Quantum memory receiver for superadditive communication using binary coherent states
We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classic...
Ausführliche Beschreibung
Autor*in: |
Klimek, Aleksandra [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of modern optics - Abingdon : Taylor & Francis, 1987, 63(2016), 20, Seite 2074-2080 |
---|---|
Übergeordnetes Werk: |
volume:63 ; year:2016 ; number:20 ; pages:2074-2080 |
Links: |
---|
DOI / URN: |
10.1080/09500340.2016.1173731 |
---|
Katalog-ID: |
OLC1984247239 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1984247239 | ||
003 | DE-627 | ||
005 | 20220219201154.0 | ||
007 | tu | ||
008 | 161202s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/09500340.2016.1173731 |2 doi | |
028 | 5 | 2 | |a PQ20170301 |
035 | |a (DE-627)OLC1984247239 | ||
035 | |a (DE-599)GBVOLC1984247239 | ||
035 | |a (PRQ)a2285-bd3c351f298c18f13f0aacefad5f0c30d58047bd1ede22bf5eaea21c2179cb050 | ||
035 | |a (KEY)0024045120160000063002002074quantummemoryreceiverforsuperadditivecommunication | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DNB |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Klimek, Aleksandra |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantum memory receiver for superadditive communication using binary coherent states |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet. | ||
540 | |a Nutzungsrecht: © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016 | ||
650 | 4 | |a optical communication | |
650 | 4 | |a quantum measurement | |
650 | 4 | |a Quantum memory | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Optics | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Physics | |
650 | 4 | |a Atomic Physics | |
700 | 1 | |a Jachura, Michał |4 oth | |
700 | 1 | |a Wasilewski, Wojciech |4 oth | |
700 | 1 | |a Banaszek, Konrad |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of modern optics |d Abingdon : Taylor & Francis, 1987 |g 63(2016), 20, Seite 2074-2080 |w (DE-627)130416061 |w (DE-600)626352-5 |w (DE-576)015918866 |x 0950-0340 |7 nnns |
773 | 1 | 8 | |g volume:63 |g year:2016 |g number:20 |g pages:2074-2080 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/09500340.2016.1173731 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/09500340.2016.1173731 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1818405330 |
856 | 4 | 2 | |u http://arxiv.org/abs/1512.06561 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4318 | ||
936 | b | k | |a 33.00 |q AVZ |
951 | |a AR | ||
952 | |d 63 |j 2016 |e 20 |h 2074-2080 |
author_variant |
a k ak |
---|---|
matchkey_str |
article:09500340:2016----::unummrrciefrueadtvcmuiainsn |
hierarchy_sort_str |
2016 |
bklnumber |
33.00 |
publishDate |
2016 |
allfields |
10.1080/09500340.2016.1173731 doi PQ20170301 (DE-627)OLC1984247239 (DE-599)GBVOLC1984247239 (PRQ)a2285-bd3c351f298c18f13f0aacefad5f0c30d58047bd1ede22bf5eaea21c2179cb050 (KEY)0024045120160000063002002074quantummemoryreceiverforsuperadditivecommunication DE-627 ger DE-627 rakwb eng 530 620 DNB 33.00 bkl Klimek, Aleksandra verfasserin aut Quantum memory receiver for superadditive communication using binary coherent states 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet. Nutzungsrecht: © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016 optical communication quantum measurement Quantum memory Quantum theory Optics Quantum Physics Physics Atomic Physics Jachura, Michał oth Wasilewski, Wojciech oth Banaszek, Konrad oth Enthalten in Journal of modern optics Abingdon : Taylor & Francis, 1987 63(2016), 20, Seite 2074-2080 (DE-627)130416061 (DE-600)626352-5 (DE-576)015918866 0950-0340 nnns volume:63 year:2016 number:20 pages:2074-2080 http://dx.doi.org/10.1080/09500340.2016.1173731 Volltext http://www.tandfonline.com/doi/abs/10.1080/09500340.2016.1173731 http://search.proquest.com/docview/1818405330 http://arxiv.org/abs/1512.06561 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_4314 GBV_ILN_4318 33.00 AVZ AR 63 2016 20 2074-2080 |
spelling |
10.1080/09500340.2016.1173731 doi PQ20170301 (DE-627)OLC1984247239 (DE-599)GBVOLC1984247239 (PRQ)a2285-bd3c351f298c18f13f0aacefad5f0c30d58047bd1ede22bf5eaea21c2179cb050 (KEY)0024045120160000063002002074quantummemoryreceiverforsuperadditivecommunication DE-627 ger DE-627 rakwb eng 530 620 DNB 33.00 bkl Klimek, Aleksandra verfasserin aut Quantum memory receiver for superadditive communication using binary coherent states 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet. Nutzungsrecht: © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016 optical communication quantum measurement Quantum memory Quantum theory Optics Quantum Physics Physics Atomic Physics Jachura, Michał oth Wasilewski, Wojciech oth Banaszek, Konrad oth Enthalten in Journal of modern optics Abingdon : Taylor & Francis, 1987 63(2016), 20, Seite 2074-2080 (DE-627)130416061 (DE-600)626352-5 (DE-576)015918866 0950-0340 nnns volume:63 year:2016 number:20 pages:2074-2080 http://dx.doi.org/10.1080/09500340.2016.1173731 Volltext http://www.tandfonline.com/doi/abs/10.1080/09500340.2016.1173731 http://search.proquest.com/docview/1818405330 http://arxiv.org/abs/1512.06561 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_4314 GBV_ILN_4318 33.00 AVZ AR 63 2016 20 2074-2080 |
allfields_unstemmed |
10.1080/09500340.2016.1173731 doi PQ20170301 (DE-627)OLC1984247239 (DE-599)GBVOLC1984247239 (PRQ)a2285-bd3c351f298c18f13f0aacefad5f0c30d58047bd1ede22bf5eaea21c2179cb050 (KEY)0024045120160000063002002074quantummemoryreceiverforsuperadditivecommunication DE-627 ger DE-627 rakwb eng 530 620 DNB 33.00 bkl Klimek, Aleksandra verfasserin aut Quantum memory receiver for superadditive communication using binary coherent states 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet. Nutzungsrecht: © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016 optical communication quantum measurement Quantum memory Quantum theory Optics Quantum Physics Physics Atomic Physics Jachura, Michał oth Wasilewski, Wojciech oth Banaszek, Konrad oth Enthalten in Journal of modern optics Abingdon : Taylor & Francis, 1987 63(2016), 20, Seite 2074-2080 (DE-627)130416061 (DE-600)626352-5 (DE-576)015918866 0950-0340 nnns volume:63 year:2016 number:20 pages:2074-2080 http://dx.doi.org/10.1080/09500340.2016.1173731 Volltext http://www.tandfonline.com/doi/abs/10.1080/09500340.2016.1173731 http://search.proquest.com/docview/1818405330 http://arxiv.org/abs/1512.06561 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_4314 GBV_ILN_4318 33.00 AVZ AR 63 2016 20 2074-2080 |
allfieldsGer |
10.1080/09500340.2016.1173731 doi PQ20170301 (DE-627)OLC1984247239 (DE-599)GBVOLC1984247239 (PRQ)a2285-bd3c351f298c18f13f0aacefad5f0c30d58047bd1ede22bf5eaea21c2179cb050 (KEY)0024045120160000063002002074quantummemoryreceiverforsuperadditivecommunication DE-627 ger DE-627 rakwb eng 530 620 DNB 33.00 bkl Klimek, Aleksandra verfasserin aut Quantum memory receiver for superadditive communication using binary coherent states 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet. Nutzungsrecht: © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016 optical communication quantum measurement Quantum memory Quantum theory Optics Quantum Physics Physics Atomic Physics Jachura, Michał oth Wasilewski, Wojciech oth Banaszek, Konrad oth Enthalten in Journal of modern optics Abingdon : Taylor & Francis, 1987 63(2016), 20, Seite 2074-2080 (DE-627)130416061 (DE-600)626352-5 (DE-576)015918866 0950-0340 nnns volume:63 year:2016 number:20 pages:2074-2080 http://dx.doi.org/10.1080/09500340.2016.1173731 Volltext http://www.tandfonline.com/doi/abs/10.1080/09500340.2016.1173731 http://search.proquest.com/docview/1818405330 http://arxiv.org/abs/1512.06561 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_4314 GBV_ILN_4318 33.00 AVZ AR 63 2016 20 2074-2080 |
allfieldsSound |
10.1080/09500340.2016.1173731 doi PQ20170301 (DE-627)OLC1984247239 (DE-599)GBVOLC1984247239 (PRQ)a2285-bd3c351f298c18f13f0aacefad5f0c30d58047bd1ede22bf5eaea21c2179cb050 (KEY)0024045120160000063002002074quantummemoryreceiverforsuperadditivecommunication DE-627 ger DE-627 rakwb eng 530 620 DNB 33.00 bkl Klimek, Aleksandra verfasserin aut Quantum memory receiver for superadditive communication using binary coherent states 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet. Nutzungsrecht: © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016 optical communication quantum measurement Quantum memory Quantum theory Optics Quantum Physics Physics Atomic Physics Jachura, Michał oth Wasilewski, Wojciech oth Banaszek, Konrad oth Enthalten in Journal of modern optics Abingdon : Taylor & Francis, 1987 63(2016), 20, Seite 2074-2080 (DE-627)130416061 (DE-600)626352-5 (DE-576)015918866 0950-0340 nnns volume:63 year:2016 number:20 pages:2074-2080 http://dx.doi.org/10.1080/09500340.2016.1173731 Volltext http://www.tandfonline.com/doi/abs/10.1080/09500340.2016.1173731 http://search.proquest.com/docview/1818405330 http://arxiv.org/abs/1512.06561 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_4314 GBV_ILN_4318 33.00 AVZ AR 63 2016 20 2074-2080 |
language |
English |
source |
Enthalten in Journal of modern optics 63(2016), 20, Seite 2074-2080 volume:63 year:2016 number:20 pages:2074-2080 |
sourceStr |
Enthalten in Journal of modern optics 63(2016), 20, Seite 2074-2080 volume:63 year:2016 number:20 pages:2074-2080 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
optical communication quantum measurement Quantum memory Quantum theory Optics Quantum Physics Physics Atomic Physics |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of modern optics |
authorswithroles_txt_mv |
Klimek, Aleksandra @@aut@@ Jachura, Michał @@oth@@ Wasilewski, Wojciech @@oth@@ Banaszek, Konrad @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130416061 |
dewey-sort |
3530 |
id |
OLC1984247239 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1984247239</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220219201154.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/09500340.2016.1173731</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1984247239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1984247239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a2285-bd3c351f298c18f13f0aacefad5f0c30d58047bd1ede22bf5eaea21c2179cb050</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0024045120160000063002002074quantummemoryreceiverforsuperadditivecommunication</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klimek, Aleksandra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum memory receiver for superadditive communication using binary coherent states</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum memory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atomic Physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jachura, Michał</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wasilewski, Wojciech</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Banaszek, Konrad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of modern optics</subfield><subfield code="d">Abingdon : Taylor & Francis, 1987</subfield><subfield code="g">63(2016), 20, Seite 2074-2080</subfield><subfield code="w">(DE-627)130416061</subfield><subfield code="w">(DE-600)626352-5</subfield><subfield code="w">(DE-576)015918866</subfield><subfield code="x">0950-0340</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:20</subfield><subfield code="g">pages:2074-2080</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/09500340.2016.1173731</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/09500340.2016.1173731</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1818405330</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1512.06561</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2016</subfield><subfield code="e">20</subfield><subfield code="h">2074-2080</subfield></datafield></record></collection>
|
author |
Klimek, Aleksandra |
spellingShingle |
Klimek, Aleksandra ddc 530 bkl 33.00 misc optical communication misc quantum measurement misc Quantum memory misc Quantum theory misc Optics misc Quantum Physics misc Physics misc Atomic Physics Quantum memory receiver for superadditive communication using binary coherent states |
authorStr |
Klimek, Aleksandra |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130416061 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0950-0340 |
topic_title |
530 620 DNB 33.00 bkl Quantum memory receiver for superadditive communication using binary coherent states optical communication quantum measurement Quantum memory Quantum theory Optics Quantum Physics Physics Atomic Physics |
topic |
ddc 530 bkl 33.00 misc optical communication misc quantum measurement misc Quantum memory misc Quantum theory misc Optics misc Quantum Physics misc Physics misc Atomic Physics |
topic_unstemmed |
ddc 530 bkl 33.00 misc optical communication misc quantum measurement misc Quantum memory misc Quantum theory misc Optics misc Quantum Physics misc Physics misc Atomic Physics |
topic_browse |
ddc 530 bkl 33.00 misc optical communication misc quantum measurement misc Quantum memory misc Quantum theory misc Optics misc Quantum Physics misc Physics misc Atomic Physics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m j mj w w ww k b kb |
hierarchy_parent_title |
Journal of modern optics |
hierarchy_parent_id |
130416061 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Journal of modern optics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130416061 (DE-600)626352-5 (DE-576)015918866 |
title |
Quantum memory receiver for superadditive communication using binary coherent states |
ctrlnum |
(DE-627)OLC1984247239 (DE-599)GBVOLC1984247239 (PRQ)a2285-bd3c351f298c18f13f0aacefad5f0c30d58047bd1ede22bf5eaea21c2179cb050 (KEY)0024045120160000063002002074quantummemoryreceiverforsuperadditivecommunication |
title_full |
Quantum memory receiver for superadditive communication using binary coherent states |
author_sort |
Klimek, Aleksandra |
journal |
Journal of modern optics |
journalStr |
Journal of modern optics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
2074 |
author_browse |
Klimek, Aleksandra |
container_volume |
63 |
class |
530 620 DNB 33.00 bkl |
format_se |
Aufsätze |
author-letter |
Klimek, Aleksandra |
doi_str_mv |
10.1080/09500340.2016.1173731 |
dewey-full |
530 620 |
title_sort |
quantum memory receiver for superadditive communication using binary coherent states |
title_auth |
Quantum memory receiver for superadditive communication using binary coherent states |
abstract |
We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet. |
abstractGer |
We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet. |
abstract_unstemmed |
We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_4314 GBV_ILN_4318 |
container_issue |
20 |
title_short |
Quantum memory receiver for superadditive communication using binary coherent states |
url |
http://dx.doi.org/10.1080/09500340.2016.1173731 http://www.tandfonline.com/doi/abs/10.1080/09500340.2016.1173731 http://search.proquest.com/docview/1818405330 http://arxiv.org/abs/1512.06561 |
remote_bool |
false |
author2 |
Jachura, Michał Wasilewski, Wojciech Banaszek, Konrad |
author2Str |
Jachura, Michał Wasilewski, Wojciech Banaszek, Konrad |
ppnlink |
130416061 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1080/09500340.2016.1173731 |
up_date |
2024-07-03T23:43:42.169Z |
_version_ |
1803603381763178496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1984247239</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220219201154.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/09500340.2016.1173731</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1984247239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1984247239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a2285-bd3c351f298c18f13f0aacefad5f0c30d58047bd1ede22bf5eaea21c2179cb050</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0024045120160000063002002074quantummemoryreceiverforsuperadditivecommunication</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klimek, Aleksandra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum memory receiver for superadditive communication using binary coherent states</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum memory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atomic Physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jachura, Michał</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wasilewski, Wojciech</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Banaszek, Konrad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of modern optics</subfield><subfield code="d">Abingdon : Taylor & Francis, 1987</subfield><subfield code="g">63(2016), 20, Seite 2074-2080</subfield><subfield code="w">(DE-627)130416061</subfield><subfield code="w">(DE-600)626352-5</subfield><subfield code="w">(DE-576)015918866</subfield><subfield code="x">0950-0340</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:20</subfield><subfield code="g">pages:2074-2080</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/09500340.2016.1173731</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/09500340.2016.1173731</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1818405330</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1512.06561</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2016</subfield><subfield code="e">20</subfield><subfield code="h">2074-2080</subfield></datafield></record></collection>
|
score |
7.4008503 |