Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite‐Carbon Nanotubes Nanocomposite Coatings
Isopropanolic Suspensions of HA nanoparticles (20 g/L) plus various concentrations of carbon nanotubes ( CNT s) were prepared using Tris and triethanolamine as dispersant. The positively charged HA nanoparticles were heterocoagulated on the negatively charged CNT s and generated the HA ‐ CNT composi...
Ausführliche Beschreibung
Autor*in: |
Farrokhi‐Rad, Morteza [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016 The American Ceramic Society |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of the American Ceramic Society - Malden [u.a.] : Blackwell Publishing, 1918, 99(2016), 9, Seite 2947-2955 |
---|---|
Übergeordnetes Werk: |
volume:99 ; year:2016 ; number:9 ; pages:2947-2955 |
Links: |
---|
DOI / URN: |
10.1111/jace.14338 |
---|
Katalog-ID: |
OLC198244973X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC198244973X | ||
003 | DE-627 | ||
005 | 20230714214527.0 | ||
007 | tu | ||
008 | 161013s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1111/jace.14338 |2 doi | |
028 | 5 | 2 | |a PQ20161012 |
035 | |a (DE-627)OLC198244973X | ||
035 | |a (DE-599)GBVOLC198244973X | ||
035 | |a (PRQ)c1659-8d4dc70bc15178caf0f96f4f6b576efbc2a13c88d40cd5190ef4cfc1963bf4760 | ||
035 | |a (KEY)0108608120160000099000902947effectofdispersantsontheelectrophoreticdepositiono | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q DNB |
100 | 1 | |a Farrokhi‐Rad, Morteza |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite‐Carbon Nanotubes Nanocomposite Coatings |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Isopropanolic Suspensions of HA nanoparticles (20 g/L) plus various concentrations of carbon nanotubes ( CNT s) were prepared using Tris and triethanolamine as dispersant. The positively charged HA nanoparticles were heterocoagulated on the negatively charged CNT s and generated the HA ‐ CNT composite particles with net positive surface charge. The heterocoagulation was more intensive in dispersant‐containing suspensions (DCS) due to the higher zeta potential of HA nanoparticles in them. HA ‐ CNT s particles can be rotated and aligned parallel to electric field as a result of torque exerted on them due to the generation of a dipole moment in CNT s during electrophoretic deposition ( EPD ). The mobility of HA ‐ CNT s particles aligned parallel to electric field is ≈50% higher than that of HA nanoparticles leading to the faster EPD from DCS when CNT s are added into them. CNT s more efficiently reinforced the coatings deposited from DCS due to the stronger electrostatic bonding between CNT s and HA nanoparticles in them. | ||
540 | |a Nutzungsrecht: © 2016 The American Ceramic Society | ||
650 | 4 | |a electrophoretic deposition | |
650 | 4 | |a carbon nanotubes | |
650 | 4 | |a composite coatings | |
650 | 4 | |a reinforcing | |
650 | 4 | |a hydroxyapatite nanoparticles | |
650 | 4 | |a Nanoparticles | |
650 | 4 | |a Nanotubes | |
650 | 4 | |a Protective coatings | |
700 | 1 | |a Menon, M |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of the American Ceramic Society |d Malden [u.a.] : Blackwell Publishing, 1918 |g 99(2016), 9, Seite 2947-2955 |w (DE-627)129550272 |w (DE-600)219232-9 |w (DE-576)015003671 |x 0002-7820 |7 nnns |
773 | 1 | 8 | |g volume:99 |g year:2016 |g number:9 |g pages:2947-2955 |
856 | 4 | 1 | |u http://dx.doi.org/10.1111/jace.14338 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1111/jace.14338/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1819284154 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2014 | ||
951 | |a AR | ||
952 | |d 99 |j 2016 |e 9 |h 2947-2955 |
author_variant |
m f mf |
---|---|
matchkey_str |
article:00027820:2016----::fetfipratotelcrpoeidpstoohdoypttcronn |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1111/jace.14338 doi PQ20161012 (DE-627)OLC198244973X (DE-599)GBVOLC198244973X (PRQ)c1659-8d4dc70bc15178caf0f96f4f6b576efbc2a13c88d40cd5190ef4cfc1963bf4760 (KEY)0108608120160000099000902947effectofdispersantsontheelectrophoreticdepositiono DE-627 ger DE-627 rakwb eng 660 DNB Farrokhi‐Rad, Morteza verfasserin aut Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite‐Carbon Nanotubes Nanocomposite Coatings 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Isopropanolic Suspensions of HA nanoparticles (20 g/L) plus various concentrations of carbon nanotubes ( CNT s) were prepared using Tris and triethanolamine as dispersant. The positively charged HA nanoparticles were heterocoagulated on the negatively charged CNT s and generated the HA ‐ CNT composite particles with net positive surface charge. The heterocoagulation was more intensive in dispersant‐containing suspensions (DCS) due to the higher zeta potential of HA nanoparticles in them. HA ‐ CNT s particles can be rotated and aligned parallel to electric field as a result of torque exerted on them due to the generation of a dipole moment in CNT s during electrophoretic deposition ( EPD ). The mobility of HA ‐ CNT s particles aligned parallel to electric field is ≈50% higher than that of HA nanoparticles leading to the faster EPD from DCS when CNT s are added into them. CNT s more efficiently reinforced the coatings deposited from DCS due to the stronger electrostatic bonding between CNT s and HA nanoparticles in them. Nutzungsrecht: © 2016 The American Ceramic Society electrophoretic deposition carbon nanotubes composite coatings reinforcing hydroxyapatite nanoparticles Nanoparticles Nanotubes Protective coatings Menon, M oth Enthalten in Journal of the American Ceramic Society Malden [u.a.] : Blackwell Publishing, 1918 99(2016), 9, Seite 2947-2955 (DE-627)129550272 (DE-600)219232-9 (DE-576)015003671 0002-7820 nnns volume:99 year:2016 number:9 pages:2947-2955 http://dx.doi.org/10.1111/jace.14338 Volltext http://onlinelibrary.wiley.com/doi/10.1111/jace.14338/abstract http://search.proquest.com/docview/1819284154 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2014 AR 99 2016 9 2947-2955 |
spelling |
10.1111/jace.14338 doi PQ20161012 (DE-627)OLC198244973X (DE-599)GBVOLC198244973X (PRQ)c1659-8d4dc70bc15178caf0f96f4f6b576efbc2a13c88d40cd5190ef4cfc1963bf4760 (KEY)0108608120160000099000902947effectofdispersantsontheelectrophoreticdepositiono DE-627 ger DE-627 rakwb eng 660 DNB Farrokhi‐Rad, Morteza verfasserin aut Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite‐Carbon Nanotubes Nanocomposite Coatings 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Isopropanolic Suspensions of HA nanoparticles (20 g/L) plus various concentrations of carbon nanotubes ( CNT s) were prepared using Tris and triethanolamine as dispersant. The positively charged HA nanoparticles were heterocoagulated on the negatively charged CNT s and generated the HA ‐ CNT composite particles with net positive surface charge. The heterocoagulation was more intensive in dispersant‐containing suspensions (DCS) due to the higher zeta potential of HA nanoparticles in them. HA ‐ CNT s particles can be rotated and aligned parallel to electric field as a result of torque exerted on them due to the generation of a dipole moment in CNT s during electrophoretic deposition ( EPD ). The mobility of HA ‐ CNT s particles aligned parallel to electric field is ≈50% higher than that of HA nanoparticles leading to the faster EPD from DCS when CNT s are added into them. CNT s more efficiently reinforced the coatings deposited from DCS due to the stronger electrostatic bonding between CNT s and HA nanoparticles in them. Nutzungsrecht: © 2016 The American Ceramic Society electrophoretic deposition carbon nanotubes composite coatings reinforcing hydroxyapatite nanoparticles Nanoparticles Nanotubes Protective coatings Menon, M oth Enthalten in Journal of the American Ceramic Society Malden [u.a.] : Blackwell Publishing, 1918 99(2016), 9, Seite 2947-2955 (DE-627)129550272 (DE-600)219232-9 (DE-576)015003671 0002-7820 nnns volume:99 year:2016 number:9 pages:2947-2955 http://dx.doi.org/10.1111/jace.14338 Volltext http://onlinelibrary.wiley.com/doi/10.1111/jace.14338/abstract http://search.proquest.com/docview/1819284154 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2014 AR 99 2016 9 2947-2955 |
allfields_unstemmed |
10.1111/jace.14338 doi PQ20161012 (DE-627)OLC198244973X (DE-599)GBVOLC198244973X (PRQ)c1659-8d4dc70bc15178caf0f96f4f6b576efbc2a13c88d40cd5190ef4cfc1963bf4760 (KEY)0108608120160000099000902947effectofdispersantsontheelectrophoreticdepositiono DE-627 ger DE-627 rakwb eng 660 DNB Farrokhi‐Rad, Morteza verfasserin aut Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite‐Carbon Nanotubes Nanocomposite Coatings 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Isopropanolic Suspensions of HA nanoparticles (20 g/L) plus various concentrations of carbon nanotubes ( CNT s) were prepared using Tris and triethanolamine as dispersant. The positively charged HA nanoparticles were heterocoagulated on the negatively charged CNT s and generated the HA ‐ CNT composite particles with net positive surface charge. The heterocoagulation was more intensive in dispersant‐containing suspensions (DCS) due to the higher zeta potential of HA nanoparticles in them. HA ‐ CNT s particles can be rotated and aligned parallel to electric field as a result of torque exerted on them due to the generation of a dipole moment in CNT s during electrophoretic deposition ( EPD ). The mobility of HA ‐ CNT s particles aligned parallel to electric field is ≈50% higher than that of HA nanoparticles leading to the faster EPD from DCS when CNT s are added into them. CNT s more efficiently reinforced the coatings deposited from DCS due to the stronger electrostatic bonding between CNT s and HA nanoparticles in them. Nutzungsrecht: © 2016 The American Ceramic Society electrophoretic deposition carbon nanotubes composite coatings reinforcing hydroxyapatite nanoparticles Nanoparticles Nanotubes Protective coatings Menon, M oth Enthalten in Journal of the American Ceramic Society Malden [u.a.] : Blackwell Publishing, 1918 99(2016), 9, Seite 2947-2955 (DE-627)129550272 (DE-600)219232-9 (DE-576)015003671 0002-7820 nnns volume:99 year:2016 number:9 pages:2947-2955 http://dx.doi.org/10.1111/jace.14338 Volltext http://onlinelibrary.wiley.com/doi/10.1111/jace.14338/abstract http://search.proquest.com/docview/1819284154 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2014 AR 99 2016 9 2947-2955 |
allfieldsGer |
10.1111/jace.14338 doi PQ20161012 (DE-627)OLC198244973X (DE-599)GBVOLC198244973X (PRQ)c1659-8d4dc70bc15178caf0f96f4f6b576efbc2a13c88d40cd5190ef4cfc1963bf4760 (KEY)0108608120160000099000902947effectofdispersantsontheelectrophoreticdepositiono DE-627 ger DE-627 rakwb eng 660 DNB Farrokhi‐Rad, Morteza verfasserin aut Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite‐Carbon Nanotubes Nanocomposite Coatings 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Isopropanolic Suspensions of HA nanoparticles (20 g/L) plus various concentrations of carbon nanotubes ( CNT s) were prepared using Tris and triethanolamine as dispersant. The positively charged HA nanoparticles were heterocoagulated on the negatively charged CNT s and generated the HA ‐ CNT composite particles with net positive surface charge. The heterocoagulation was more intensive in dispersant‐containing suspensions (DCS) due to the higher zeta potential of HA nanoparticles in them. HA ‐ CNT s particles can be rotated and aligned parallel to electric field as a result of torque exerted on them due to the generation of a dipole moment in CNT s during electrophoretic deposition ( EPD ). The mobility of HA ‐ CNT s particles aligned parallel to electric field is ≈50% higher than that of HA nanoparticles leading to the faster EPD from DCS when CNT s are added into them. CNT s more efficiently reinforced the coatings deposited from DCS due to the stronger electrostatic bonding between CNT s and HA nanoparticles in them. Nutzungsrecht: © 2016 The American Ceramic Society electrophoretic deposition carbon nanotubes composite coatings reinforcing hydroxyapatite nanoparticles Nanoparticles Nanotubes Protective coatings Menon, M oth Enthalten in Journal of the American Ceramic Society Malden [u.a.] : Blackwell Publishing, 1918 99(2016), 9, Seite 2947-2955 (DE-627)129550272 (DE-600)219232-9 (DE-576)015003671 0002-7820 nnns volume:99 year:2016 number:9 pages:2947-2955 http://dx.doi.org/10.1111/jace.14338 Volltext http://onlinelibrary.wiley.com/doi/10.1111/jace.14338/abstract http://search.proquest.com/docview/1819284154 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2014 AR 99 2016 9 2947-2955 |
allfieldsSound |
10.1111/jace.14338 doi PQ20161012 (DE-627)OLC198244973X (DE-599)GBVOLC198244973X (PRQ)c1659-8d4dc70bc15178caf0f96f4f6b576efbc2a13c88d40cd5190ef4cfc1963bf4760 (KEY)0108608120160000099000902947effectofdispersantsontheelectrophoreticdepositiono DE-627 ger DE-627 rakwb eng 660 DNB Farrokhi‐Rad, Morteza verfasserin aut Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite‐Carbon Nanotubes Nanocomposite Coatings 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Isopropanolic Suspensions of HA nanoparticles (20 g/L) plus various concentrations of carbon nanotubes ( CNT s) were prepared using Tris and triethanolamine as dispersant. The positively charged HA nanoparticles were heterocoagulated on the negatively charged CNT s and generated the HA ‐ CNT composite particles with net positive surface charge. The heterocoagulation was more intensive in dispersant‐containing suspensions (DCS) due to the higher zeta potential of HA nanoparticles in them. HA ‐ CNT s particles can be rotated and aligned parallel to electric field as a result of torque exerted on them due to the generation of a dipole moment in CNT s during electrophoretic deposition ( EPD ). The mobility of HA ‐ CNT s particles aligned parallel to electric field is ≈50% higher than that of HA nanoparticles leading to the faster EPD from DCS when CNT s are added into them. CNT s more efficiently reinforced the coatings deposited from DCS due to the stronger electrostatic bonding between CNT s and HA nanoparticles in them. Nutzungsrecht: © 2016 The American Ceramic Society electrophoretic deposition carbon nanotubes composite coatings reinforcing hydroxyapatite nanoparticles Nanoparticles Nanotubes Protective coatings Menon, M oth Enthalten in Journal of the American Ceramic Society Malden [u.a.] : Blackwell Publishing, 1918 99(2016), 9, Seite 2947-2955 (DE-627)129550272 (DE-600)219232-9 (DE-576)015003671 0002-7820 nnns volume:99 year:2016 number:9 pages:2947-2955 http://dx.doi.org/10.1111/jace.14338 Volltext http://onlinelibrary.wiley.com/doi/10.1111/jace.14338/abstract http://search.proquest.com/docview/1819284154 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2014 AR 99 2016 9 2947-2955 |
language |
English |
source |
Enthalten in Journal of the American Ceramic Society 99(2016), 9, Seite 2947-2955 volume:99 year:2016 number:9 pages:2947-2955 |
sourceStr |
Enthalten in Journal of the American Ceramic Society 99(2016), 9, Seite 2947-2955 volume:99 year:2016 number:9 pages:2947-2955 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
electrophoretic deposition carbon nanotubes composite coatings reinforcing hydroxyapatite nanoparticles Nanoparticles Nanotubes Protective coatings |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Journal of the American Ceramic Society |
authorswithroles_txt_mv |
Farrokhi‐Rad, Morteza @@aut@@ Menon, M @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129550272 |
dewey-sort |
3660 |
id |
OLC198244973X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198244973X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714214527.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/jace.14338</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198244973X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198244973X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1659-8d4dc70bc15178caf0f96f4f6b576efbc2a13c88d40cd5190ef4cfc1963bf4760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108608120160000099000902947effectofdispersantsontheelectrophoreticdepositiono</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Farrokhi‐Rad, Morteza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite‐Carbon Nanotubes Nanocomposite Coatings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Isopropanolic Suspensions of HA nanoparticles (20 g/L) plus various concentrations of carbon nanotubes ( CNT s) were prepared using Tris and triethanolamine as dispersant. The positively charged HA nanoparticles were heterocoagulated on the negatively charged CNT s and generated the HA ‐ CNT composite particles with net positive surface charge. The heterocoagulation was more intensive in dispersant‐containing suspensions (DCS) due to the higher zeta potential of HA nanoparticles in them. HA ‐ CNT s particles can be rotated and aligned parallel to electric field as a result of torque exerted on them due to the generation of a dipole moment in CNT s during electrophoretic deposition ( EPD ). The mobility of HA ‐ CNT s particles aligned parallel to electric field is ≈50% higher than that of HA nanoparticles leading to the faster EPD from DCS when CNT s are added into them. CNT s more efficiently reinforced the coatings deposited from DCS due to the stronger electrostatic bonding between CNT s and HA nanoparticles in them.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 The American Ceramic Society</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrophoretic deposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite coatings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reinforcing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydroxyapatite nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protective coatings</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Menon, M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the American Ceramic Society</subfield><subfield code="d">Malden [u.a.] : Blackwell Publishing, 1918</subfield><subfield code="g">99(2016), 9, Seite 2947-2955</subfield><subfield code="w">(DE-627)129550272</subfield><subfield code="w">(DE-600)219232-9</subfield><subfield code="w">(DE-576)015003671</subfield><subfield code="x">0002-7820</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:99</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:2947-2955</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1111/jace.14338</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1111/jace.14338/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1819284154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">99</subfield><subfield code="j">2016</subfield><subfield code="e">9</subfield><subfield code="h">2947-2955</subfield></datafield></record></collection>
|
author |
Farrokhi‐Rad, Morteza |
spellingShingle |
Farrokhi‐Rad, Morteza ddc 660 misc electrophoretic deposition misc carbon nanotubes misc composite coatings misc reinforcing misc hydroxyapatite nanoparticles misc Nanoparticles misc Nanotubes misc Protective coatings Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite‐Carbon Nanotubes Nanocomposite Coatings |
authorStr |
Farrokhi‐Rad, Morteza |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129550272 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0002-7820 |
topic_title |
660 DNB Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite‐Carbon Nanotubes Nanocomposite Coatings electrophoretic deposition carbon nanotubes composite coatings reinforcing hydroxyapatite nanoparticles Nanoparticles Nanotubes Protective coatings |
topic |
ddc 660 misc electrophoretic deposition misc carbon nanotubes misc composite coatings misc reinforcing misc hydroxyapatite nanoparticles misc Nanoparticles misc Nanotubes misc Protective coatings |
topic_unstemmed |
ddc 660 misc electrophoretic deposition misc carbon nanotubes misc composite coatings misc reinforcing misc hydroxyapatite nanoparticles misc Nanoparticles misc Nanotubes misc Protective coatings |
topic_browse |
ddc 660 misc electrophoretic deposition misc carbon nanotubes misc composite coatings misc reinforcing misc hydroxyapatite nanoparticles misc Nanoparticles misc Nanotubes misc Protective coatings |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m m mm |
hierarchy_parent_title |
Journal of the American Ceramic Society |
hierarchy_parent_id |
129550272 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Journal of the American Ceramic Society |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129550272 (DE-600)219232-9 (DE-576)015003671 |
title |
Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite‐Carbon Nanotubes Nanocomposite Coatings |
ctrlnum |
(DE-627)OLC198244973X (DE-599)GBVOLC198244973X (PRQ)c1659-8d4dc70bc15178caf0f96f4f6b576efbc2a13c88d40cd5190ef4cfc1963bf4760 (KEY)0108608120160000099000902947effectofdispersantsontheelectrophoreticdepositiono |
title_full |
Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite‐Carbon Nanotubes Nanocomposite Coatings |
author_sort |
Farrokhi‐Rad, Morteza |
journal |
Journal of the American Ceramic Society |
journalStr |
Journal of the American Ceramic Society |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
2947 |
author_browse |
Farrokhi‐Rad, Morteza |
container_volume |
99 |
class |
660 DNB |
format_se |
Aufsätze |
author-letter |
Farrokhi‐Rad, Morteza |
doi_str_mv |
10.1111/jace.14338 |
dewey-full |
660 |
title_sort |
effect of dispersants on the electrophoretic deposition of hydroxyapatite‐carbon nanotubes nanocomposite coatings |
title_auth |
Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite‐Carbon Nanotubes Nanocomposite Coatings |
abstract |
Isopropanolic Suspensions of HA nanoparticles (20 g/L) plus various concentrations of carbon nanotubes ( CNT s) were prepared using Tris and triethanolamine as dispersant. The positively charged HA nanoparticles were heterocoagulated on the negatively charged CNT s and generated the HA ‐ CNT composite particles with net positive surface charge. The heterocoagulation was more intensive in dispersant‐containing suspensions (DCS) due to the higher zeta potential of HA nanoparticles in them. HA ‐ CNT s particles can be rotated and aligned parallel to electric field as a result of torque exerted on them due to the generation of a dipole moment in CNT s during electrophoretic deposition ( EPD ). The mobility of HA ‐ CNT s particles aligned parallel to electric field is ≈50% higher than that of HA nanoparticles leading to the faster EPD from DCS when CNT s are added into them. CNT s more efficiently reinforced the coatings deposited from DCS due to the stronger electrostatic bonding between CNT s and HA nanoparticles in them. |
abstractGer |
Isopropanolic Suspensions of HA nanoparticles (20 g/L) plus various concentrations of carbon nanotubes ( CNT s) were prepared using Tris and triethanolamine as dispersant. The positively charged HA nanoparticles were heterocoagulated on the negatively charged CNT s and generated the HA ‐ CNT composite particles with net positive surface charge. The heterocoagulation was more intensive in dispersant‐containing suspensions (DCS) due to the higher zeta potential of HA nanoparticles in them. HA ‐ CNT s particles can be rotated and aligned parallel to electric field as a result of torque exerted on them due to the generation of a dipole moment in CNT s during electrophoretic deposition ( EPD ). The mobility of HA ‐ CNT s particles aligned parallel to electric field is ≈50% higher than that of HA nanoparticles leading to the faster EPD from DCS when CNT s are added into them. CNT s more efficiently reinforced the coatings deposited from DCS due to the stronger electrostatic bonding between CNT s and HA nanoparticles in them. |
abstract_unstemmed |
Isopropanolic Suspensions of HA nanoparticles (20 g/L) plus various concentrations of carbon nanotubes ( CNT s) were prepared using Tris and triethanolamine as dispersant. The positively charged HA nanoparticles were heterocoagulated on the negatively charged CNT s and generated the HA ‐ CNT composite particles with net positive surface charge. The heterocoagulation was more intensive in dispersant‐containing suspensions (DCS) due to the higher zeta potential of HA nanoparticles in them. HA ‐ CNT s particles can be rotated and aligned parallel to electric field as a result of torque exerted on them due to the generation of a dipole moment in CNT s during electrophoretic deposition ( EPD ). The mobility of HA ‐ CNT s particles aligned parallel to electric field is ≈50% higher than that of HA nanoparticles leading to the faster EPD from DCS when CNT s are added into them. CNT s more efficiently reinforced the coatings deposited from DCS due to the stronger electrostatic bonding between CNT s and HA nanoparticles in them. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2014 |
container_issue |
9 |
title_short |
Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite‐Carbon Nanotubes Nanocomposite Coatings |
url |
http://dx.doi.org/10.1111/jace.14338 http://onlinelibrary.wiley.com/doi/10.1111/jace.14338/abstract http://search.proquest.com/docview/1819284154 |
remote_bool |
false |
author2 |
Menon, M |
author2Str |
Menon, M |
ppnlink |
129550272 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1111/jace.14338 |
up_date |
2024-07-03T17:18:38.879Z |
_version_ |
1803579156215103488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198244973X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714214527.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/jace.14338</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198244973X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198244973X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1659-8d4dc70bc15178caf0f96f4f6b576efbc2a13c88d40cd5190ef4cfc1963bf4760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108608120160000099000902947effectofdispersantsontheelectrophoreticdepositiono</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Farrokhi‐Rad, Morteza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite‐Carbon Nanotubes Nanocomposite Coatings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Isopropanolic Suspensions of HA nanoparticles (20 g/L) plus various concentrations of carbon nanotubes ( CNT s) were prepared using Tris and triethanolamine as dispersant. The positively charged HA nanoparticles were heterocoagulated on the negatively charged CNT s and generated the HA ‐ CNT composite particles with net positive surface charge. The heterocoagulation was more intensive in dispersant‐containing suspensions (DCS) due to the higher zeta potential of HA nanoparticles in them. HA ‐ CNT s particles can be rotated and aligned parallel to electric field as a result of torque exerted on them due to the generation of a dipole moment in CNT s during electrophoretic deposition ( EPD ). The mobility of HA ‐ CNT s particles aligned parallel to electric field is ≈50% higher than that of HA nanoparticles leading to the faster EPD from DCS when CNT s are added into them. CNT s more efficiently reinforced the coatings deposited from DCS due to the stronger electrostatic bonding between CNT s and HA nanoparticles in them.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 The American Ceramic Society</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrophoretic deposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite coatings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reinforcing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydroxyapatite nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protective coatings</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Menon, M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the American Ceramic Society</subfield><subfield code="d">Malden [u.a.] : Blackwell Publishing, 1918</subfield><subfield code="g">99(2016), 9, Seite 2947-2955</subfield><subfield code="w">(DE-627)129550272</subfield><subfield code="w">(DE-600)219232-9</subfield><subfield code="w">(DE-576)015003671</subfield><subfield code="x">0002-7820</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:99</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:2947-2955</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1111/jace.14338</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1111/jace.14338/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1819284154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">99</subfield><subfield code="j">2016</subfield><subfield code="e">9</subfield><subfield code="h">2947-2955</subfield></datafield></record></collection>
|
score |
7.4022045 |