Exploring the Clustering Effect of the Frailty Survival Model by Means of the Brier Score
In this article, the Brier score is used to investigate the importance of clustering for the frailty survival model. For this purpose, two versions of the Brier score are constructed, i.e., a "conditional Brier score" and a "marginal Brier score." Both versions of the Brier score...
Ausführliche Beschreibung
Autor*in: |
Van Oirbeek, Robin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in statistics / Simulation and computation - New York, NY : Dekker, 1982, 45(2016), 9, Seite 3294-3306 |
---|---|
Übergeordnetes Werk: |
volume:45 ; year:2016 ; number:9 ; pages:3294-3306 |
Links: |
---|
DOI / URN: |
10.1080/03610918.2014.936464 |
---|
Katalog-ID: |
OLC1982455217 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1982455217 | ||
003 | DE-627 | ||
005 | 20220219163345.0 | ||
007 | tu | ||
008 | 161013s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/03610918.2014.936464 |2 doi | |
028 | 5 | 2 | |a PQ20161012 |
035 | |a (DE-627)OLC1982455217 | ||
035 | |a (DE-599)GBVOLC1982455217 | ||
035 | |a (PRQ)c1525-876dc978e390d619c080de8155faaf5304618c43b3b2252404a3d89094cc8df70 | ||
035 | |a (KEY)0108850520160000045000903294exploringtheclusteringeffectofthefrailtysurvivalmo | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
084 | |a 31.73 |2 bkl | ||
100 | 1 | |a Van Oirbeek, Robin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Exploring the Clustering Effect of the Frailty Survival Model by Means of the Brier Score |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this article, the Brier score is used to investigate the importance of clustering for the frailty survival model. For this purpose, two versions of the Brier score are constructed, i.e., a "conditional Brier score" and a "marginal Brier score." Both versions of the Brier score show how the clustering effects and the covariate effects affect the predictive ability of the frailty model separately. Using a Bayesian and a likelihood approach, point estimates and 95% credible/confidence intervals are computed. The estimation properties of both procedures are evaluated in an extensive simulation study for both versions of the Brier score. Further, a validation strategy is developed to calculate an internally validated point estimate and credible/confidence interval. The ensemble of the developments is applied to a dental dataset. | ||
540 | |a Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016 | ||
650 | 4 | |a Predictive ability | |
650 | 4 | |a Frailty model | |
650 | 4 | |a Clustering | |
650 | 4 | |a 62N99 | |
650 | 4 | |a Survival analysis | |
650 | 4 | |a Brier score | |
650 | 4 | |a Frailty | |
650 | 4 | |a Confidence intervals | |
700 | 1 | |a Lesaffre, Emmanuel |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Communications in statistics / Simulation and computation |d New York, NY : Dekker, 1982 |g 45(2016), 9, Seite 3294-3306 |w (DE-627)129862258 |w (DE-600)283664-6 |w (DE-576)015173682 |x 0361-0918 |7 nnns |
773 | 1 | 8 | |g volume:45 |g year:2016 |g number:9 |g pages:3294-3306 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/03610918.2014.936464 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/03610918.2014.936464 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1808754413 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 31.73 |q AVZ |
951 | |a AR | ||
952 | |d 45 |j 2016 |e 9 |h 3294-3306 |
author_variant |
o r v or orv |
---|---|
matchkey_str |
article:03610918:2016----::xlrntelseigfetfhfalyuvvloeb |
hierarchy_sort_str |
2016 |
bklnumber |
31.73 |
publishDate |
2016 |
allfields |
10.1080/03610918.2014.936464 doi PQ20161012 (DE-627)OLC1982455217 (DE-599)GBVOLC1982455217 (PRQ)c1525-876dc978e390d619c080de8155faaf5304618c43b3b2252404a3d89094cc8df70 (KEY)0108850520160000045000903294exploringtheclusteringeffectofthefrailtysurvivalmo DE-627 ger DE-627 rakwb eng 510 DE-600 31.73 bkl Van Oirbeek, Robin verfasserin aut Exploring the Clustering Effect of the Frailty Survival Model by Means of the Brier Score 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this article, the Brier score is used to investigate the importance of clustering for the frailty survival model. For this purpose, two versions of the Brier score are constructed, i.e., a "conditional Brier score" and a "marginal Brier score." Both versions of the Brier score show how the clustering effects and the covariate effects affect the predictive ability of the frailty model separately. Using a Bayesian and a likelihood approach, point estimates and 95% credible/confidence intervals are computed. The estimation properties of both procedures are evaluated in an extensive simulation study for both versions of the Brier score. Further, a validation strategy is developed to calculate an internally validated point estimate and credible/confidence interval. The ensemble of the developments is applied to a dental dataset. Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016 Predictive ability Frailty model Clustering 62N99 Survival analysis Brier score Frailty Confidence intervals Lesaffre, Emmanuel oth Enthalten in Communications in statistics / Simulation and computation New York, NY : Dekker, 1982 45(2016), 9, Seite 3294-3306 (DE-627)129862258 (DE-600)283664-6 (DE-576)015173682 0361-0918 nnns volume:45 year:2016 number:9 pages:3294-3306 http://dx.doi.org/10.1080/03610918.2014.936464 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610918.2014.936464 http://search.proquest.com/docview/1808754413 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 45 2016 9 3294-3306 |
spelling |
10.1080/03610918.2014.936464 doi PQ20161012 (DE-627)OLC1982455217 (DE-599)GBVOLC1982455217 (PRQ)c1525-876dc978e390d619c080de8155faaf5304618c43b3b2252404a3d89094cc8df70 (KEY)0108850520160000045000903294exploringtheclusteringeffectofthefrailtysurvivalmo DE-627 ger DE-627 rakwb eng 510 DE-600 31.73 bkl Van Oirbeek, Robin verfasserin aut Exploring the Clustering Effect of the Frailty Survival Model by Means of the Brier Score 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this article, the Brier score is used to investigate the importance of clustering for the frailty survival model. For this purpose, two versions of the Brier score are constructed, i.e., a "conditional Brier score" and a "marginal Brier score." Both versions of the Brier score show how the clustering effects and the covariate effects affect the predictive ability of the frailty model separately. Using a Bayesian and a likelihood approach, point estimates and 95% credible/confidence intervals are computed. The estimation properties of both procedures are evaluated in an extensive simulation study for both versions of the Brier score. Further, a validation strategy is developed to calculate an internally validated point estimate and credible/confidence interval. The ensemble of the developments is applied to a dental dataset. Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016 Predictive ability Frailty model Clustering 62N99 Survival analysis Brier score Frailty Confidence intervals Lesaffre, Emmanuel oth Enthalten in Communications in statistics / Simulation and computation New York, NY : Dekker, 1982 45(2016), 9, Seite 3294-3306 (DE-627)129862258 (DE-600)283664-6 (DE-576)015173682 0361-0918 nnns volume:45 year:2016 number:9 pages:3294-3306 http://dx.doi.org/10.1080/03610918.2014.936464 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610918.2014.936464 http://search.proquest.com/docview/1808754413 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 45 2016 9 3294-3306 |
allfields_unstemmed |
10.1080/03610918.2014.936464 doi PQ20161012 (DE-627)OLC1982455217 (DE-599)GBVOLC1982455217 (PRQ)c1525-876dc978e390d619c080de8155faaf5304618c43b3b2252404a3d89094cc8df70 (KEY)0108850520160000045000903294exploringtheclusteringeffectofthefrailtysurvivalmo DE-627 ger DE-627 rakwb eng 510 DE-600 31.73 bkl Van Oirbeek, Robin verfasserin aut Exploring the Clustering Effect of the Frailty Survival Model by Means of the Brier Score 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this article, the Brier score is used to investigate the importance of clustering for the frailty survival model. For this purpose, two versions of the Brier score are constructed, i.e., a "conditional Brier score" and a "marginal Brier score." Both versions of the Brier score show how the clustering effects and the covariate effects affect the predictive ability of the frailty model separately. Using a Bayesian and a likelihood approach, point estimates and 95% credible/confidence intervals are computed. The estimation properties of both procedures are evaluated in an extensive simulation study for both versions of the Brier score. Further, a validation strategy is developed to calculate an internally validated point estimate and credible/confidence interval. The ensemble of the developments is applied to a dental dataset. Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016 Predictive ability Frailty model Clustering 62N99 Survival analysis Brier score Frailty Confidence intervals Lesaffre, Emmanuel oth Enthalten in Communications in statistics / Simulation and computation New York, NY : Dekker, 1982 45(2016), 9, Seite 3294-3306 (DE-627)129862258 (DE-600)283664-6 (DE-576)015173682 0361-0918 nnns volume:45 year:2016 number:9 pages:3294-3306 http://dx.doi.org/10.1080/03610918.2014.936464 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610918.2014.936464 http://search.proquest.com/docview/1808754413 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 45 2016 9 3294-3306 |
allfieldsGer |
10.1080/03610918.2014.936464 doi PQ20161012 (DE-627)OLC1982455217 (DE-599)GBVOLC1982455217 (PRQ)c1525-876dc978e390d619c080de8155faaf5304618c43b3b2252404a3d89094cc8df70 (KEY)0108850520160000045000903294exploringtheclusteringeffectofthefrailtysurvivalmo DE-627 ger DE-627 rakwb eng 510 DE-600 31.73 bkl Van Oirbeek, Robin verfasserin aut Exploring the Clustering Effect of the Frailty Survival Model by Means of the Brier Score 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this article, the Brier score is used to investigate the importance of clustering for the frailty survival model. For this purpose, two versions of the Brier score are constructed, i.e., a "conditional Brier score" and a "marginal Brier score." Both versions of the Brier score show how the clustering effects and the covariate effects affect the predictive ability of the frailty model separately. Using a Bayesian and a likelihood approach, point estimates and 95% credible/confidence intervals are computed. The estimation properties of both procedures are evaluated in an extensive simulation study for both versions of the Brier score. Further, a validation strategy is developed to calculate an internally validated point estimate and credible/confidence interval. The ensemble of the developments is applied to a dental dataset. Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016 Predictive ability Frailty model Clustering 62N99 Survival analysis Brier score Frailty Confidence intervals Lesaffre, Emmanuel oth Enthalten in Communications in statistics / Simulation and computation New York, NY : Dekker, 1982 45(2016), 9, Seite 3294-3306 (DE-627)129862258 (DE-600)283664-6 (DE-576)015173682 0361-0918 nnns volume:45 year:2016 number:9 pages:3294-3306 http://dx.doi.org/10.1080/03610918.2014.936464 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610918.2014.936464 http://search.proquest.com/docview/1808754413 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 45 2016 9 3294-3306 |
allfieldsSound |
10.1080/03610918.2014.936464 doi PQ20161012 (DE-627)OLC1982455217 (DE-599)GBVOLC1982455217 (PRQ)c1525-876dc978e390d619c080de8155faaf5304618c43b3b2252404a3d89094cc8df70 (KEY)0108850520160000045000903294exploringtheclusteringeffectofthefrailtysurvivalmo DE-627 ger DE-627 rakwb eng 510 DE-600 31.73 bkl Van Oirbeek, Robin verfasserin aut Exploring the Clustering Effect of the Frailty Survival Model by Means of the Brier Score 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this article, the Brier score is used to investigate the importance of clustering for the frailty survival model. For this purpose, two versions of the Brier score are constructed, i.e., a "conditional Brier score" and a "marginal Brier score." Both versions of the Brier score show how the clustering effects and the covariate effects affect the predictive ability of the frailty model separately. Using a Bayesian and a likelihood approach, point estimates and 95% credible/confidence intervals are computed. The estimation properties of both procedures are evaluated in an extensive simulation study for both versions of the Brier score. Further, a validation strategy is developed to calculate an internally validated point estimate and credible/confidence interval. The ensemble of the developments is applied to a dental dataset. Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016 Predictive ability Frailty model Clustering 62N99 Survival analysis Brier score Frailty Confidence intervals Lesaffre, Emmanuel oth Enthalten in Communications in statistics / Simulation and computation New York, NY : Dekker, 1982 45(2016), 9, Seite 3294-3306 (DE-627)129862258 (DE-600)283664-6 (DE-576)015173682 0361-0918 nnns volume:45 year:2016 number:9 pages:3294-3306 http://dx.doi.org/10.1080/03610918.2014.936464 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610918.2014.936464 http://search.proquest.com/docview/1808754413 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 45 2016 9 3294-3306 |
language |
English |
source |
Enthalten in Communications in statistics / Simulation and computation 45(2016), 9, Seite 3294-3306 volume:45 year:2016 number:9 pages:3294-3306 |
sourceStr |
Enthalten in Communications in statistics / Simulation and computation 45(2016), 9, Seite 3294-3306 volume:45 year:2016 number:9 pages:3294-3306 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Predictive ability Frailty model Clustering 62N99 Survival analysis Brier score Frailty Confidence intervals |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Communications in statistics / Simulation and computation |
authorswithroles_txt_mv |
Van Oirbeek, Robin @@aut@@ Lesaffre, Emmanuel @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129862258 |
dewey-sort |
3510 |
id |
OLC1982455217 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1982455217</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220219163345.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/03610918.2014.936464</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1982455217</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1982455217</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1525-876dc978e390d619c080de8155faaf5304618c43b3b2252404a3d89094cc8df70</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108850520160000045000903294exploringtheclusteringeffectofthefrailtysurvivalmo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Van Oirbeek, Robin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring the Clustering Effect of the Frailty Survival Model by Means of the Brier Score</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article, the Brier score is used to investigate the importance of clustering for the frailty survival model. For this purpose, two versions of the Brier score are constructed, i.e., a "conditional Brier score" and a "marginal Brier score." Both versions of the Brier score show how the clustering effects and the covariate effects affect the predictive ability of the frailty model separately. Using a Bayesian and a likelihood approach, point estimates and 95% credible/confidence intervals are computed. The estimation properties of both procedures are evaluated in an extensive simulation study for both versions of the Brier score. Further, a validation strategy is developed to calculate an internally validated point estimate and credible/confidence interval. The ensemble of the developments is applied to a dental dataset.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictive ability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frailty model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">62N99</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Survival analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brier score</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frailty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Confidence intervals</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lesaffre, Emmanuel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in statistics / Simulation and computation</subfield><subfield code="d">New York, NY : Dekker, 1982</subfield><subfield code="g">45(2016), 9, Seite 3294-3306</subfield><subfield code="w">(DE-627)129862258</subfield><subfield code="w">(DE-600)283664-6</subfield><subfield code="w">(DE-576)015173682</subfield><subfield code="x">0361-0918</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:3294-3306</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/03610918.2014.936464</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/03610918.2014.936464</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1808754413</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2016</subfield><subfield code="e">9</subfield><subfield code="h">3294-3306</subfield></datafield></record></collection>
|
author |
Van Oirbeek, Robin |
spellingShingle |
Van Oirbeek, Robin ddc 510 bkl 31.73 misc Predictive ability misc Frailty model misc Clustering misc 62N99 misc Survival analysis misc Brier score misc Frailty misc Confidence intervals Exploring the Clustering Effect of the Frailty Survival Model by Means of the Brier Score |
authorStr |
Van Oirbeek, Robin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129862258 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0361-0918 |
topic_title |
510 DE-600 31.73 bkl Exploring the Clustering Effect of the Frailty Survival Model by Means of the Brier Score Predictive ability Frailty model Clustering 62N99 Survival analysis Brier score Frailty Confidence intervals |
topic |
ddc 510 bkl 31.73 misc Predictive ability misc Frailty model misc Clustering misc 62N99 misc Survival analysis misc Brier score misc Frailty misc Confidence intervals |
topic_unstemmed |
ddc 510 bkl 31.73 misc Predictive ability misc Frailty model misc Clustering misc 62N99 misc Survival analysis misc Brier score misc Frailty misc Confidence intervals |
topic_browse |
ddc 510 bkl 31.73 misc Predictive ability misc Frailty model misc Clustering misc 62N99 misc Survival analysis misc Brier score misc Frailty misc Confidence intervals |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
e l el |
hierarchy_parent_title |
Communications in statistics / Simulation and computation |
hierarchy_parent_id |
129862258 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Communications in statistics / Simulation and computation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129862258 (DE-600)283664-6 (DE-576)015173682 |
title |
Exploring the Clustering Effect of the Frailty Survival Model by Means of the Brier Score |
ctrlnum |
(DE-627)OLC1982455217 (DE-599)GBVOLC1982455217 (PRQ)c1525-876dc978e390d619c080de8155faaf5304618c43b3b2252404a3d89094cc8df70 (KEY)0108850520160000045000903294exploringtheclusteringeffectofthefrailtysurvivalmo |
title_full |
Exploring the Clustering Effect of the Frailty Survival Model by Means of the Brier Score |
author_sort |
Van Oirbeek, Robin |
journal |
Communications in statistics / Simulation and computation |
journalStr |
Communications in statistics / Simulation and computation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
3294 |
author_browse |
Van Oirbeek, Robin |
container_volume |
45 |
class |
510 DE-600 31.73 bkl |
format_se |
Aufsätze |
author-letter |
Van Oirbeek, Robin |
doi_str_mv |
10.1080/03610918.2014.936464 |
dewey-full |
510 |
title_sort |
exploring the clustering effect of the frailty survival model by means of the brier score |
title_auth |
Exploring the Clustering Effect of the Frailty Survival Model by Means of the Brier Score |
abstract |
In this article, the Brier score is used to investigate the importance of clustering for the frailty survival model. For this purpose, two versions of the Brier score are constructed, i.e., a "conditional Brier score" and a "marginal Brier score." Both versions of the Brier score show how the clustering effects and the covariate effects affect the predictive ability of the frailty model separately. Using a Bayesian and a likelihood approach, point estimates and 95% credible/confidence intervals are computed. The estimation properties of both procedures are evaluated in an extensive simulation study for both versions of the Brier score. Further, a validation strategy is developed to calculate an internally validated point estimate and credible/confidence interval. The ensemble of the developments is applied to a dental dataset. |
abstractGer |
In this article, the Brier score is used to investigate the importance of clustering for the frailty survival model. For this purpose, two versions of the Brier score are constructed, i.e., a "conditional Brier score" and a "marginal Brier score." Both versions of the Brier score show how the clustering effects and the covariate effects affect the predictive ability of the frailty model separately. Using a Bayesian and a likelihood approach, point estimates and 95% credible/confidence intervals are computed. The estimation properties of both procedures are evaluated in an extensive simulation study for both versions of the Brier score. Further, a validation strategy is developed to calculate an internally validated point estimate and credible/confidence interval. The ensemble of the developments is applied to a dental dataset. |
abstract_unstemmed |
In this article, the Brier score is used to investigate the importance of clustering for the frailty survival model. For this purpose, two versions of the Brier score are constructed, i.e., a "conditional Brier score" and a "marginal Brier score." Both versions of the Brier score show how the clustering effects and the covariate effects affect the predictive ability of the frailty model separately. Using a Bayesian and a likelihood approach, point estimates and 95% credible/confidence intervals are computed. The estimation properties of both procedures are evaluated in an extensive simulation study for both versions of the Brier score. Further, a validation strategy is developed to calculate an internally validated point estimate and credible/confidence interval. The ensemble of the developments is applied to a dental dataset. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
9 |
title_short |
Exploring the Clustering Effect of the Frailty Survival Model by Means of the Brier Score |
url |
http://dx.doi.org/10.1080/03610918.2014.936464 http://www.tandfonline.com/doi/abs/10.1080/03610918.2014.936464 http://search.proquest.com/docview/1808754413 |
remote_bool |
false |
author2 |
Lesaffre, Emmanuel |
author2Str |
Lesaffre, Emmanuel |
ppnlink |
129862258 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1080/03610918.2014.936464 |
up_date |
2024-07-03T17:19:49.353Z |
_version_ |
1803579230105108480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1982455217</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220219163345.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/03610918.2014.936464</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1982455217</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1982455217</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1525-876dc978e390d619c080de8155faaf5304618c43b3b2252404a3d89094cc8df70</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108850520160000045000903294exploringtheclusteringeffectofthefrailtysurvivalmo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Van Oirbeek, Robin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring the Clustering Effect of the Frailty Survival Model by Means of the Brier Score</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article, the Brier score is used to investigate the importance of clustering for the frailty survival model. For this purpose, two versions of the Brier score are constructed, i.e., a "conditional Brier score" and a "marginal Brier score." Both versions of the Brier score show how the clustering effects and the covariate effects affect the predictive ability of the frailty model separately. Using a Bayesian and a likelihood approach, point estimates and 95% credible/confidence intervals are computed. The estimation properties of both procedures are evaluated in an extensive simulation study for both versions of the Brier score. Further, a validation strategy is developed to calculate an internally validated point estimate and credible/confidence interval. The ensemble of the developments is applied to a dental dataset.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © Taylor & Francis Group, LLC 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictive ability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frailty model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">62N99</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Survival analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brier score</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frailty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Confidence intervals</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lesaffre, Emmanuel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in statistics / Simulation and computation</subfield><subfield code="d">New York, NY : Dekker, 1982</subfield><subfield code="g">45(2016), 9, Seite 3294-3306</subfield><subfield code="w">(DE-627)129862258</subfield><subfield code="w">(DE-600)283664-6</subfield><subfield code="w">(DE-576)015173682</subfield><subfield code="x">0361-0918</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:3294-3306</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/03610918.2014.936464</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/03610918.2014.936464</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1808754413</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2016</subfield><subfield code="e">9</subfield><subfield code="h">3294-3306</subfield></datafield></record></collection>
|
score |
7.3993616 |