ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION
We propose a consistent functional estimator for the occupation time of the spot variance of an asset price observed at discrete times on a finite interval with the mesh of the observation grid shrinking to zero. The asset price is modeled nonparametrically as a continuous-time Itô semimartingale wi...
Ausführliche Beschreibung
Autor*in: |
Li, Jia [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Econometric theory - Cambridge : Cambridge Univ. Press, 1985, 32(2016), 5, Seite 1253-1288 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2016 ; number:5 ; pages:1253-1288 |
Links: |
---|
DOI / URN: |
10.1017/S0266466615000171 |
---|
Katalog-ID: |
OLC1982728906 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1982728906 | ||
003 | DE-627 | ||
005 | 20230714215232.0 | ||
007 | tu | ||
008 | 161013s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1017/S0266466615000171 |2 doi | |
028 | 5 | 2 | |a PQ20161012 |
035 | |a (DE-627)OLC1982728906 | ||
035 | |a (DE-599)GBVOLC1982728906 | ||
035 | |a (PRQ)c942-ca698b03784cb961304fe8844d8ee0b1b184d744da68d26970468d855fb0ee060 | ||
035 | |a (KEY)0139845820160000032000501253estimatingthevolatilityoccupationtimeviaregularize | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |q DE-600 |
100 | 1 | |a Li, Jia |e verfasserin |4 aut | |
245 | 1 | 0 | |a ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We propose a consistent functional estimator for the occupation time of the spot variance of an asset price observed at discrete times on a finite interval with the mesh of the observation grid shrinking to zero. The asset price is modeled nonparametrically as a continuous-time Itô semimartingale with nonvanishing diffusion coefficient. The estimation procedure contains two steps. In the first step we estimate the Laplace transform of the volatility occupation time and, in the second step, we conduct a regularized Laplace inversion. Monte Carlo evidence suggests that the proposed estimator has good small-sample performance and in particular it is far better at estimating lower volatility quantiles and the volatility median than a direct estimator formed from the empirical cumulative distribution function of local spot volatility estimates. An empirical application shows the use of the developed techniques for nonparametric analysis of variation of volatility. | ||
650 | 4 | |a Studies | |
650 | 4 | |a Econometrics | |
650 | 4 | |a Estimating techniques | |
650 | 4 | |a Volatility | |
650 | 4 | |a Laplace transforms | |
700 | 1 | |a Todorov, Viktor |4 oth | |
700 | 1 | |a Tauchen, George |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Econometric theory |d Cambridge : Cambridge Univ. Press, 1985 |g 32(2016), 5, Seite 1253-1288 |w (DE-627)130684880 |w (DE-600)901661-2 |w (DE-576)016233972 |x 0266-4666 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2016 |g number:5 |g pages:1253-1288 |
856 | 4 | 1 | |u http://dx.doi.org/10.1017/S0266466615000171 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1819083019 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4028 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 32 |j 2016 |e 5 |h 1253-1288 |
author_variant |
j l jl |
---|---|
matchkey_str |
article:02664666:2016----::siaighvltltocptotmvaeuai |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1017/S0266466615000171 doi PQ20161012 (DE-627)OLC1982728906 (DE-599)GBVOLC1982728906 (PRQ)c942-ca698b03784cb961304fe8844d8ee0b1b184d744da68d26970468d855fb0ee060 (KEY)0139845820160000032000501253estimatingthevolatilityoccupationtimeviaregularize DE-627 ger DE-627 rakwb eng 330 DE-600 Li, Jia verfasserin aut ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We propose a consistent functional estimator for the occupation time of the spot variance of an asset price observed at discrete times on a finite interval with the mesh of the observation grid shrinking to zero. The asset price is modeled nonparametrically as a continuous-time Itô semimartingale with nonvanishing diffusion coefficient. The estimation procedure contains two steps. In the first step we estimate the Laplace transform of the volatility occupation time and, in the second step, we conduct a regularized Laplace inversion. Monte Carlo evidence suggests that the proposed estimator has good small-sample performance and in particular it is far better at estimating lower volatility quantiles and the volatility median than a direct estimator formed from the empirical cumulative distribution function of local spot volatility estimates. An empirical application shows the use of the developed techniques for nonparametric analysis of variation of volatility. Studies Econometrics Estimating techniques Volatility Laplace transforms Todorov, Viktor oth Tauchen, George oth Enthalten in Econometric theory Cambridge : Cambridge Univ. Press, 1985 32(2016), 5, Seite 1253-1288 (DE-627)130684880 (DE-600)901661-2 (DE-576)016233972 0266-4666 nnns volume:32 year:2016 number:5 pages:1253-1288 http://dx.doi.org/10.1017/S0266466615000171 Volltext http://search.proquest.com/docview/1819083019 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_26 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4311 GBV_ILN_4318 AR 32 2016 5 1253-1288 |
spelling |
10.1017/S0266466615000171 doi PQ20161012 (DE-627)OLC1982728906 (DE-599)GBVOLC1982728906 (PRQ)c942-ca698b03784cb961304fe8844d8ee0b1b184d744da68d26970468d855fb0ee060 (KEY)0139845820160000032000501253estimatingthevolatilityoccupationtimeviaregularize DE-627 ger DE-627 rakwb eng 330 DE-600 Li, Jia verfasserin aut ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We propose a consistent functional estimator for the occupation time of the spot variance of an asset price observed at discrete times on a finite interval with the mesh of the observation grid shrinking to zero. The asset price is modeled nonparametrically as a continuous-time Itô semimartingale with nonvanishing diffusion coefficient. The estimation procedure contains two steps. In the first step we estimate the Laplace transform of the volatility occupation time and, in the second step, we conduct a regularized Laplace inversion. Monte Carlo evidence suggests that the proposed estimator has good small-sample performance and in particular it is far better at estimating lower volatility quantiles and the volatility median than a direct estimator formed from the empirical cumulative distribution function of local spot volatility estimates. An empirical application shows the use of the developed techniques for nonparametric analysis of variation of volatility. Studies Econometrics Estimating techniques Volatility Laplace transforms Todorov, Viktor oth Tauchen, George oth Enthalten in Econometric theory Cambridge : Cambridge Univ. Press, 1985 32(2016), 5, Seite 1253-1288 (DE-627)130684880 (DE-600)901661-2 (DE-576)016233972 0266-4666 nnns volume:32 year:2016 number:5 pages:1253-1288 http://dx.doi.org/10.1017/S0266466615000171 Volltext http://search.proquest.com/docview/1819083019 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_26 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4311 GBV_ILN_4318 AR 32 2016 5 1253-1288 |
allfields_unstemmed |
10.1017/S0266466615000171 doi PQ20161012 (DE-627)OLC1982728906 (DE-599)GBVOLC1982728906 (PRQ)c942-ca698b03784cb961304fe8844d8ee0b1b184d744da68d26970468d855fb0ee060 (KEY)0139845820160000032000501253estimatingthevolatilityoccupationtimeviaregularize DE-627 ger DE-627 rakwb eng 330 DE-600 Li, Jia verfasserin aut ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We propose a consistent functional estimator for the occupation time of the spot variance of an asset price observed at discrete times on a finite interval with the mesh of the observation grid shrinking to zero. The asset price is modeled nonparametrically as a continuous-time Itô semimartingale with nonvanishing diffusion coefficient. The estimation procedure contains two steps. In the first step we estimate the Laplace transform of the volatility occupation time and, in the second step, we conduct a regularized Laplace inversion. Monte Carlo evidence suggests that the proposed estimator has good small-sample performance and in particular it is far better at estimating lower volatility quantiles and the volatility median than a direct estimator formed from the empirical cumulative distribution function of local spot volatility estimates. An empirical application shows the use of the developed techniques for nonparametric analysis of variation of volatility. Studies Econometrics Estimating techniques Volatility Laplace transforms Todorov, Viktor oth Tauchen, George oth Enthalten in Econometric theory Cambridge : Cambridge Univ. Press, 1985 32(2016), 5, Seite 1253-1288 (DE-627)130684880 (DE-600)901661-2 (DE-576)016233972 0266-4666 nnns volume:32 year:2016 number:5 pages:1253-1288 http://dx.doi.org/10.1017/S0266466615000171 Volltext http://search.proquest.com/docview/1819083019 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_26 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4311 GBV_ILN_4318 AR 32 2016 5 1253-1288 |
allfieldsGer |
10.1017/S0266466615000171 doi PQ20161012 (DE-627)OLC1982728906 (DE-599)GBVOLC1982728906 (PRQ)c942-ca698b03784cb961304fe8844d8ee0b1b184d744da68d26970468d855fb0ee060 (KEY)0139845820160000032000501253estimatingthevolatilityoccupationtimeviaregularize DE-627 ger DE-627 rakwb eng 330 DE-600 Li, Jia verfasserin aut ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We propose a consistent functional estimator for the occupation time of the spot variance of an asset price observed at discrete times on a finite interval with the mesh of the observation grid shrinking to zero. The asset price is modeled nonparametrically as a continuous-time Itô semimartingale with nonvanishing diffusion coefficient. The estimation procedure contains two steps. In the first step we estimate the Laplace transform of the volatility occupation time and, in the second step, we conduct a regularized Laplace inversion. Monte Carlo evidence suggests that the proposed estimator has good small-sample performance and in particular it is far better at estimating lower volatility quantiles and the volatility median than a direct estimator formed from the empirical cumulative distribution function of local spot volatility estimates. An empirical application shows the use of the developed techniques for nonparametric analysis of variation of volatility. Studies Econometrics Estimating techniques Volatility Laplace transforms Todorov, Viktor oth Tauchen, George oth Enthalten in Econometric theory Cambridge : Cambridge Univ. Press, 1985 32(2016), 5, Seite 1253-1288 (DE-627)130684880 (DE-600)901661-2 (DE-576)016233972 0266-4666 nnns volume:32 year:2016 number:5 pages:1253-1288 http://dx.doi.org/10.1017/S0266466615000171 Volltext http://search.proquest.com/docview/1819083019 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_26 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4311 GBV_ILN_4318 AR 32 2016 5 1253-1288 |
allfieldsSound |
10.1017/S0266466615000171 doi PQ20161012 (DE-627)OLC1982728906 (DE-599)GBVOLC1982728906 (PRQ)c942-ca698b03784cb961304fe8844d8ee0b1b184d744da68d26970468d855fb0ee060 (KEY)0139845820160000032000501253estimatingthevolatilityoccupationtimeviaregularize DE-627 ger DE-627 rakwb eng 330 DE-600 Li, Jia verfasserin aut ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We propose a consistent functional estimator for the occupation time of the spot variance of an asset price observed at discrete times on a finite interval with the mesh of the observation grid shrinking to zero. The asset price is modeled nonparametrically as a continuous-time Itô semimartingale with nonvanishing diffusion coefficient. The estimation procedure contains two steps. In the first step we estimate the Laplace transform of the volatility occupation time and, in the second step, we conduct a regularized Laplace inversion. Monte Carlo evidence suggests that the proposed estimator has good small-sample performance and in particular it is far better at estimating lower volatility quantiles and the volatility median than a direct estimator formed from the empirical cumulative distribution function of local spot volatility estimates. An empirical application shows the use of the developed techniques for nonparametric analysis of variation of volatility. Studies Econometrics Estimating techniques Volatility Laplace transforms Todorov, Viktor oth Tauchen, George oth Enthalten in Econometric theory Cambridge : Cambridge Univ. Press, 1985 32(2016), 5, Seite 1253-1288 (DE-627)130684880 (DE-600)901661-2 (DE-576)016233972 0266-4666 nnns volume:32 year:2016 number:5 pages:1253-1288 http://dx.doi.org/10.1017/S0266466615000171 Volltext http://search.proquest.com/docview/1819083019 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_26 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4311 GBV_ILN_4318 AR 32 2016 5 1253-1288 |
language |
English |
source |
Enthalten in Econometric theory 32(2016), 5, Seite 1253-1288 volume:32 year:2016 number:5 pages:1253-1288 |
sourceStr |
Enthalten in Econometric theory 32(2016), 5, Seite 1253-1288 volume:32 year:2016 number:5 pages:1253-1288 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Studies Econometrics Estimating techniques Volatility Laplace transforms |
dewey-raw |
330 |
isfreeaccess_bool |
false |
container_title |
Econometric theory |
authorswithroles_txt_mv |
Li, Jia @@aut@@ Todorov, Viktor @@oth@@ Tauchen, George @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130684880 |
dewey-sort |
3330 |
id |
OLC1982728906 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1982728906</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714215232.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/S0266466615000171</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1982728906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1982728906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c942-ca698b03784cb961304fe8844d8ee0b1b184d744da68d26970468d855fb0ee060</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0139845820160000032000501253estimatingthevolatilityoccupationtimeviaregularize</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We propose a consistent functional estimator for the occupation time of the spot variance of an asset price observed at discrete times on a finite interval with the mesh of the observation grid shrinking to zero. The asset price is modeled nonparametrically as a continuous-time Itô semimartingale with nonvanishing diffusion coefficient. The estimation procedure contains two steps. In the first step we estimate the Laplace transform of the volatility occupation time and, in the second step, we conduct a regularized Laplace inversion. Monte Carlo evidence suggests that the proposed estimator has good small-sample performance and in particular it is far better at estimating lower volatility quantiles and the volatility median than a direct estimator formed from the empirical cumulative distribution function of local spot volatility estimates. An empirical application shows the use of the developed techniques for nonparametric analysis of variation of volatility.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Econometrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimating techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volatility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplace transforms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Todorov, Viktor</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tauchen, George</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Econometric theory</subfield><subfield code="d">Cambridge : Cambridge Univ. Press, 1985</subfield><subfield code="g">32(2016), 5, Seite 1253-1288</subfield><subfield code="w">(DE-627)130684880</subfield><subfield code="w">(DE-600)901661-2</subfield><subfield code="w">(DE-576)016233972</subfield><subfield code="x">0266-4666</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1253-1288</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1017/S0266466615000171</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1819083019</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4028</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">1253-1288</subfield></datafield></record></collection>
|
author |
Li, Jia |
spellingShingle |
Li, Jia ddc 330 misc Studies misc Econometrics misc Estimating techniques misc Volatility misc Laplace transforms ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION |
authorStr |
Li, Jia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130684880 |
format |
Article |
dewey-ones |
330 - Economics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0266-4666 |
topic_title |
330 DE-600 ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION Studies Econometrics Estimating techniques Volatility Laplace transforms |
topic |
ddc 330 misc Studies misc Econometrics misc Estimating techniques misc Volatility misc Laplace transforms |
topic_unstemmed |
ddc 330 misc Studies misc Econometrics misc Estimating techniques misc Volatility misc Laplace transforms |
topic_browse |
ddc 330 misc Studies misc Econometrics misc Estimating techniques misc Volatility misc Laplace transforms |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
v t vt g t gt |
hierarchy_parent_title |
Econometric theory |
hierarchy_parent_id |
130684880 |
dewey-tens |
330 - Economics |
hierarchy_top_title |
Econometric theory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130684880 (DE-600)901661-2 (DE-576)016233972 |
title |
ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION |
ctrlnum |
(DE-627)OLC1982728906 (DE-599)GBVOLC1982728906 (PRQ)c942-ca698b03784cb961304fe8844d8ee0b1b184d744da68d26970468d855fb0ee060 (KEY)0139845820160000032000501253estimatingthevolatilityoccupationtimeviaregularize |
title_full |
ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION |
author_sort |
Li, Jia |
journal |
Econometric theory |
journalStr |
Econometric theory |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1253 |
author_browse |
Li, Jia |
container_volume |
32 |
class |
330 DE-600 |
format_se |
Aufsätze |
author-letter |
Li, Jia |
doi_str_mv |
10.1017/S0266466615000171 |
dewey-full |
330 |
title_sort |
estimating the volatility occupation time via regularized laplace inversion |
title_auth |
ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION |
abstract |
We propose a consistent functional estimator for the occupation time of the spot variance of an asset price observed at discrete times on a finite interval with the mesh of the observation grid shrinking to zero. The asset price is modeled nonparametrically as a continuous-time Itô semimartingale with nonvanishing diffusion coefficient. The estimation procedure contains two steps. In the first step we estimate the Laplace transform of the volatility occupation time and, in the second step, we conduct a regularized Laplace inversion. Monte Carlo evidence suggests that the proposed estimator has good small-sample performance and in particular it is far better at estimating lower volatility quantiles and the volatility median than a direct estimator formed from the empirical cumulative distribution function of local spot volatility estimates. An empirical application shows the use of the developed techniques for nonparametric analysis of variation of volatility. |
abstractGer |
We propose a consistent functional estimator for the occupation time of the spot variance of an asset price observed at discrete times on a finite interval with the mesh of the observation grid shrinking to zero. The asset price is modeled nonparametrically as a continuous-time Itô semimartingale with nonvanishing diffusion coefficient. The estimation procedure contains two steps. In the first step we estimate the Laplace transform of the volatility occupation time and, in the second step, we conduct a regularized Laplace inversion. Monte Carlo evidence suggests that the proposed estimator has good small-sample performance and in particular it is far better at estimating lower volatility quantiles and the volatility median than a direct estimator formed from the empirical cumulative distribution function of local spot volatility estimates. An empirical application shows the use of the developed techniques for nonparametric analysis of variation of volatility. |
abstract_unstemmed |
We propose a consistent functional estimator for the occupation time of the spot variance of an asset price observed at discrete times on a finite interval with the mesh of the observation grid shrinking to zero. The asset price is modeled nonparametrically as a continuous-time Itô semimartingale with nonvanishing diffusion coefficient. The estimation procedure contains two steps. In the first step we estimate the Laplace transform of the volatility occupation time and, in the second step, we conduct a regularized Laplace inversion. Monte Carlo evidence suggests that the proposed estimator has good small-sample performance and in particular it is far better at estimating lower volatility quantiles and the volatility median than a direct estimator formed from the empirical cumulative distribution function of local spot volatility estimates. An empirical application shows the use of the developed techniques for nonparametric analysis of variation of volatility. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_26 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4311 GBV_ILN_4318 |
container_issue |
5 |
title_short |
ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION |
url |
http://dx.doi.org/10.1017/S0266466615000171 http://search.proquest.com/docview/1819083019 |
remote_bool |
false |
author2 |
Todorov, Viktor Tauchen, George |
author2Str |
Todorov, Viktor Tauchen, George |
ppnlink |
130684880 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1017/S0266466615000171 |
up_date |
2024-07-03T18:25:45.455Z |
_version_ |
1803583378378719233 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1982728906</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714215232.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/S0266466615000171</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1982728906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1982728906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c942-ca698b03784cb961304fe8844d8ee0b1b184d744da68d26970468d855fb0ee060</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0139845820160000032000501253estimatingthevolatilityoccupationtimeviaregularize</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ESTIMATING THE VOLATILITY OCCUPATION TIME VIA REGULARIZED LAPLACE INVERSION</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We propose a consistent functional estimator for the occupation time of the spot variance of an asset price observed at discrete times on a finite interval with the mesh of the observation grid shrinking to zero. The asset price is modeled nonparametrically as a continuous-time Itô semimartingale with nonvanishing diffusion coefficient. The estimation procedure contains two steps. In the first step we estimate the Laplace transform of the volatility occupation time and, in the second step, we conduct a regularized Laplace inversion. Monte Carlo evidence suggests that the proposed estimator has good small-sample performance and in particular it is far better at estimating lower volatility quantiles and the volatility median than a direct estimator formed from the empirical cumulative distribution function of local spot volatility estimates. An empirical application shows the use of the developed techniques for nonparametric analysis of variation of volatility.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Econometrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimating techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volatility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplace transforms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Todorov, Viktor</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tauchen, George</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Econometric theory</subfield><subfield code="d">Cambridge : Cambridge Univ. Press, 1985</subfield><subfield code="g">32(2016), 5, Seite 1253-1288</subfield><subfield code="w">(DE-627)130684880</subfield><subfield code="w">(DE-600)901661-2</subfield><subfield code="w">(DE-576)016233972</subfield><subfield code="x">0266-4666</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1253-1288</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1017/S0266466615000171</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1819083019</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4028</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">1253-1288</subfield></datafield></record></collection>
|
score |
7.401636 |