Exponential Separation of Information and Communication for Boolean Functions
We show an exponential gap between communication complexity and information complexity by giving an explicit example of a partial boolean function with information complexity ≤ O ( k ), and distributional communication complexity ≥ 2 k . This shows that a communication protocol cannot always be comp...
Ausführliche Beschreibung
Autor*in: |
Ganor, Anat [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Journal of the ACM - New York, NY : Assoc., 1954, 63(2016), 5, Seite 1-31 |
---|---|
Übergeordnetes Werk: |
volume:63 ; year:2016 ; number:5 ; pages:1-31 |
Links: |
---|
DOI / URN: |
10.1145/2907939 |
---|
Katalog-ID: |
OLC1983955922 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1983955922 | ||
003 | DE-627 | ||
005 | 20220215131131.0 | ||
007 | tu | ||
008 | 161202s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1145/2907939 |2 doi | |
028 | 5 | 2 | |a PQ20161201 |
035 | |a (DE-627)OLC1983955922 | ||
035 | |a (DE-599)GBVOLC1983955922 | ||
035 | |a (PRQ)a519-8ef9e35ffdcb3a4c00d8c2c132fd9894df088acfd9eb5ddbf75d61295969cbef0 | ||
035 | |a (KEY)0002666220160000063000500001exponentialseparationofinformationandcommunication | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a SA 3010 |q AVZ |2 rvk | ||
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Ganor, Anat |e verfasserin |4 aut | |
245 | 1 | 0 | |a Exponential Separation of Information and Communication for Boolean Functions |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We show an exponential gap between communication complexity and information complexity by giving an explicit example of a partial boolean function with information complexity ≤ O ( k ), and distributional communication complexity ≥ 2 k . This shows that a communication protocol cannot always be compressed to its internal information. By a result of Braverman [2015], our gap is the largest possible. By a result of Braverman and Rao [2014], our example shows a gap between communication complexity and amortized communication complexity, implying that a tight direct sum result for distributional communication complexity cannot hold, answering a long-standing open problem. Another (conceptual) contribution of our work is the relative discrepancy method, a new rectangle-based method for proving communication complexity lower bounds for boolean functions, powerful enough to separate information complexity and communication complexity. | ||
650 | 4 | |a Amortized communication complexity | |
650 | 4 | |a communication complexity | |
650 | 4 | |a information complexity | |
650 | 4 | |a direct sum | |
650 | 4 | |a communication compression | |
700 | 1 | |a Kol, Gillat |4 oth | |
700 | 1 | |a Raz, Ran |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of the ACM |d New York, NY : Assoc., 1954 |g 63(2016), 5, Seite 1-31 |w (DE-627)12909241X |w (DE-600)6759-3 |w (DE-576)014427982 |x 0004-5411 |7 nnns |
773 | 1 | 8 | |g volume:63 |g year:2016 |g number:5 |g pages:1-31 |
856 | 4 | 1 | |u http://dx.doi.org/10.1145/2907939 |3 Volltext |
856 | 4 | 2 | |u http://dl.acm.org/citation.cfm?id=2907939 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4247 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
936 | r | v | |a SA 3010 |
936 | b | k | |a 54.00 |q AVZ |
951 | |a AR | ||
952 | |d 63 |j 2016 |e 5 |h 1-31 |
author_variant |
a g ag |
---|---|
matchkey_str |
article:00045411:2016----::xoetasprtooifrainncmuiain |
hierarchy_sort_str |
2016 |
bklnumber |
54.00 |
publishDate |
2016 |
allfields |
10.1145/2907939 doi PQ20161201 (DE-627)OLC1983955922 (DE-599)GBVOLC1983955922 (PRQ)a519-8ef9e35ffdcb3a4c00d8c2c132fd9894df088acfd9eb5ddbf75d61295969cbef0 (KEY)0002666220160000063000500001exponentialseparationofinformationandcommunication DE-627 ger DE-627 rakwb eng 004 DE-600 SA 3010 AVZ rvk 54.00 bkl Ganor, Anat verfasserin aut Exponential Separation of Information and Communication for Boolean Functions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We show an exponential gap between communication complexity and information complexity by giving an explicit example of a partial boolean function with information complexity ≤ O ( k ), and distributional communication complexity ≥ 2 k . This shows that a communication protocol cannot always be compressed to its internal information. By a result of Braverman [2015], our gap is the largest possible. By a result of Braverman and Rao [2014], our example shows a gap between communication complexity and amortized communication complexity, implying that a tight direct sum result for distributional communication complexity cannot hold, answering a long-standing open problem. Another (conceptual) contribution of our work is the relative discrepancy method, a new rectangle-based method for proving communication complexity lower bounds for boolean functions, powerful enough to separate information complexity and communication complexity. Amortized communication complexity communication complexity information complexity direct sum communication compression Kol, Gillat oth Raz, Ran oth Enthalten in Journal of the ACM New York, NY : Assoc., 1954 63(2016), 5, Seite 1-31 (DE-627)12909241X (DE-600)6759-3 (DE-576)014427982 0004-5411 nnns volume:63 year:2016 number:5 pages:1-31 http://dx.doi.org/10.1145/2907939 Volltext http://dl.acm.org/citation.cfm?id=2907939 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_69 GBV_ILN_70 GBV_ILN_2021 GBV_ILN_2190 GBV_ILN_4125 GBV_ILN_4247 GBV_ILN_4317 GBV_ILN_4318 SA 3010 54.00 AVZ AR 63 2016 5 1-31 |
spelling |
10.1145/2907939 doi PQ20161201 (DE-627)OLC1983955922 (DE-599)GBVOLC1983955922 (PRQ)a519-8ef9e35ffdcb3a4c00d8c2c132fd9894df088acfd9eb5ddbf75d61295969cbef0 (KEY)0002666220160000063000500001exponentialseparationofinformationandcommunication DE-627 ger DE-627 rakwb eng 004 DE-600 SA 3010 AVZ rvk 54.00 bkl Ganor, Anat verfasserin aut Exponential Separation of Information and Communication for Boolean Functions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We show an exponential gap between communication complexity and information complexity by giving an explicit example of a partial boolean function with information complexity ≤ O ( k ), and distributional communication complexity ≥ 2 k . This shows that a communication protocol cannot always be compressed to its internal information. By a result of Braverman [2015], our gap is the largest possible. By a result of Braverman and Rao [2014], our example shows a gap between communication complexity and amortized communication complexity, implying that a tight direct sum result for distributional communication complexity cannot hold, answering a long-standing open problem. Another (conceptual) contribution of our work is the relative discrepancy method, a new rectangle-based method for proving communication complexity lower bounds for boolean functions, powerful enough to separate information complexity and communication complexity. Amortized communication complexity communication complexity information complexity direct sum communication compression Kol, Gillat oth Raz, Ran oth Enthalten in Journal of the ACM New York, NY : Assoc., 1954 63(2016), 5, Seite 1-31 (DE-627)12909241X (DE-600)6759-3 (DE-576)014427982 0004-5411 nnns volume:63 year:2016 number:5 pages:1-31 http://dx.doi.org/10.1145/2907939 Volltext http://dl.acm.org/citation.cfm?id=2907939 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_69 GBV_ILN_70 GBV_ILN_2021 GBV_ILN_2190 GBV_ILN_4125 GBV_ILN_4247 GBV_ILN_4317 GBV_ILN_4318 SA 3010 54.00 AVZ AR 63 2016 5 1-31 |
allfields_unstemmed |
10.1145/2907939 doi PQ20161201 (DE-627)OLC1983955922 (DE-599)GBVOLC1983955922 (PRQ)a519-8ef9e35ffdcb3a4c00d8c2c132fd9894df088acfd9eb5ddbf75d61295969cbef0 (KEY)0002666220160000063000500001exponentialseparationofinformationandcommunication DE-627 ger DE-627 rakwb eng 004 DE-600 SA 3010 AVZ rvk 54.00 bkl Ganor, Anat verfasserin aut Exponential Separation of Information and Communication for Boolean Functions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We show an exponential gap between communication complexity and information complexity by giving an explicit example of a partial boolean function with information complexity ≤ O ( k ), and distributional communication complexity ≥ 2 k . This shows that a communication protocol cannot always be compressed to its internal information. By a result of Braverman [2015], our gap is the largest possible. By a result of Braverman and Rao [2014], our example shows a gap between communication complexity and amortized communication complexity, implying that a tight direct sum result for distributional communication complexity cannot hold, answering a long-standing open problem. Another (conceptual) contribution of our work is the relative discrepancy method, a new rectangle-based method for proving communication complexity lower bounds for boolean functions, powerful enough to separate information complexity and communication complexity. Amortized communication complexity communication complexity information complexity direct sum communication compression Kol, Gillat oth Raz, Ran oth Enthalten in Journal of the ACM New York, NY : Assoc., 1954 63(2016), 5, Seite 1-31 (DE-627)12909241X (DE-600)6759-3 (DE-576)014427982 0004-5411 nnns volume:63 year:2016 number:5 pages:1-31 http://dx.doi.org/10.1145/2907939 Volltext http://dl.acm.org/citation.cfm?id=2907939 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_69 GBV_ILN_70 GBV_ILN_2021 GBV_ILN_2190 GBV_ILN_4125 GBV_ILN_4247 GBV_ILN_4317 GBV_ILN_4318 SA 3010 54.00 AVZ AR 63 2016 5 1-31 |
allfieldsGer |
10.1145/2907939 doi PQ20161201 (DE-627)OLC1983955922 (DE-599)GBVOLC1983955922 (PRQ)a519-8ef9e35ffdcb3a4c00d8c2c132fd9894df088acfd9eb5ddbf75d61295969cbef0 (KEY)0002666220160000063000500001exponentialseparationofinformationandcommunication DE-627 ger DE-627 rakwb eng 004 DE-600 SA 3010 AVZ rvk 54.00 bkl Ganor, Anat verfasserin aut Exponential Separation of Information and Communication for Boolean Functions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We show an exponential gap between communication complexity and information complexity by giving an explicit example of a partial boolean function with information complexity ≤ O ( k ), and distributional communication complexity ≥ 2 k . This shows that a communication protocol cannot always be compressed to its internal information. By a result of Braverman [2015], our gap is the largest possible. By a result of Braverman and Rao [2014], our example shows a gap between communication complexity and amortized communication complexity, implying that a tight direct sum result for distributional communication complexity cannot hold, answering a long-standing open problem. Another (conceptual) contribution of our work is the relative discrepancy method, a new rectangle-based method for proving communication complexity lower bounds for boolean functions, powerful enough to separate information complexity and communication complexity. Amortized communication complexity communication complexity information complexity direct sum communication compression Kol, Gillat oth Raz, Ran oth Enthalten in Journal of the ACM New York, NY : Assoc., 1954 63(2016), 5, Seite 1-31 (DE-627)12909241X (DE-600)6759-3 (DE-576)014427982 0004-5411 nnns volume:63 year:2016 number:5 pages:1-31 http://dx.doi.org/10.1145/2907939 Volltext http://dl.acm.org/citation.cfm?id=2907939 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_69 GBV_ILN_70 GBV_ILN_2021 GBV_ILN_2190 GBV_ILN_4125 GBV_ILN_4247 GBV_ILN_4317 GBV_ILN_4318 SA 3010 54.00 AVZ AR 63 2016 5 1-31 |
allfieldsSound |
10.1145/2907939 doi PQ20161201 (DE-627)OLC1983955922 (DE-599)GBVOLC1983955922 (PRQ)a519-8ef9e35ffdcb3a4c00d8c2c132fd9894df088acfd9eb5ddbf75d61295969cbef0 (KEY)0002666220160000063000500001exponentialseparationofinformationandcommunication DE-627 ger DE-627 rakwb eng 004 DE-600 SA 3010 AVZ rvk 54.00 bkl Ganor, Anat verfasserin aut Exponential Separation of Information and Communication for Boolean Functions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We show an exponential gap between communication complexity and information complexity by giving an explicit example of a partial boolean function with information complexity ≤ O ( k ), and distributional communication complexity ≥ 2 k . This shows that a communication protocol cannot always be compressed to its internal information. By a result of Braverman [2015], our gap is the largest possible. By a result of Braverman and Rao [2014], our example shows a gap between communication complexity and amortized communication complexity, implying that a tight direct sum result for distributional communication complexity cannot hold, answering a long-standing open problem. Another (conceptual) contribution of our work is the relative discrepancy method, a new rectangle-based method for proving communication complexity lower bounds for boolean functions, powerful enough to separate information complexity and communication complexity. Amortized communication complexity communication complexity information complexity direct sum communication compression Kol, Gillat oth Raz, Ran oth Enthalten in Journal of the ACM New York, NY : Assoc., 1954 63(2016), 5, Seite 1-31 (DE-627)12909241X (DE-600)6759-3 (DE-576)014427982 0004-5411 nnns volume:63 year:2016 number:5 pages:1-31 http://dx.doi.org/10.1145/2907939 Volltext http://dl.acm.org/citation.cfm?id=2907939 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_69 GBV_ILN_70 GBV_ILN_2021 GBV_ILN_2190 GBV_ILN_4125 GBV_ILN_4247 GBV_ILN_4317 GBV_ILN_4318 SA 3010 54.00 AVZ AR 63 2016 5 1-31 |
language |
English |
source |
Enthalten in Journal of the ACM 63(2016), 5, Seite 1-31 volume:63 year:2016 number:5 pages:1-31 |
sourceStr |
Enthalten in Journal of the ACM 63(2016), 5, Seite 1-31 volume:63 year:2016 number:5 pages:1-31 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Amortized communication complexity communication complexity information complexity direct sum communication compression |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Journal of the ACM |
authorswithroles_txt_mv |
Ganor, Anat @@aut@@ Kol, Gillat @@oth@@ Raz, Ran @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
12909241X |
dewey-sort |
14 |
id |
OLC1983955922 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1983955922</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215131131.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1145/2907939</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1983955922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1983955922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a519-8ef9e35ffdcb3a4c00d8c2c132fd9894df088acfd9eb5ddbf75d61295969cbef0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0002666220160000063000500001exponentialseparationofinformationandcommunication</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 3010</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ganor, Anat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exponential Separation of Information and Communication for Boolean Functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We show an exponential gap between communication complexity and information complexity by giving an explicit example of a partial boolean function with information complexity ≤ O ( k ), and distributional communication complexity ≥ 2 k . This shows that a communication protocol cannot always be compressed to its internal information. By a result of Braverman [2015], our gap is the largest possible. By a result of Braverman and Rao [2014], our example shows a gap between communication complexity and amortized communication complexity, implying that a tight direct sum result for distributional communication complexity cannot hold, answering a long-standing open problem. Another (conceptual) contribution of our work is the relative discrepancy method, a new rectangle-based method for proving communication complexity lower bounds for boolean functions, powerful enough to separate information complexity and communication complexity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amortized communication complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">communication complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">information complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">direct sum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">communication compression</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kol, Gillat</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raz, Ran</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the ACM</subfield><subfield code="d">New York, NY : Assoc., 1954</subfield><subfield code="g">63(2016), 5, Seite 1-31</subfield><subfield code="w">(DE-627)12909241X</subfield><subfield code="w">(DE-600)6759-3</subfield><subfield code="w">(DE-576)014427982</subfield><subfield code="x">0004-5411</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1-31</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1145/2907939</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dl.acm.org/citation.cfm?id=2907939</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4247</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 3010</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">1-31</subfield></datafield></record></collection>
|
author |
Ganor, Anat |
spellingShingle |
Ganor, Anat ddc 004 rvk SA 3010 bkl 54.00 misc Amortized communication complexity misc communication complexity misc information complexity misc direct sum misc communication compression Exponential Separation of Information and Communication for Boolean Functions |
authorStr |
Ganor, Anat |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12909241X |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0004-5411 |
topic_title |
004 DE-600 SA 3010 AVZ rvk 54.00 bkl Exponential Separation of Information and Communication for Boolean Functions Amortized communication complexity communication complexity information complexity direct sum communication compression |
topic |
ddc 004 rvk SA 3010 bkl 54.00 misc Amortized communication complexity misc communication complexity misc information complexity misc direct sum misc communication compression |
topic_unstemmed |
ddc 004 rvk SA 3010 bkl 54.00 misc Amortized communication complexity misc communication complexity misc information complexity misc direct sum misc communication compression |
topic_browse |
ddc 004 rvk SA 3010 bkl 54.00 misc Amortized communication complexity misc communication complexity misc information complexity misc direct sum misc communication compression |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
g k gk r r rr |
hierarchy_parent_title |
Journal of the ACM |
hierarchy_parent_id |
12909241X |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of the ACM |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12909241X (DE-600)6759-3 (DE-576)014427982 |
title |
Exponential Separation of Information and Communication for Boolean Functions |
ctrlnum |
(DE-627)OLC1983955922 (DE-599)GBVOLC1983955922 (PRQ)a519-8ef9e35ffdcb3a4c00d8c2c132fd9894df088acfd9eb5ddbf75d61295969cbef0 (KEY)0002666220160000063000500001exponentialseparationofinformationandcommunication |
title_full |
Exponential Separation of Information and Communication for Boolean Functions |
author_sort |
Ganor, Anat |
journal |
Journal of the ACM |
journalStr |
Journal of the ACM |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Ganor, Anat |
container_volume |
63 |
class |
004 DE-600 SA 3010 AVZ rvk 54.00 bkl |
format_se |
Aufsätze |
author-letter |
Ganor, Anat |
doi_str_mv |
10.1145/2907939 |
dewey-full |
004 |
title_sort |
exponential separation of information and communication for boolean functions |
title_auth |
Exponential Separation of Information and Communication for Boolean Functions |
abstract |
We show an exponential gap between communication complexity and information complexity by giving an explicit example of a partial boolean function with information complexity ≤ O ( k ), and distributional communication complexity ≥ 2 k . This shows that a communication protocol cannot always be compressed to its internal information. By a result of Braverman [2015], our gap is the largest possible. By a result of Braverman and Rao [2014], our example shows a gap between communication complexity and amortized communication complexity, implying that a tight direct sum result for distributional communication complexity cannot hold, answering a long-standing open problem. Another (conceptual) contribution of our work is the relative discrepancy method, a new rectangle-based method for proving communication complexity lower bounds for boolean functions, powerful enough to separate information complexity and communication complexity. |
abstractGer |
We show an exponential gap between communication complexity and information complexity by giving an explicit example of a partial boolean function with information complexity ≤ O ( k ), and distributional communication complexity ≥ 2 k . This shows that a communication protocol cannot always be compressed to its internal information. By a result of Braverman [2015], our gap is the largest possible. By a result of Braverman and Rao [2014], our example shows a gap between communication complexity and amortized communication complexity, implying that a tight direct sum result for distributional communication complexity cannot hold, answering a long-standing open problem. Another (conceptual) contribution of our work is the relative discrepancy method, a new rectangle-based method for proving communication complexity lower bounds for boolean functions, powerful enough to separate information complexity and communication complexity. |
abstract_unstemmed |
We show an exponential gap between communication complexity and information complexity by giving an explicit example of a partial boolean function with information complexity ≤ O ( k ), and distributional communication complexity ≥ 2 k . This shows that a communication protocol cannot always be compressed to its internal information. By a result of Braverman [2015], our gap is the largest possible. By a result of Braverman and Rao [2014], our example shows a gap between communication complexity and amortized communication complexity, implying that a tight direct sum result for distributional communication complexity cannot hold, answering a long-standing open problem. Another (conceptual) contribution of our work is the relative discrepancy method, a new rectangle-based method for proving communication complexity lower bounds for boolean functions, powerful enough to separate information complexity and communication complexity. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_69 GBV_ILN_70 GBV_ILN_2021 GBV_ILN_2190 GBV_ILN_4125 GBV_ILN_4247 GBV_ILN_4317 GBV_ILN_4318 |
container_issue |
5 |
title_short |
Exponential Separation of Information and Communication for Boolean Functions |
url |
http://dx.doi.org/10.1145/2907939 http://dl.acm.org/citation.cfm?id=2907939 |
remote_bool |
false |
author2 |
Kol, Gillat Raz, Ran |
author2Str |
Kol, Gillat Raz, Ran |
ppnlink |
12909241X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1145/2907939 |
up_date |
2024-07-03T22:39:08.019Z |
_version_ |
1803599319428759552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1983955922</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215131131.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1145/2907939</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1983955922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1983955922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a519-8ef9e35ffdcb3a4c00d8c2c132fd9894df088acfd9eb5ddbf75d61295969cbef0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0002666220160000063000500001exponentialseparationofinformationandcommunication</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 3010</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ganor, Anat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exponential Separation of Information and Communication for Boolean Functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We show an exponential gap between communication complexity and information complexity by giving an explicit example of a partial boolean function with information complexity ≤ O ( k ), and distributional communication complexity ≥ 2 k . This shows that a communication protocol cannot always be compressed to its internal information. By a result of Braverman [2015], our gap is the largest possible. By a result of Braverman and Rao [2014], our example shows a gap between communication complexity and amortized communication complexity, implying that a tight direct sum result for distributional communication complexity cannot hold, answering a long-standing open problem. Another (conceptual) contribution of our work is the relative discrepancy method, a new rectangle-based method for proving communication complexity lower bounds for boolean functions, powerful enough to separate information complexity and communication complexity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amortized communication complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">communication complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">information complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">direct sum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">communication compression</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kol, Gillat</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raz, Ran</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the ACM</subfield><subfield code="d">New York, NY : Assoc., 1954</subfield><subfield code="g">63(2016), 5, Seite 1-31</subfield><subfield code="w">(DE-627)12909241X</subfield><subfield code="w">(DE-600)6759-3</subfield><subfield code="w">(DE-576)014427982</subfield><subfield code="x">0004-5411</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1-31</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1145/2907939</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dl.acm.org/citation.cfm?id=2907939</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4247</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 3010</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">1-31</subfield></datafield></record></collection>
|
score |
7.401785 |