Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats
Adding nanoparticles into polymer solutions before electrospinning creates unique hierarchical morphologies dispersed throughout small diameter nanoparticle‐polymeric fibers. Effects of polymer composition, nanoparticle (NP) type, loading, and electrospinning voltage conditions were studied. As exam...
Ausführliche Beschreibung
Autor*in: |
Hoogesteijn von Reitzenstein, Natalia [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016 Wiley Periodicals, Inc. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of applied polymer science - Hoboken, NJ [u.a.] : Wiley InterScience, 1959, 133(2016), 33 |
---|---|
Übergeordnetes Werk: |
volume:133 ; year:2016 ; number:33 |
Links: |
---|
DOI / URN: |
10.1002/app.43811 |
---|
Katalog-ID: |
OLC198254144X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC198254144X | ||
003 | DE-627 | ||
005 | 20230511071543.0 | ||
007 | tu | ||
008 | 161013s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/app.43811 |2 doi | |
028 | 5 | 2 | |a PQ20161012 |
035 | |a (DE-627)OLC198254144X | ||
035 | |a (DE-599)GBVOLC198254144X | ||
035 | |a (PRQ)p2225-54f318c5e2942a9f5d3b23e5c0123266f0d43e402508cc23b6f975ec0639cd8b3 | ||
035 | |a (KEY)0117731120160000133003300000morphologystructureandpropertiesofmetaloxidepolyme | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DE-600 |
084 | |a 35.80 |2 bkl | ||
084 | |a 51.70 |2 bkl | ||
100 | 1 | |a Hoogesteijn von Reitzenstein, Natalia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Adding nanoparticles into polymer solutions before electrospinning creates unique hierarchical morphologies dispersed throughout small diameter nanoparticle‐polymeric fibers. Effects of polymer composition, nanoparticle (NP) type, loading, and electrospinning voltage conditions were studied. As examples, indium, iron, and titanium oxide engineered nanoparticles (NPs) were dispersed into polyvinylpyrrolidone or polystyrene and electrospun. NP loadings below 5 wt % did not affect critical voltage required for Taylor cone formation, whereas higher NP loadings require higher critical voltages. Polymeric fiber thickness and macroscopic morphology is not impacted by up to 5 wt % NP loadings, and NP dispersion throughout the fibers were similar to their dispersion in initial polymer suspension. NP loadings above 5 wt % increased viscosity, which decrease subsequent fiber diameter. Experiments in water containing inorganic and organic pollutants in water demonstrate that the polymer is largely nonporous. This work enables design of multifunctional nanomaterial‐polymer composite fibers for wide‐ranging applications such as water and air treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43811. | ||
540 | |a Nutzungsrecht: © 2016 Wiley Periodicals, Inc. | ||
650 | 4 | |a nanocrystals | |
650 | 4 | |a fibers | |
650 | 4 | |a nanowires | |
650 | 4 | |a nanoparticles | |
650 | 4 | |a electrospinning | |
700 | 1 | |a Bi, Xiangyu |4 oth | |
700 | 1 | |a Yang, Yu |4 oth | |
700 | 1 | |a Hristovski, Kiril |4 oth | |
700 | 1 | |a Westerhoff, Paul |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of applied polymer science |d Hoboken, NJ [u.a.] : Wiley InterScience, 1959 |g 133(2016), 33 |w (DE-627)129595799 |w (DE-600)240694-9 |w (DE-576)015088812 |x 0021-8995 |7 nnns |
773 | 1 | 8 | |g volume:133 |g year:2016 |g number:33 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/app.43811 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/app.43811/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1790885628 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 35.80 |q AVZ |
936 | b | k | |a 51.70 |q AVZ |
951 | |a AR | ||
952 | |d 133 |j 2016 |e 33 |
author_variant |
v r n h vrn vrnh |
---|---|
matchkey_str |
article:00218995:2016----::opooytutradrprisfeaoieoyennc |
hierarchy_sort_str |
2016 |
bklnumber |
35.80 51.70 |
publishDate |
2016 |
allfields |
10.1002/app.43811 doi PQ20161012 (DE-627)OLC198254144X (DE-599)GBVOLC198254144X (PRQ)p2225-54f318c5e2942a9f5d3b23e5c0123266f0d43e402508cc23b6f975ec0639cd8b3 (KEY)0117731120160000133003300000morphologystructureandpropertiesofmetaloxidepolyme DE-627 ger DE-627 rakwb eng 540 DE-600 35.80 bkl 51.70 bkl Hoogesteijn von Reitzenstein, Natalia verfasserin aut Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Adding nanoparticles into polymer solutions before electrospinning creates unique hierarchical morphologies dispersed throughout small diameter nanoparticle‐polymeric fibers. Effects of polymer composition, nanoparticle (NP) type, loading, and electrospinning voltage conditions were studied. As examples, indium, iron, and titanium oxide engineered nanoparticles (NPs) were dispersed into polyvinylpyrrolidone or polystyrene and electrospun. NP loadings below 5 wt % did not affect critical voltage required for Taylor cone formation, whereas higher NP loadings require higher critical voltages. Polymeric fiber thickness and macroscopic morphology is not impacted by up to 5 wt % NP loadings, and NP dispersion throughout the fibers were similar to their dispersion in initial polymer suspension. NP loadings above 5 wt % increased viscosity, which decrease subsequent fiber diameter. Experiments in water containing inorganic and organic pollutants in water demonstrate that the polymer is largely nonporous. This work enables design of multifunctional nanomaterial‐polymer composite fibers for wide‐ranging applications such as water and air treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43811. Nutzungsrecht: © 2016 Wiley Periodicals, Inc. nanocrystals fibers nanowires nanoparticles electrospinning Bi, Xiangyu oth Yang, Yu oth Hristovski, Kiril oth Westerhoff, Paul oth Enthalten in Journal of applied polymer science Hoboken, NJ [u.a.] : Wiley InterScience, 1959 133(2016), 33 (DE-627)129595799 (DE-600)240694-9 (DE-576)015088812 0021-8995 nnns volume:133 year:2016 number:33 http://dx.doi.org/10.1002/app.43811 Volltext http://onlinelibrary.wiley.com/doi/10.1002/app.43811/abstract http://search.proquest.com/docview/1790885628 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 35.80 AVZ 51.70 AVZ AR 133 2016 33 |
spelling |
10.1002/app.43811 doi PQ20161012 (DE-627)OLC198254144X (DE-599)GBVOLC198254144X (PRQ)p2225-54f318c5e2942a9f5d3b23e5c0123266f0d43e402508cc23b6f975ec0639cd8b3 (KEY)0117731120160000133003300000morphologystructureandpropertiesofmetaloxidepolyme DE-627 ger DE-627 rakwb eng 540 DE-600 35.80 bkl 51.70 bkl Hoogesteijn von Reitzenstein, Natalia verfasserin aut Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Adding nanoparticles into polymer solutions before electrospinning creates unique hierarchical morphologies dispersed throughout small diameter nanoparticle‐polymeric fibers. Effects of polymer composition, nanoparticle (NP) type, loading, and electrospinning voltage conditions were studied. As examples, indium, iron, and titanium oxide engineered nanoparticles (NPs) were dispersed into polyvinylpyrrolidone or polystyrene and electrospun. NP loadings below 5 wt % did not affect critical voltage required for Taylor cone formation, whereas higher NP loadings require higher critical voltages. Polymeric fiber thickness and macroscopic morphology is not impacted by up to 5 wt % NP loadings, and NP dispersion throughout the fibers were similar to their dispersion in initial polymer suspension. NP loadings above 5 wt % increased viscosity, which decrease subsequent fiber diameter. Experiments in water containing inorganic and organic pollutants in water demonstrate that the polymer is largely nonporous. This work enables design of multifunctional nanomaterial‐polymer composite fibers for wide‐ranging applications such as water and air treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43811. Nutzungsrecht: © 2016 Wiley Periodicals, Inc. nanocrystals fibers nanowires nanoparticles electrospinning Bi, Xiangyu oth Yang, Yu oth Hristovski, Kiril oth Westerhoff, Paul oth Enthalten in Journal of applied polymer science Hoboken, NJ [u.a.] : Wiley InterScience, 1959 133(2016), 33 (DE-627)129595799 (DE-600)240694-9 (DE-576)015088812 0021-8995 nnns volume:133 year:2016 number:33 http://dx.doi.org/10.1002/app.43811 Volltext http://onlinelibrary.wiley.com/doi/10.1002/app.43811/abstract http://search.proquest.com/docview/1790885628 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 35.80 AVZ 51.70 AVZ AR 133 2016 33 |
allfields_unstemmed |
10.1002/app.43811 doi PQ20161012 (DE-627)OLC198254144X (DE-599)GBVOLC198254144X (PRQ)p2225-54f318c5e2942a9f5d3b23e5c0123266f0d43e402508cc23b6f975ec0639cd8b3 (KEY)0117731120160000133003300000morphologystructureandpropertiesofmetaloxidepolyme DE-627 ger DE-627 rakwb eng 540 DE-600 35.80 bkl 51.70 bkl Hoogesteijn von Reitzenstein, Natalia verfasserin aut Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Adding nanoparticles into polymer solutions before electrospinning creates unique hierarchical morphologies dispersed throughout small diameter nanoparticle‐polymeric fibers. Effects of polymer composition, nanoparticle (NP) type, loading, and electrospinning voltage conditions were studied. As examples, indium, iron, and titanium oxide engineered nanoparticles (NPs) were dispersed into polyvinylpyrrolidone or polystyrene and electrospun. NP loadings below 5 wt % did not affect critical voltage required for Taylor cone formation, whereas higher NP loadings require higher critical voltages. Polymeric fiber thickness and macroscopic morphology is not impacted by up to 5 wt % NP loadings, and NP dispersion throughout the fibers were similar to their dispersion in initial polymer suspension. NP loadings above 5 wt % increased viscosity, which decrease subsequent fiber diameter. Experiments in water containing inorganic and organic pollutants in water demonstrate that the polymer is largely nonporous. This work enables design of multifunctional nanomaterial‐polymer composite fibers for wide‐ranging applications such as water and air treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43811. Nutzungsrecht: © 2016 Wiley Periodicals, Inc. nanocrystals fibers nanowires nanoparticles electrospinning Bi, Xiangyu oth Yang, Yu oth Hristovski, Kiril oth Westerhoff, Paul oth Enthalten in Journal of applied polymer science Hoboken, NJ [u.a.] : Wiley InterScience, 1959 133(2016), 33 (DE-627)129595799 (DE-600)240694-9 (DE-576)015088812 0021-8995 nnns volume:133 year:2016 number:33 http://dx.doi.org/10.1002/app.43811 Volltext http://onlinelibrary.wiley.com/doi/10.1002/app.43811/abstract http://search.proquest.com/docview/1790885628 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 35.80 AVZ 51.70 AVZ AR 133 2016 33 |
allfieldsGer |
10.1002/app.43811 doi PQ20161012 (DE-627)OLC198254144X (DE-599)GBVOLC198254144X (PRQ)p2225-54f318c5e2942a9f5d3b23e5c0123266f0d43e402508cc23b6f975ec0639cd8b3 (KEY)0117731120160000133003300000morphologystructureandpropertiesofmetaloxidepolyme DE-627 ger DE-627 rakwb eng 540 DE-600 35.80 bkl 51.70 bkl Hoogesteijn von Reitzenstein, Natalia verfasserin aut Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Adding nanoparticles into polymer solutions before electrospinning creates unique hierarchical morphologies dispersed throughout small diameter nanoparticle‐polymeric fibers. Effects of polymer composition, nanoparticle (NP) type, loading, and electrospinning voltage conditions were studied. As examples, indium, iron, and titanium oxide engineered nanoparticles (NPs) were dispersed into polyvinylpyrrolidone or polystyrene and electrospun. NP loadings below 5 wt % did not affect critical voltage required for Taylor cone formation, whereas higher NP loadings require higher critical voltages. Polymeric fiber thickness and macroscopic morphology is not impacted by up to 5 wt % NP loadings, and NP dispersion throughout the fibers were similar to their dispersion in initial polymer suspension. NP loadings above 5 wt % increased viscosity, which decrease subsequent fiber diameter. Experiments in water containing inorganic and organic pollutants in water demonstrate that the polymer is largely nonporous. This work enables design of multifunctional nanomaterial‐polymer composite fibers for wide‐ranging applications such as water and air treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43811. Nutzungsrecht: © 2016 Wiley Periodicals, Inc. nanocrystals fibers nanowires nanoparticles electrospinning Bi, Xiangyu oth Yang, Yu oth Hristovski, Kiril oth Westerhoff, Paul oth Enthalten in Journal of applied polymer science Hoboken, NJ [u.a.] : Wiley InterScience, 1959 133(2016), 33 (DE-627)129595799 (DE-600)240694-9 (DE-576)015088812 0021-8995 nnns volume:133 year:2016 number:33 http://dx.doi.org/10.1002/app.43811 Volltext http://onlinelibrary.wiley.com/doi/10.1002/app.43811/abstract http://search.proquest.com/docview/1790885628 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 35.80 AVZ 51.70 AVZ AR 133 2016 33 |
allfieldsSound |
10.1002/app.43811 doi PQ20161012 (DE-627)OLC198254144X (DE-599)GBVOLC198254144X (PRQ)p2225-54f318c5e2942a9f5d3b23e5c0123266f0d43e402508cc23b6f975ec0639cd8b3 (KEY)0117731120160000133003300000morphologystructureandpropertiesofmetaloxidepolyme DE-627 ger DE-627 rakwb eng 540 DE-600 35.80 bkl 51.70 bkl Hoogesteijn von Reitzenstein, Natalia verfasserin aut Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Adding nanoparticles into polymer solutions before electrospinning creates unique hierarchical morphologies dispersed throughout small diameter nanoparticle‐polymeric fibers. Effects of polymer composition, nanoparticle (NP) type, loading, and electrospinning voltage conditions were studied. As examples, indium, iron, and titanium oxide engineered nanoparticles (NPs) were dispersed into polyvinylpyrrolidone or polystyrene and electrospun. NP loadings below 5 wt % did not affect critical voltage required for Taylor cone formation, whereas higher NP loadings require higher critical voltages. Polymeric fiber thickness and macroscopic morphology is not impacted by up to 5 wt % NP loadings, and NP dispersion throughout the fibers were similar to their dispersion in initial polymer suspension. NP loadings above 5 wt % increased viscosity, which decrease subsequent fiber diameter. Experiments in water containing inorganic and organic pollutants in water demonstrate that the polymer is largely nonporous. This work enables design of multifunctional nanomaterial‐polymer composite fibers for wide‐ranging applications such as water and air treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43811. Nutzungsrecht: © 2016 Wiley Periodicals, Inc. nanocrystals fibers nanowires nanoparticles electrospinning Bi, Xiangyu oth Yang, Yu oth Hristovski, Kiril oth Westerhoff, Paul oth Enthalten in Journal of applied polymer science Hoboken, NJ [u.a.] : Wiley InterScience, 1959 133(2016), 33 (DE-627)129595799 (DE-600)240694-9 (DE-576)015088812 0021-8995 nnns volume:133 year:2016 number:33 http://dx.doi.org/10.1002/app.43811 Volltext http://onlinelibrary.wiley.com/doi/10.1002/app.43811/abstract http://search.proquest.com/docview/1790885628 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 35.80 AVZ 51.70 AVZ AR 133 2016 33 |
language |
English |
source |
Enthalten in Journal of applied polymer science 133(2016), 33 volume:133 year:2016 number:33 |
sourceStr |
Enthalten in Journal of applied polymer science 133(2016), 33 volume:133 year:2016 number:33 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
nanocrystals fibers nanowires nanoparticles electrospinning |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Journal of applied polymer science |
authorswithroles_txt_mv |
Hoogesteijn von Reitzenstein, Natalia @@aut@@ Bi, Xiangyu @@oth@@ Yang, Yu @@oth@@ Hristovski, Kiril @@oth@@ Westerhoff, Paul @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129595799 |
dewey-sort |
3540 |
id |
OLC198254144X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198254144X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230511071543.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/app.43811</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198254144X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198254144X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p2225-54f318c5e2942a9f5d3b23e5c0123266f0d43e402508cc23b6f975ec0639cd8b3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0117731120160000133003300000morphologystructureandpropertiesofmetaloxidepolyme</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hoogesteijn von Reitzenstein, Natalia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Adding nanoparticles into polymer solutions before electrospinning creates unique hierarchical morphologies dispersed throughout small diameter nanoparticle‐polymeric fibers. Effects of polymer composition, nanoparticle (NP) type, loading, and electrospinning voltage conditions were studied. As examples, indium, iron, and titanium oxide engineered nanoparticles (NPs) were dispersed into polyvinylpyrrolidone or polystyrene and electrospun. NP loadings below 5 wt % did not affect critical voltage required for Taylor cone formation, whereas higher NP loadings require higher critical voltages. Polymeric fiber thickness and macroscopic morphology is not impacted by up to 5 wt % NP loadings, and NP dispersion throughout the fibers were similar to their dispersion in initial polymer suspension. NP loadings above 5 wt % increased viscosity, which decrease subsequent fiber diameter. Experiments in water containing inorganic and organic pollutants in water demonstrate that the polymer is largely nonporous. This work enables design of multifunctional nanomaterial‐polymer composite fibers for wide‐ranging applications such as water and air treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43811.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Wiley Periodicals, Inc.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanocrystals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fibers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanowires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrospinning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bi, Xiangyu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hristovski, Kiril</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Westerhoff, Paul</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied polymer science</subfield><subfield code="d">Hoboken, NJ [u.a.] : Wiley InterScience, 1959</subfield><subfield code="g">133(2016), 33</subfield><subfield code="w">(DE-627)129595799</subfield><subfield code="w">(DE-600)240694-9</subfield><subfield code="w">(DE-576)015088812</subfield><subfield code="x">0021-8995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:133</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:33</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/app.43811</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/app.43811/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1790885628</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">133</subfield><subfield code="j">2016</subfield><subfield code="e">33</subfield></datafield></record></collection>
|
author |
Hoogesteijn von Reitzenstein, Natalia |
spellingShingle |
Hoogesteijn von Reitzenstein, Natalia ddc 540 bkl 35.80 bkl 51.70 misc nanocrystals misc fibers misc nanowires misc nanoparticles misc electrospinning Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats |
authorStr |
Hoogesteijn von Reitzenstein, Natalia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129595799 |
format |
Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0021-8995 |
topic_title |
540 DE-600 35.80 bkl 51.70 bkl Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats nanocrystals fibers nanowires nanoparticles electrospinning |
topic |
ddc 540 bkl 35.80 bkl 51.70 misc nanocrystals misc fibers misc nanowires misc nanoparticles misc electrospinning |
topic_unstemmed |
ddc 540 bkl 35.80 bkl 51.70 misc nanocrystals misc fibers misc nanowires misc nanoparticles misc electrospinning |
topic_browse |
ddc 540 bkl 35.80 bkl 51.70 misc nanocrystals misc fibers misc nanowires misc nanoparticles misc electrospinning |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
x b xb y y yy k h kh p w pw |
hierarchy_parent_title |
Journal of applied polymer science |
hierarchy_parent_id |
129595799 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Journal of applied polymer science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129595799 (DE-600)240694-9 (DE-576)015088812 |
title |
Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats |
ctrlnum |
(DE-627)OLC198254144X (DE-599)GBVOLC198254144X (PRQ)p2225-54f318c5e2942a9f5d3b23e5c0123266f0d43e402508cc23b6f975ec0639cd8b3 (KEY)0117731120160000133003300000morphologystructureandpropertiesofmetaloxidepolyme |
title_full |
Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats |
author_sort |
Hoogesteijn von Reitzenstein, Natalia |
journal |
Journal of applied polymer science |
journalStr |
Journal of applied polymer science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Hoogesteijn von Reitzenstein, Natalia |
container_volume |
133 |
class |
540 DE-600 35.80 bkl 51.70 bkl |
format_se |
Aufsätze |
author-letter |
Hoogesteijn von Reitzenstein, Natalia |
doi_str_mv |
10.1002/app.43811 |
dewey-full |
540 |
title_sort |
morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats |
title_auth |
Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats |
abstract |
Adding nanoparticles into polymer solutions before electrospinning creates unique hierarchical morphologies dispersed throughout small diameter nanoparticle‐polymeric fibers. Effects of polymer composition, nanoparticle (NP) type, loading, and electrospinning voltage conditions were studied. As examples, indium, iron, and titanium oxide engineered nanoparticles (NPs) were dispersed into polyvinylpyrrolidone or polystyrene and electrospun. NP loadings below 5 wt % did not affect critical voltage required for Taylor cone formation, whereas higher NP loadings require higher critical voltages. Polymeric fiber thickness and macroscopic morphology is not impacted by up to 5 wt % NP loadings, and NP dispersion throughout the fibers were similar to their dispersion in initial polymer suspension. NP loadings above 5 wt % increased viscosity, which decrease subsequent fiber diameter. Experiments in water containing inorganic and organic pollutants in water demonstrate that the polymer is largely nonporous. This work enables design of multifunctional nanomaterial‐polymer composite fibers for wide‐ranging applications such as water and air treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43811. |
abstractGer |
Adding nanoparticles into polymer solutions before electrospinning creates unique hierarchical morphologies dispersed throughout small diameter nanoparticle‐polymeric fibers. Effects of polymer composition, nanoparticle (NP) type, loading, and electrospinning voltage conditions were studied. As examples, indium, iron, and titanium oxide engineered nanoparticles (NPs) were dispersed into polyvinylpyrrolidone or polystyrene and electrospun. NP loadings below 5 wt % did not affect critical voltage required for Taylor cone formation, whereas higher NP loadings require higher critical voltages. Polymeric fiber thickness and macroscopic morphology is not impacted by up to 5 wt % NP loadings, and NP dispersion throughout the fibers were similar to their dispersion in initial polymer suspension. NP loadings above 5 wt % increased viscosity, which decrease subsequent fiber diameter. Experiments in water containing inorganic and organic pollutants in water demonstrate that the polymer is largely nonporous. This work enables design of multifunctional nanomaterial‐polymer composite fibers for wide‐ranging applications such as water and air treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43811. |
abstract_unstemmed |
Adding nanoparticles into polymer solutions before electrospinning creates unique hierarchical morphologies dispersed throughout small diameter nanoparticle‐polymeric fibers. Effects of polymer composition, nanoparticle (NP) type, loading, and electrospinning voltage conditions were studied. As examples, indium, iron, and titanium oxide engineered nanoparticles (NPs) were dispersed into polyvinylpyrrolidone or polystyrene and electrospun. NP loadings below 5 wt % did not affect critical voltage required for Taylor cone formation, whereas higher NP loadings require higher critical voltages. Polymeric fiber thickness and macroscopic morphology is not impacted by up to 5 wt % NP loadings, and NP dispersion throughout the fibers were similar to their dispersion in initial polymer suspension. NP loadings above 5 wt % increased viscosity, which decrease subsequent fiber diameter. Experiments in water containing inorganic and organic pollutants in water demonstrate that the polymer is largely nonporous. This work enables design of multifunctional nanomaterial‐polymer composite fibers for wide‐ranging applications such as water and air treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43811. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 |
container_issue |
33 |
title_short |
Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats |
url |
http://dx.doi.org/10.1002/app.43811 http://onlinelibrary.wiley.com/doi/10.1002/app.43811/abstract http://search.proquest.com/docview/1790885628 |
remote_bool |
false |
author2 |
Bi, Xiangyu Yang, Yu Hristovski, Kiril Westerhoff, Paul |
author2Str |
Bi, Xiangyu Yang, Yu Hristovski, Kiril Westerhoff, Paul |
ppnlink |
129595799 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1002/app.43811 |
up_date |
2024-07-03T17:39:57.418Z |
_version_ |
1803580496854122496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198254144X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230511071543.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/app.43811</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198254144X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198254144X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p2225-54f318c5e2942a9f5d3b23e5c0123266f0d43e402508cc23b6f975ec0639cd8b3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0117731120160000133003300000morphologystructureandpropertiesofmetaloxidepolyme</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hoogesteijn von Reitzenstein, Natalia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Adding nanoparticles into polymer solutions before electrospinning creates unique hierarchical morphologies dispersed throughout small diameter nanoparticle‐polymeric fibers. Effects of polymer composition, nanoparticle (NP) type, loading, and electrospinning voltage conditions were studied. As examples, indium, iron, and titanium oxide engineered nanoparticles (NPs) were dispersed into polyvinylpyrrolidone or polystyrene and electrospun. NP loadings below 5 wt % did not affect critical voltage required for Taylor cone formation, whereas higher NP loadings require higher critical voltages. Polymeric fiber thickness and macroscopic morphology is not impacted by up to 5 wt % NP loadings, and NP dispersion throughout the fibers were similar to their dispersion in initial polymer suspension. NP loadings above 5 wt % increased viscosity, which decrease subsequent fiber diameter. Experiments in water containing inorganic and organic pollutants in water demonstrate that the polymer is largely nonporous. This work enables design of multifunctional nanomaterial‐polymer composite fibers for wide‐ranging applications such as water and air treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43811.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Wiley Periodicals, Inc.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanocrystals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fibers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanowires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrospinning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bi, Xiangyu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hristovski, Kiril</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Westerhoff, Paul</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied polymer science</subfield><subfield code="d">Hoboken, NJ [u.a.] : Wiley InterScience, 1959</subfield><subfield code="g">133(2016), 33</subfield><subfield code="w">(DE-627)129595799</subfield><subfield code="w">(DE-600)240694-9</subfield><subfield code="w">(DE-576)015088812</subfield><subfield code="x">0021-8995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:133</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:33</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/app.43811</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/app.43811/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1790885628</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">133</subfield><subfield code="j">2016</subfield><subfield code="e">33</subfield></datafield></record></collection>
|
score |
7.4002686 |