The decrease in seismic wave speed from Archean to Proterozoic domains across the Grenville Front is consistent with predictions from models of two‐stage keel formation, supporting the idea that keel growth may not have been restricted to Archean times. However, while crustal structure studies suggest that Archean Superior material underlies Grenvillian age rocks up to ∼300 km SE of the Grenville Front, our tomographic models show a near‐vertical boundary in mantle wave speed directly beneath the Grenville Front. We interpret this as evidence for subduction‐driven metasomatic enrichment of the Laurentian cratonic margin, prior to keel stabilization. Variable chemical depletion levels across Archean‐Proterozoic boundaries worldwide may thus be better explained by metasomatic enrichment than inherently less depleted Proterozoic composition at formation. Body wave tomography shows a systematic decrease in wave speed across tectonic boundaries in SE Canada A distinct vertical wave speed boundary is imaged directly beneath the Grenville Front A metasomatized craton edge best explains the vertical wave speed boundary</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016. The Authors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grenville Orogeny</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cratonic Margins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Body wave Tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SE Canada</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seismology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plate tectonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tomography</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bastow, I. D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Darbyshire, F. A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ellwood, A. G</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gilligan, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Levin, V</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Menke, W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geophysical research / B</subfield><subfield code="d">Washington, DC : Union, 1978</subfield><subfield code="g">121(2016), 7, Seite 5013-5030</subfield><subfield code="w">(DE-627)129366382</subfield><subfield code="w">(DE-600)161666-3</subfield><subfield code="w">(DE-576)014740451</subfield><subfield code="x">0148-0227</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:121</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:5013-5030</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2016JB012838</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2016JB012838/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1811847145</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">121</subfield><subfield code="j">2016</subfield><subfield code="e">7</subfield><subfield code="h">5013-5030</subfield></datafield></record></collection>
|
score |
7.4010506 |