Advances and challenges in deformable image registration: From image fusion to complex motion modelling
Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ...
Ausführliche Beschreibung
Autor*in: |
Schnabel, Julia A [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2016 Elsevier B.V. All rights reserved. |
---|
Übergeordnetes Werk: |
Enthalten in: Medical image analysis - Amsterdam [u.a.] : Elsevier, 1996, 33(2016), Seite 145-148 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2016 ; pages:145-148 |
Links: |
---|
DOI / URN: |
10.1016/j.media.2016.06.031 |
---|
Katalog-ID: |
OLC1983582816 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1983582816 | ||
003 | DE-627 | ||
005 | 20230714221721.0 | ||
007 | tu | ||
008 | 161013s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.media.2016.06.031 |2 doi | |
028 | 5 | 2 | |a PQ20161012 |
035 | |a (DE-627)OLC1983582816 | ||
035 | |a (DE-599)GBVOLC1983582816 | ||
035 | |a (PRQ)c670-49f0c90f5aa178fafbec347a7106294c01b38b47ab65f70dbb8c45f609fb9d950 | ||
035 | |a (KEY)0392983320160000033000000145advancesandchallengesindeformableimageregistration | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q ZDB |
100 | 1 | |a Schnabel, Julia A |e verfasserin |4 aut | |
245 | 1 | 0 | |a Advances and challenges in deformable image registration: From image fusion to complex motion modelling |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field. | ||
540 | |a Nutzungsrecht: Copyright © 2016 Elsevier B.V. All rights reserved. | ||
700 | 1 | |a Heinrich, Mattias P |4 oth | |
700 | 1 | |a Papież, Bartłomiej W |4 oth | |
700 | 1 | |a Brady, Sir J Michael |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Medical image analysis |d Amsterdam [u.a.] : Elsevier, 1996 |g 33(2016), Seite 145-148 |w (DE-627)223260010 |w (DE-600)1356436-5 |w (DE-576)080160034 |x 1361-8415 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:2016 |g pages:145-148 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.media.2016.06.031 |3 Volltext |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/27364430 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_4219 | ||
951 | |a AR | ||
952 | |d 33 |j 2016 |h 145-148 |
author_variant |
j a s ja jas |
---|---|
matchkey_str |
article:13618415:2016----::dacsncalneidfraliaeeitainrmmgfsot |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1016/j.media.2016.06.031 doi PQ20161012 (DE-627)OLC1983582816 (DE-599)GBVOLC1983582816 (PRQ)c670-49f0c90f5aa178fafbec347a7106294c01b38b47ab65f70dbb8c45f609fb9d950 (KEY)0392983320160000033000000145advancesandchallengesindeformableimageregistration DE-627 ger DE-627 rakwb eng 004 ZDB Schnabel, Julia A verfasserin aut Advances and challenges in deformable image registration: From image fusion to complex motion modelling 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field. Nutzungsrecht: Copyright © 2016 Elsevier B.V. All rights reserved. Heinrich, Mattias P oth Papież, Bartłomiej W oth Brady, Sir J Michael oth Enthalten in Medical image analysis Amsterdam [u.a.] : Elsevier, 1996 33(2016), Seite 145-148 (DE-627)223260010 (DE-600)1356436-5 (DE-576)080160034 1361-8415 nnns volume:33 year:2016 pages:145-148 http://dx.doi.org/10.1016/j.media.2016.06.031 Volltext http://www.ncbi.nlm.nih.gov/pubmed/27364430 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_4219 AR 33 2016 145-148 |
spelling |
10.1016/j.media.2016.06.031 doi PQ20161012 (DE-627)OLC1983582816 (DE-599)GBVOLC1983582816 (PRQ)c670-49f0c90f5aa178fafbec347a7106294c01b38b47ab65f70dbb8c45f609fb9d950 (KEY)0392983320160000033000000145advancesandchallengesindeformableimageregistration DE-627 ger DE-627 rakwb eng 004 ZDB Schnabel, Julia A verfasserin aut Advances and challenges in deformable image registration: From image fusion to complex motion modelling 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field. Nutzungsrecht: Copyright © 2016 Elsevier B.V. All rights reserved. Heinrich, Mattias P oth Papież, Bartłomiej W oth Brady, Sir J Michael oth Enthalten in Medical image analysis Amsterdam [u.a.] : Elsevier, 1996 33(2016), Seite 145-148 (DE-627)223260010 (DE-600)1356436-5 (DE-576)080160034 1361-8415 nnns volume:33 year:2016 pages:145-148 http://dx.doi.org/10.1016/j.media.2016.06.031 Volltext http://www.ncbi.nlm.nih.gov/pubmed/27364430 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_4219 AR 33 2016 145-148 |
allfields_unstemmed |
10.1016/j.media.2016.06.031 doi PQ20161012 (DE-627)OLC1983582816 (DE-599)GBVOLC1983582816 (PRQ)c670-49f0c90f5aa178fafbec347a7106294c01b38b47ab65f70dbb8c45f609fb9d950 (KEY)0392983320160000033000000145advancesandchallengesindeformableimageregistration DE-627 ger DE-627 rakwb eng 004 ZDB Schnabel, Julia A verfasserin aut Advances and challenges in deformable image registration: From image fusion to complex motion modelling 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field. Nutzungsrecht: Copyright © 2016 Elsevier B.V. All rights reserved. Heinrich, Mattias P oth Papież, Bartłomiej W oth Brady, Sir J Michael oth Enthalten in Medical image analysis Amsterdam [u.a.] : Elsevier, 1996 33(2016), Seite 145-148 (DE-627)223260010 (DE-600)1356436-5 (DE-576)080160034 1361-8415 nnns volume:33 year:2016 pages:145-148 http://dx.doi.org/10.1016/j.media.2016.06.031 Volltext http://www.ncbi.nlm.nih.gov/pubmed/27364430 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_4219 AR 33 2016 145-148 |
allfieldsGer |
10.1016/j.media.2016.06.031 doi PQ20161012 (DE-627)OLC1983582816 (DE-599)GBVOLC1983582816 (PRQ)c670-49f0c90f5aa178fafbec347a7106294c01b38b47ab65f70dbb8c45f609fb9d950 (KEY)0392983320160000033000000145advancesandchallengesindeformableimageregistration DE-627 ger DE-627 rakwb eng 004 ZDB Schnabel, Julia A verfasserin aut Advances and challenges in deformable image registration: From image fusion to complex motion modelling 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field. Nutzungsrecht: Copyright © 2016 Elsevier B.V. All rights reserved. Heinrich, Mattias P oth Papież, Bartłomiej W oth Brady, Sir J Michael oth Enthalten in Medical image analysis Amsterdam [u.a.] : Elsevier, 1996 33(2016), Seite 145-148 (DE-627)223260010 (DE-600)1356436-5 (DE-576)080160034 1361-8415 nnns volume:33 year:2016 pages:145-148 http://dx.doi.org/10.1016/j.media.2016.06.031 Volltext http://www.ncbi.nlm.nih.gov/pubmed/27364430 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_4219 AR 33 2016 145-148 |
allfieldsSound |
10.1016/j.media.2016.06.031 doi PQ20161012 (DE-627)OLC1983582816 (DE-599)GBVOLC1983582816 (PRQ)c670-49f0c90f5aa178fafbec347a7106294c01b38b47ab65f70dbb8c45f609fb9d950 (KEY)0392983320160000033000000145advancesandchallengesindeformableimageregistration DE-627 ger DE-627 rakwb eng 004 ZDB Schnabel, Julia A verfasserin aut Advances and challenges in deformable image registration: From image fusion to complex motion modelling 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field. Nutzungsrecht: Copyright © 2016 Elsevier B.V. All rights reserved. Heinrich, Mattias P oth Papież, Bartłomiej W oth Brady, Sir J Michael oth Enthalten in Medical image analysis Amsterdam [u.a.] : Elsevier, 1996 33(2016), Seite 145-148 (DE-627)223260010 (DE-600)1356436-5 (DE-576)080160034 1361-8415 nnns volume:33 year:2016 pages:145-148 http://dx.doi.org/10.1016/j.media.2016.06.031 Volltext http://www.ncbi.nlm.nih.gov/pubmed/27364430 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_4219 AR 33 2016 145-148 |
language |
English |
source |
Enthalten in Medical image analysis 33(2016), Seite 145-148 volume:33 year:2016 pages:145-148 |
sourceStr |
Enthalten in Medical image analysis 33(2016), Seite 145-148 volume:33 year:2016 pages:145-148 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Medical image analysis |
authorswithroles_txt_mv |
Schnabel, Julia A @@aut@@ Heinrich, Mattias P @@oth@@ Papież, Bartłomiej W @@oth@@ Brady, Sir J Michael @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
223260010 |
dewey-sort |
14 |
id |
OLC1983582816 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1983582816</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714221721.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.media.2016.06.031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1983582816</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1983582816</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c670-49f0c90f5aa178fafbec347a7106294c01b38b47ab65f70dbb8c45f609fb9d950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0392983320160000033000000145advancesandchallengesindeformableimageregistration</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schnabel, Julia A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances and challenges in deformable image registration: From image fusion to complex motion modelling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 Elsevier B.V. All rights reserved.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heinrich, Mattias P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Papież, Bartłomiej W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brady, Sir J Michael</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Medical image analysis</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1996</subfield><subfield code="g">33(2016), Seite 145-148</subfield><subfield code="w">(DE-627)223260010</subfield><subfield code="w">(DE-600)1356436-5</subfield><subfield code="w">(DE-576)080160034</subfield><subfield code="x">1361-8415</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:145-148</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.media.2016.06.031</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/27364430</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2016</subfield><subfield code="h">145-148</subfield></datafield></record></collection>
|
author |
Schnabel, Julia A |
spellingShingle |
Schnabel, Julia A ddc 004 Advances and challenges in deformable image registration: From image fusion to complex motion modelling |
authorStr |
Schnabel, Julia A |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)223260010 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1361-8415 |
topic_title |
004 ZDB Advances and challenges in deformable image registration: From image fusion to complex motion modelling |
topic |
ddc 004 |
topic_unstemmed |
ddc 004 |
topic_browse |
ddc 004 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m p h mp mph b w p bw bwp s j m b sjm sjmb |
hierarchy_parent_title |
Medical image analysis |
hierarchy_parent_id |
223260010 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Medical image analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)223260010 (DE-600)1356436-5 (DE-576)080160034 |
title |
Advances and challenges in deformable image registration: From image fusion to complex motion modelling |
ctrlnum |
(DE-627)OLC1983582816 (DE-599)GBVOLC1983582816 (PRQ)c670-49f0c90f5aa178fafbec347a7106294c01b38b47ab65f70dbb8c45f609fb9d950 (KEY)0392983320160000033000000145advancesandchallengesindeformableimageregistration |
title_full |
Advances and challenges in deformable image registration: From image fusion to complex motion modelling |
author_sort |
Schnabel, Julia A |
journal |
Medical image analysis |
journalStr |
Medical image analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
145 |
author_browse |
Schnabel, Julia A |
container_volume |
33 |
class |
004 ZDB |
format_se |
Aufsätze |
author-letter |
Schnabel, Julia A |
doi_str_mv |
10.1016/j.media.2016.06.031 |
dewey-full |
004 |
title_sort |
advances and challenges in deformable image registration: from image fusion to complex motion modelling |
title_auth |
Advances and challenges in deformable image registration: From image fusion to complex motion modelling |
abstract |
Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field. |
abstractGer |
Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field. |
abstract_unstemmed |
Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_4219 |
title_short |
Advances and challenges in deformable image registration: From image fusion to complex motion modelling |
url |
http://dx.doi.org/10.1016/j.media.2016.06.031 http://www.ncbi.nlm.nih.gov/pubmed/27364430 |
remote_bool |
false |
author2 |
Heinrich, Mattias P Papież, Bartłomiej W Brady, Sir J Michael |
author2Str |
Heinrich, Mattias P Papież, Bartłomiej W Brady, Sir J Michael |
ppnlink |
223260010 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.media.2016.06.031 |
up_date |
2024-07-03T21:23:38.689Z |
_version_ |
1803594570074685440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1983582816</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714221721.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161013s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.media.2016.06.031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1983582816</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1983582816</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c670-49f0c90f5aa178fafbec347a7106294c01b38b47ab65f70dbb8c45f609fb9d950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0392983320160000033000000145advancesandchallengesindeformableimageregistration</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schnabel, Julia A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances and challenges in deformable image registration: From image fusion to complex motion modelling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 Elsevier B.V. All rights reserved.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heinrich, Mattias P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Papież, Bartłomiej W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brady, Sir J Michael</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Medical image analysis</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1996</subfield><subfield code="g">33(2016), Seite 145-148</subfield><subfield code="w">(DE-627)223260010</subfield><subfield code="w">(DE-600)1356436-5</subfield><subfield code="w">(DE-576)080160034</subfield><subfield code="x">1361-8415</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:145-148</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.media.2016.06.031</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/27364430</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2016</subfield><subfield code="h">145-148</subfield></datafield></record></collection>
|
score |
7.4016323 |