Context-Aware Interflow Network Coding and Scheduling in Wireless Networks
Recent approaches using network coding (NC) to mix data from different flows show significant throughput improvement in wireless networks. However, in this paper, we argue that exhaustively mixing packets from different flows may decrease network quality of service (QoS), particularly in the presenc...
Ausführliche Beschreibung
Autor*in: |
Tran, Tuan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on vehicular technology - New York, NY : IEEE, 1967, 65(2016), 11, Seite 9299-9318 |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:2016 ; number:11 ; pages:9299-9318 |
Links: |
---|
DOI / URN: |
10.1109/TVT.2016.2520361 |
---|
Katalog-ID: |
OLC1984346172 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1984346172 | ||
003 | DE-627 | ||
005 | 20220221062834.0 | ||
007 | tu | ||
008 | 161202s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TVT.2016.2520361 |2 doi | |
028 | 5 | 2 | |a PQ20161201 |
035 | |a (DE-627)OLC1984346172 | ||
035 | |a (DE-599)GBVOLC1984346172 | ||
035 | |a (PRQ)c991-da6defe98ebb5f168adbb5063debc26c9f5733637255ec64095ddfee1f9db5d90 | ||
035 | |a (KEY)0030991520160000065001109299contextawareinterflownetworkcodingandschedulinginw | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 53.70 |2 bkl | ||
084 | |a 53.74 |2 bkl | ||
100 | 1 | |a Tran, Tuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Context-Aware Interflow Network Coding and Scheduling in Wireless Networks |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Recent approaches using network coding (NC) to mix data from different flows show significant throughput improvement in wireless networks. However, in this paper, we argue that exhaustively mixing packets from different flows may decrease network quality of service (QoS), particularly in the presence of flows with different service classes. We therefore propose a context-aware interflow network coding and scheduling (CARE) framework, which adaptively encodes data across the traffic to maximize the network QoS. First, we develop a perception-oriented QoS (PQoS) to measure the user satisfaction of different types of services. Next, based on the characteristics of the traffic, we optimally combine data across the flows and schedule the encoded packets in each time frame to maximize the PQoS at the receivers. Solving CARE is NP-hard; thus, we devise a computationally efficient approximation algorithm based on the Markov chain Monte Carlo method to approximate the optimal solution. We prove that the proposed approximation algorithm is guaranteed to converge to the optimal solution. The analytical and simulation results show that, under certain channel conditions, the proposed CARE-based schemes not only improve the network QoS but achieve high throughput across all receivers as well. Additionally, the results show that the approximation algorithm is efficient and robust to the number of data flows. In some transmission conditions, our CARE-based schemes can improve the network QoS up to 50% compared with the existing randomized NC techniques. | ||
650 | 4 | |a random network coding (RNC) | |
650 | 4 | |a Encoding | |
650 | 4 | |a Streaming media | |
650 | 4 | |a Network coding | |
650 | 4 | |a Quality of service | |
650 | 4 | |a quality of service (QoS) | |
650 | 4 | |a Multiuser multiservice scheduling | |
650 | 4 | |a Throughput | |
650 | 4 | |a Wireless networks | |
650 | 4 | |a Receivers | |
700 | 1 | |a Nguyen, Thinh |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on vehicular technology |d New York, NY : IEEE, 1967 |g 65(2016), 11, Seite 9299-9318 |w (DE-627)129358584 |w (DE-600)160444-2 |w (DE-576)014730871 |x 0018-9545 |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:2016 |g number:11 |g pages:9299-9318 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TVT.2016.2520361 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7389421 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2061 | ||
936 | b | k | |a 53.70 |q AVZ |
936 | b | k | |a 53.74 |q AVZ |
951 | |a AR | ||
952 | |d 65 |j 2016 |e 11 |h 9299-9318 |
author_variant |
t t tt |
---|---|
matchkey_str |
article:00189545:2016----::otxaaenefontokoignshdlni |
hierarchy_sort_str |
2016 |
bklnumber |
53.70 53.74 |
publishDate |
2016 |
allfields |
10.1109/TVT.2016.2520361 doi PQ20161201 (DE-627)OLC1984346172 (DE-599)GBVOLC1984346172 (PRQ)c991-da6defe98ebb5f168adbb5063debc26c9f5733637255ec64095ddfee1f9db5d90 (KEY)0030991520160000065001109299contextawareinterflownetworkcodingandschedulinginw DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.74 bkl Tran, Tuan verfasserin aut Context-Aware Interflow Network Coding and Scheduling in Wireless Networks 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Recent approaches using network coding (NC) to mix data from different flows show significant throughput improvement in wireless networks. However, in this paper, we argue that exhaustively mixing packets from different flows may decrease network quality of service (QoS), particularly in the presence of flows with different service classes. We therefore propose a context-aware interflow network coding and scheduling (CARE) framework, which adaptively encodes data across the traffic to maximize the network QoS. First, we develop a perception-oriented QoS (PQoS) to measure the user satisfaction of different types of services. Next, based on the characteristics of the traffic, we optimally combine data across the flows and schedule the encoded packets in each time frame to maximize the PQoS at the receivers. Solving CARE is NP-hard; thus, we devise a computationally efficient approximation algorithm based on the Markov chain Monte Carlo method to approximate the optimal solution. We prove that the proposed approximation algorithm is guaranteed to converge to the optimal solution. The analytical and simulation results show that, under certain channel conditions, the proposed CARE-based schemes not only improve the network QoS but achieve high throughput across all receivers as well. Additionally, the results show that the approximation algorithm is efficient and robust to the number of data flows. In some transmission conditions, our CARE-based schemes can improve the network QoS up to 50% compared with the existing randomized NC techniques. random network coding (RNC) Encoding Streaming media Network coding Quality of service quality of service (QoS) Multiuser multiservice scheduling Throughput Wireless networks Receivers Nguyen, Thinh oth Enthalten in IEEE transactions on vehicular technology New York, NY : IEEE, 1967 65(2016), 11, Seite 9299-9318 (DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 0018-9545 nnns volume:65 year:2016 number:11 pages:9299-9318 http://dx.doi.org/10.1109/TVT.2016.2520361 Volltext http://ieeexplore.ieee.org/document/7389421 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 53.70 AVZ 53.74 AVZ AR 65 2016 11 9299-9318 |
spelling |
10.1109/TVT.2016.2520361 doi PQ20161201 (DE-627)OLC1984346172 (DE-599)GBVOLC1984346172 (PRQ)c991-da6defe98ebb5f168adbb5063debc26c9f5733637255ec64095ddfee1f9db5d90 (KEY)0030991520160000065001109299contextawareinterflownetworkcodingandschedulinginw DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.74 bkl Tran, Tuan verfasserin aut Context-Aware Interflow Network Coding and Scheduling in Wireless Networks 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Recent approaches using network coding (NC) to mix data from different flows show significant throughput improvement in wireless networks. However, in this paper, we argue that exhaustively mixing packets from different flows may decrease network quality of service (QoS), particularly in the presence of flows with different service classes. We therefore propose a context-aware interflow network coding and scheduling (CARE) framework, which adaptively encodes data across the traffic to maximize the network QoS. First, we develop a perception-oriented QoS (PQoS) to measure the user satisfaction of different types of services. Next, based on the characteristics of the traffic, we optimally combine data across the flows and schedule the encoded packets in each time frame to maximize the PQoS at the receivers. Solving CARE is NP-hard; thus, we devise a computationally efficient approximation algorithm based on the Markov chain Monte Carlo method to approximate the optimal solution. We prove that the proposed approximation algorithm is guaranteed to converge to the optimal solution. The analytical and simulation results show that, under certain channel conditions, the proposed CARE-based schemes not only improve the network QoS but achieve high throughput across all receivers as well. Additionally, the results show that the approximation algorithm is efficient and robust to the number of data flows. In some transmission conditions, our CARE-based schemes can improve the network QoS up to 50% compared with the existing randomized NC techniques. random network coding (RNC) Encoding Streaming media Network coding Quality of service quality of service (QoS) Multiuser multiservice scheduling Throughput Wireless networks Receivers Nguyen, Thinh oth Enthalten in IEEE transactions on vehicular technology New York, NY : IEEE, 1967 65(2016), 11, Seite 9299-9318 (DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 0018-9545 nnns volume:65 year:2016 number:11 pages:9299-9318 http://dx.doi.org/10.1109/TVT.2016.2520361 Volltext http://ieeexplore.ieee.org/document/7389421 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 53.70 AVZ 53.74 AVZ AR 65 2016 11 9299-9318 |
allfields_unstemmed |
10.1109/TVT.2016.2520361 doi PQ20161201 (DE-627)OLC1984346172 (DE-599)GBVOLC1984346172 (PRQ)c991-da6defe98ebb5f168adbb5063debc26c9f5733637255ec64095ddfee1f9db5d90 (KEY)0030991520160000065001109299contextawareinterflownetworkcodingandschedulinginw DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.74 bkl Tran, Tuan verfasserin aut Context-Aware Interflow Network Coding and Scheduling in Wireless Networks 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Recent approaches using network coding (NC) to mix data from different flows show significant throughput improvement in wireless networks. However, in this paper, we argue that exhaustively mixing packets from different flows may decrease network quality of service (QoS), particularly in the presence of flows with different service classes. We therefore propose a context-aware interflow network coding and scheduling (CARE) framework, which adaptively encodes data across the traffic to maximize the network QoS. First, we develop a perception-oriented QoS (PQoS) to measure the user satisfaction of different types of services. Next, based on the characteristics of the traffic, we optimally combine data across the flows and schedule the encoded packets in each time frame to maximize the PQoS at the receivers. Solving CARE is NP-hard; thus, we devise a computationally efficient approximation algorithm based on the Markov chain Monte Carlo method to approximate the optimal solution. We prove that the proposed approximation algorithm is guaranteed to converge to the optimal solution. The analytical and simulation results show that, under certain channel conditions, the proposed CARE-based schemes not only improve the network QoS but achieve high throughput across all receivers as well. Additionally, the results show that the approximation algorithm is efficient and robust to the number of data flows. In some transmission conditions, our CARE-based schemes can improve the network QoS up to 50% compared with the existing randomized NC techniques. random network coding (RNC) Encoding Streaming media Network coding Quality of service quality of service (QoS) Multiuser multiservice scheduling Throughput Wireless networks Receivers Nguyen, Thinh oth Enthalten in IEEE transactions on vehicular technology New York, NY : IEEE, 1967 65(2016), 11, Seite 9299-9318 (DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 0018-9545 nnns volume:65 year:2016 number:11 pages:9299-9318 http://dx.doi.org/10.1109/TVT.2016.2520361 Volltext http://ieeexplore.ieee.org/document/7389421 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 53.70 AVZ 53.74 AVZ AR 65 2016 11 9299-9318 |
allfieldsGer |
10.1109/TVT.2016.2520361 doi PQ20161201 (DE-627)OLC1984346172 (DE-599)GBVOLC1984346172 (PRQ)c991-da6defe98ebb5f168adbb5063debc26c9f5733637255ec64095ddfee1f9db5d90 (KEY)0030991520160000065001109299contextawareinterflownetworkcodingandschedulinginw DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.74 bkl Tran, Tuan verfasserin aut Context-Aware Interflow Network Coding and Scheduling in Wireless Networks 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Recent approaches using network coding (NC) to mix data from different flows show significant throughput improvement in wireless networks. However, in this paper, we argue that exhaustively mixing packets from different flows may decrease network quality of service (QoS), particularly in the presence of flows with different service classes. We therefore propose a context-aware interflow network coding and scheduling (CARE) framework, which adaptively encodes data across the traffic to maximize the network QoS. First, we develop a perception-oriented QoS (PQoS) to measure the user satisfaction of different types of services. Next, based on the characteristics of the traffic, we optimally combine data across the flows and schedule the encoded packets in each time frame to maximize the PQoS at the receivers. Solving CARE is NP-hard; thus, we devise a computationally efficient approximation algorithm based on the Markov chain Monte Carlo method to approximate the optimal solution. We prove that the proposed approximation algorithm is guaranteed to converge to the optimal solution. The analytical and simulation results show that, under certain channel conditions, the proposed CARE-based schemes not only improve the network QoS but achieve high throughput across all receivers as well. Additionally, the results show that the approximation algorithm is efficient and robust to the number of data flows. In some transmission conditions, our CARE-based schemes can improve the network QoS up to 50% compared with the existing randomized NC techniques. random network coding (RNC) Encoding Streaming media Network coding Quality of service quality of service (QoS) Multiuser multiservice scheduling Throughput Wireless networks Receivers Nguyen, Thinh oth Enthalten in IEEE transactions on vehicular technology New York, NY : IEEE, 1967 65(2016), 11, Seite 9299-9318 (DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 0018-9545 nnns volume:65 year:2016 number:11 pages:9299-9318 http://dx.doi.org/10.1109/TVT.2016.2520361 Volltext http://ieeexplore.ieee.org/document/7389421 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 53.70 AVZ 53.74 AVZ AR 65 2016 11 9299-9318 |
allfieldsSound |
10.1109/TVT.2016.2520361 doi PQ20161201 (DE-627)OLC1984346172 (DE-599)GBVOLC1984346172 (PRQ)c991-da6defe98ebb5f168adbb5063debc26c9f5733637255ec64095ddfee1f9db5d90 (KEY)0030991520160000065001109299contextawareinterflownetworkcodingandschedulinginw DE-627 ger DE-627 rakwb eng 620 DNB 53.70 bkl 53.74 bkl Tran, Tuan verfasserin aut Context-Aware Interflow Network Coding and Scheduling in Wireless Networks 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Recent approaches using network coding (NC) to mix data from different flows show significant throughput improvement in wireless networks. However, in this paper, we argue that exhaustively mixing packets from different flows may decrease network quality of service (QoS), particularly in the presence of flows with different service classes. We therefore propose a context-aware interflow network coding and scheduling (CARE) framework, which adaptively encodes data across the traffic to maximize the network QoS. First, we develop a perception-oriented QoS (PQoS) to measure the user satisfaction of different types of services. Next, based on the characteristics of the traffic, we optimally combine data across the flows and schedule the encoded packets in each time frame to maximize the PQoS at the receivers. Solving CARE is NP-hard; thus, we devise a computationally efficient approximation algorithm based on the Markov chain Monte Carlo method to approximate the optimal solution. We prove that the proposed approximation algorithm is guaranteed to converge to the optimal solution. The analytical and simulation results show that, under certain channel conditions, the proposed CARE-based schemes not only improve the network QoS but achieve high throughput across all receivers as well. Additionally, the results show that the approximation algorithm is efficient and robust to the number of data flows. In some transmission conditions, our CARE-based schemes can improve the network QoS up to 50% compared with the existing randomized NC techniques. random network coding (RNC) Encoding Streaming media Network coding Quality of service quality of service (QoS) Multiuser multiservice scheduling Throughput Wireless networks Receivers Nguyen, Thinh oth Enthalten in IEEE transactions on vehicular technology New York, NY : IEEE, 1967 65(2016), 11, Seite 9299-9318 (DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 0018-9545 nnns volume:65 year:2016 number:11 pages:9299-9318 http://dx.doi.org/10.1109/TVT.2016.2520361 Volltext http://ieeexplore.ieee.org/document/7389421 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 53.70 AVZ 53.74 AVZ AR 65 2016 11 9299-9318 |
language |
English |
source |
Enthalten in IEEE transactions on vehicular technology 65(2016), 11, Seite 9299-9318 volume:65 year:2016 number:11 pages:9299-9318 |
sourceStr |
Enthalten in IEEE transactions on vehicular technology 65(2016), 11, Seite 9299-9318 volume:65 year:2016 number:11 pages:9299-9318 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
random network coding (RNC) Encoding Streaming media Network coding Quality of service quality of service (QoS) Multiuser multiservice scheduling Throughput Wireless networks Receivers |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on vehicular technology |
authorswithroles_txt_mv |
Tran, Tuan @@aut@@ Nguyen, Thinh @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129358584 |
dewey-sort |
3620 |
id |
OLC1984346172 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1984346172</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221062834.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TVT.2016.2520361</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1984346172</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1984346172</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c991-da6defe98ebb5f168adbb5063debc26c9f5733637255ec64095ddfee1f9db5d90</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0030991520160000065001109299contextawareinterflownetworkcodingandschedulinginw</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tran, Tuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Context-Aware Interflow Network Coding and Scheduling in Wireless Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recent approaches using network coding (NC) to mix data from different flows show significant throughput improvement in wireless networks. However, in this paper, we argue that exhaustively mixing packets from different flows may decrease network quality of service (QoS), particularly in the presence of flows with different service classes. We therefore propose a context-aware interflow network coding and scheduling (CARE) framework, which adaptively encodes data across the traffic to maximize the network QoS. First, we develop a perception-oriented QoS (PQoS) to measure the user satisfaction of different types of services. Next, based on the characteristics of the traffic, we optimally combine data across the flows and schedule the encoded packets in each time frame to maximize the PQoS at the receivers. Solving CARE is NP-hard; thus, we devise a computationally efficient approximation algorithm based on the Markov chain Monte Carlo method to approximate the optimal solution. We prove that the proposed approximation algorithm is guaranteed to converge to the optimal solution. The analytical and simulation results show that, under certain channel conditions, the proposed CARE-based schemes not only improve the network QoS but achieve high throughput across all receivers as well. Additionally, the results show that the approximation algorithm is efficient and robust to the number of data flows. In some transmission conditions, our CARE-based schemes can improve the network QoS up to 50% compared with the existing randomized NC techniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random network coding (RNC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Encoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Streaming media</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quality of service</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quality of service (QoS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiuser multiservice scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Throughput</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wireless networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Receivers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Thinh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on vehicular technology</subfield><subfield code="d">New York, NY : IEEE, 1967</subfield><subfield code="g">65(2016), 11, Seite 9299-9318</subfield><subfield code="w">(DE-627)129358584</subfield><subfield code="w">(DE-600)160444-2</subfield><subfield code="w">(DE-576)014730871</subfield><subfield code="x">0018-9545</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:9299-9318</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TVT.2016.2520361</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7389421</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.74</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2016</subfield><subfield code="e">11</subfield><subfield code="h">9299-9318</subfield></datafield></record></collection>
|
author |
Tran, Tuan |
spellingShingle |
Tran, Tuan ddc 620 bkl 53.70 bkl 53.74 misc random network coding (RNC) misc Encoding misc Streaming media misc Network coding misc Quality of service misc quality of service (QoS) misc Multiuser multiservice scheduling misc Throughput misc Wireless networks misc Receivers Context-Aware Interflow Network Coding and Scheduling in Wireless Networks |
authorStr |
Tran, Tuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129358584 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9545 |
topic_title |
620 DNB 53.70 bkl 53.74 bkl Context-Aware Interflow Network Coding and Scheduling in Wireless Networks random network coding (RNC) Encoding Streaming media Network coding Quality of service quality of service (QoS) Multiuser multiservice scheduling Throughput Wireless networks Receivers |
topic |
ddc 620 bkl 53.70 bkl 53.74 misc random network coding (RNC) misc Encoding misc Streaming media misc Network coding misc Quality of service misc quality of service (QoS) misc Multiuser multiservice scheduling misc Throughput misc Wireless networks misc Receivers |
topic_unstemmed |
ddc 620 bkl 53.70 bkl 53.74 misc random network coding (RNC) misc Encoding misc Streaming media misc Network coding misc Quality of service misc quality of service (QoS) misc Multiuser multiservice scheduling misc Throughput misc Wireless networks misc Receivers |
topic_browse |
ddc 620 bkl 53.70 bkl 53.74 misc random network coding (RNC) misc Encoding misc Streaming media misc Network coding misc Quality of service misc quality of service (QoS) misc Multiuser multiservice scheduling misc Throughput misc Wireless networks misc Receivers |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t n tn |
hierarchy_parent_title |
IEEE transactions on vehicular technology |
hierarchy_parent_id |
129358584 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on vehicular technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129358584 (DE-600)160444-2 (DE-576)014730871 |
title |
Context-Aware Interflow Network Coding and Scheduling in Wireless Networks |
ctrlnum |
(DE-627)OLC1984346172 (DE-599)GBVOLC1984346172 (PRQ)c991-da6defe98ebb5f168adbb5063debc26c9f5733637255ec64095ddfee1f9db5d90 (KEY)0030991520160000065001109299contextawareinterflownetworkcodingandschedulinginw |
title_full |
Context-Aware Interflow Network Coding and Scheduling in Wireless Networks |
author_sort |
Tran, Tuan |
journal |
IEEE transactions on vehicular technology |
journalStr |
IEEE transactions on vehicular technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
9299 |
author_browse |
Tran, Tuan |
container_volume |
65 |
class |
620 DNB 53.70 bkl 53.74 bkl |
format_se |
Aufsätze |
author-letter |
Tran, Tuan |
doi_str_mv |
10.1109/TVT.2016.2520361 |
dewey-full |
620 |
title_sort |
context-aware interflow network coding and scheduling in wireless networks |
title_auth |
Context-Aware Interflow Network Coding and Scheduling in Wireless Networks |
abstract |
Recent approaches using network coding (NC) to mix data from different flows show significant throughput improvement in wireless networks. However, in this paper, we argue that exhaustively mixing packets from different flows may decrease network quality of service (QoS), particularly in the presence of flows with different service classes. We therefore propose a context-aware interflow network coding and scheduling (CARE) framework, which adaptively encodes data across the traffic to maximize the network QoS. First, we develop a perception-oriented QoS (PQoS) to measure the user satisfaction of different types of services. Next, based on the characteristics of the traffic, we optimally combine data across the flows and schedule the encoded packets in each time frame to maximize the PQoS at the receivers. Solving CARE is NP-hard; thus, we devise a computationally efficient approximation algorithm based on the Markov chain Monte Carlo method to approximate the optimal solution. We prove that the proposed approximation algorithm is guaranteed to converge to the optimal solution. The analytical and simulation results show that, under certain channel conditions, the proposed CARE-based schemes not only improve the network QoS but achieve high throughput across all receivers as well. Additionally, the results show that the approximation algorithm is efficient and robust to the number of data flows. In some transmission conditions, our CARE-based schemes can improve the network QoS up to 50% compared with the existing randomized NC techniques. |
abstractGer |
Recent approaches using network coding (NC) to mix data from different flows show significant throughput improvement in wireless networks. However, in this paper, we argue that exhaustively mixing packets from different flows may decrease network quality of service (QoS), particularly in the presence of flows with different service classes. We therefore propose a context-aware interflow network coding and scheduling (CARE) framework, which adaptively encodes data across the traffic to maximize the network QoS. First, we develop a perception-oriented QoS (PQoS) to measure the user satisfaction of different types of services. Next, based on the characteristics of the traffic, we optimally combine data across the flows and schedule the encoded packets in each time frame to maximize the PQoS at the receivers. Solving CARE is NP-hard; thus, we devise a computationally efficient approximation algorithm based on the Markov chain Monte Carlo method to approximate the optimal solution. We prove that the proposed approximation algorithm is guaranteed to converge to the optimal solution. The analytical and simulation results show that, under certain channel conditions, the proposed CARE-based schemes not only improve the network QoS but achieve high throughput across all receivers as well. Additionally, the results show that the approximation algorithm is efficient and robust to the number of data flows. In some transmission conditions, our CARE-based schemes can improve the network QoS up to 50% compared with the existing randomized NC techniques. |
abstract_unstemmed |
Recent approaches using network coding (NC) to mix data from different flows show significant throughput improvement in wireless networks. However, in this paper, we argue that exhaustively mixing packets from different flows may decrease network quality of service (QoS), particularly in the presence of flows with different service classes. We therefore propose a context-aware interflow network coding and scheduling (CARE) framework, which adaptively encodes data across the traffic to maximize the network QoS. First, we develop a perception-oriented QoS (PQoS) to measure the user satisfaction of different types of services. Next, based on the characteristics of the traffic, we optimally combine data across the flows and schedule the encoded packets in each time frame to maximize the PQoS at the receivers. Solving CARE is NP-hard; thus, we devise a computationally efficient approximation algorithm based on the Markov chain Monte Carlo method to approximate the optimal solution. We prove that the proposed approximation algorithm is guaranteed to converge to the optimal solution. The analytical and simulation results show that, under certain channel conditions, the proposed CARE-based schemes not only improve the network QoS but achieve high throughput across all receivers as well. Additionally, the results show that the approximation algorithm is efficient and robust to the number of data flows. In some transmission conditions, our CARE-based schemes can improve the network QoS up to 50% compared with the existing randomized NC techniques. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2061 |
container_issue |
11 |
title_short |
Context-Aware Interflow Network Coding and Scheduling in Wireless Networks |
url |
http://dx.doi.org/10.1109/TVT.2016.2520361 http://ieeexplore.ieee.org/document/7389421 |
remote_bool |
false |
author2 |
Nguyen, Thinh |
author2Str |
Nguyen, Thinh |
ppnlink |
129358584 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/TVT.2016.2520361 |
up_date |
2024-07-04T00:05:39.899Z |
_version_ |
1803604763501133824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1984346172</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221062834.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TVT.2016.2520361</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1984346172</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1984346172</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c991-da6defe98ebb5f168adbb5063debc26c9f5733637255ec64095ddfee1f9db5d90</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0030991520160000065001109299contextawareinterflownetworkcodingandschedulinginw</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tran, Tuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Context-Aware Interflow Network Coding and Scheduling in Wireless Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recent approaches using network coding (NC) to mix data from different flows show significant throughput improvement in wireless networks. However, in this paper, we argue that exhaustively mixing packets from different flows may decrease network quality of service (QoS), particularly in the presence of flows with different service classes. We therefore propose a context-aware interflow network coding and scheduling (CARE) framework, which adaptively encodes data across the traffic to maximize the network QoS. First, we develop a perception-oriented QoS (PQoS) to measure the user satisfaction of different types of services. Next, based on the characteristics of the traffic, we optimally combine data across the flows and schedule the encoded packets in each time frame to maximize the PQoS at the receivers. Solving CARE is NP-hard; thus, we devise a computationally efficient approximation algorithm based on the Markov chain Monte Carlo method to approximate the optimal solution. We prove that the proposed approximation algorithm is guaranteed to converge to the optimal solution. The analytical and simulation results show that, under certain channel conditions, the proposed CARE-based schemes not only improve the network QoS but achieve high throughput across all receivers as well. Additionally, the results show that the approximation algorithm is efficient and robust to the number of data flows. In some transmission conditions, our CARE-based schemes can improve the network QoS up to 50% compared with the existing randomized NC techniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random network coding (RNC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Encoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Streaming media</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quality of service</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quality of service (QoS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiuser multiservice scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Throughput</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wireless networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Receivers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Thinh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on vehicular technology</subfield><subfield code="d">New York, NY : IEEE, 1967</subfield><subfield code="g">65(2016), 11, Seite 9299-9318</subfield><subfield code="w">(DE-627)129358584</subfield><subfield code="w">(DE-600)160444-2</subfield><subfield code="w">(DE-576)014730871</subfield><subfield code="x">0018-9545</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:9299-9318</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TVT.2016.2520361</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7389421</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.74</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2016</subfield><subfield code="e">11</subfield><subfield code="h">9299-9318</subfield></datafield></record></collection>
|
score |
7.402648 |