Thermal Hydraulic Analysis of China Spallation Neutron Source Target System Under Abnormal Situations
The analysis of thermal hydraulic performance under three abnormal conditions is very important for the design of China spallation neutron source (CSNS) target system, which could provide some important information for developing an emergency plan. In this study, we first introduce the design of the...
Ausführliche Beschreibung
Autor*in: |
Hao, Jun-Hong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of heat transfer - New York, NY : ASME, 1959, 139(2017), 1 |
---|---|
Übergeordnetes Werk: |
volume:139 ; year:2017 ; number:1 |
Links: |
---|
DOI / URN: |
10.1115/1.4034720 |
---|
Katalog-ID: |
OLC1984496646 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1984496646 | ||
003 | DE-627 | ||
005 | 20230714224007.0 | ||
007 | tu | ||
008 | 161202s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1115/1.4034720 |2 doi | |
028 | 5 | 2 | |a PQ20170301 |
035 | |a (DE-627)OLC1984496646 | ||
035 | |a (DE-599)GBVOLC1984496646 | ||
035 | |a (PRQ)a774-adef7c2642cf9bbc8ba926d380c934d46d36bb31f3c84f43f37fb35511fa3f8b0 | ||
035 | |a (KEY)0041034920170000139000100000thermalhydraulicanalysisofchinaspallationneutronso | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
100 | 1 | |a Hao, Jun-Hong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermal Hydraulic Analysis of China Spallation Neutron Source Target System Under Abnormal Situations |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The analysis of thermal hydraulic performance under three abnormal conditions is very important for the design of China spallation neutron source (CSNS) target system, which could provide some important information for developing an emergency plan. In this study, we first introduce the design of the CSNS target system and create a three-dimensional physical model, calculate the heat source and decay heat distribution using the MCNPX 2.5 Monte Carlo code and the CINDER’90 activation code, and simulate and analyze the temperature distribution in the tungsten target and the steel container under normal operation using fluent. By using the same model, the thermal hydraulic characteristics are analyzed under three different abnormal conditions including power failure, off-center of proton beam, and cooling water failure. The results show that in order to keep the cooling water temperature below the boil point at normal operating pressure, the emergency power for the cooling water should start immediately after power failure. The maximum temperature of the beam window and the up plate increases by about 8 °C when the offsetting distance of proton beam is 5 mm along z direction. The cooling water will not effectively take all away the heat when the flow rate of the cooling water drops below 72% of the normal setpoint. | ||
700 | 1 | |a Chen, Qun |4 oth | |
700 | 1 | |a Lu, You-Lian |4 oth | |
700 | 1 | |a Wang, Song-Lin |4 oth | |
700 | 1 | |a Yu, Quan-Zhi |4 oth | |
700 | 1 | |a Ji, Quan |4 oth | |
700 | 1 | |a Liang, Tian-Jiao |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of heat transfer |d New York, NY : ASME, 1959 |g 139(2017), 1 |w (DE-627)129596353 |w (DE-600)240766-8 |w (DE-576)015089401 |x 0022-1481 |7 nnns |
773 | 1 | 8 | |g volume:139 |g year:2017 |g number:1 |
856 | 4 | 1 | |u http://dx.doi.org/10.1115/1.4034720 |3 Volltext |
856 | 4 | 2 | |u http://dx.doi.org/10.1115/1.4034720 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_4315 | ||
951 | |a AR | ||
952 | |d 139 |j 2017 |e 1 |
author_variant |
j h h jhh |
---|---|
matchkey_str |
article:00221481:2017----::hrahdalcnlssfhnsaltonurnoreagtytm |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1115/1.4034720 doi PQ20170301 (DE-627)OLC1984496646 (DE-599)GBVOLC1984496646 (PRQ)a774-adef7c2642cf9bbc8ba926d380c934d46d36bb31f3c84f43f37fb35511fa3f8b0 (KEY)0041034920170000139000100000thermalhydraulicanalysisofchinaspallationneutronso DE-627 ger DE-627 rakwb eng 620 DNB Hao, Jun-Hong verfasserin aut Thermal Hydraulic Analysis of China Spallation Neutron Source Target System Under Abnormal Situations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The analysis of thermal hydraulic performance under three abnormal conditions is very important for the design of China spallation neutron source (CSNS) target system, which could provide some important information for developing an emergency plan. In this study, we first introduce the design of the CSNS target system and create a three-dimensional physical model, calculate the heat source and decay heat distribution using the MCNPX 2.5 Monte Carlo code and the CINDER’90 activation code, and simulate and analyze the temperature distribution in the tungsten target and the steel container under normal operation using fluent. By using the same model, the thermal hydraulic characteristics are analyzed under three different abnormal conditions including power failure, off-center of proton beam, and cooling water failure. The results show that in order to keep the cooling water temperature below the boil point at normal operating pressure, the emergency power for the cooling water should start immediately after power failure. The maximum temperature of the beam window and the up plate increases by about 8 °C when the offsetting distance of proton beam is 5 mm along z direction. The cooling water will not effectively take all away the heat when the flow rate of the cooling water drops below 72% of the normal setpoint. Chen, Qun oth Lu, You-Lian oth Wang, Song-Lin oth Yu, Quan-Zhi oth Ji, Quan oth Liang, Tian-Jiao oth Enthalten in Journal of heat transfer New York, NY : ASME, 1959 139(2017), 1 (DE-627)129596353 (DE-600)240766-8 (DE-576)015089401 0022-1481 nnns volume:139 year:2017 number:1 http://dx.doi.org/10.1115/1.4034720 Volltext http://dx.doi.org/10.1115/1.4034720 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_4315 AR 139 2017 1 |
spelling |
10.1115/1.4034720 doi PQ20170301 (DE-627)OLC1984496646 (DE-599)GBVOLC1984496646 (PRQ)a774-adef7c2642cf9bbc8ba926d380c934d46d36bb31f3c84f43f37fb35511fa3f8b0 (KEY)0041034920170000139000100000thermalhydraulicanalysisofchinaspallationneutronso DE-627 ger DE-627 rakwb eng 620 DNB Hao, Jun-Hong verfasserin aut Thermal Hydraulic Analysis of China Spallation Neutron Source Target System Under Abnormal Situations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The analysis of thermal hydraulic performance under three abnormal conditions is very important for the design of China spallation neutron source (CSNS) target system, which could provide some important information for developing an emergency plan. In this study, we first introduce the design of the CSNS target system and create a three-dimensional physical model, calculate the heat source and decay heat distribution using the MCNPX 2.5 Monte Carlo code and the CINDER’90 activation code, and simulate and analyze the temperature distribution in the tungsten target and the steel container under normal operation using fluent. By using the same model, the thermal hydraulic characteristics are analyzed under three different abnormal conditions including power failure, off-center of proton beam, and cooling water failure. The results show that in order to keep the cooling water temperature below the boil point at normal operating pressure, the emergency power for the cooling water should start immediately after power failure. The maximum temperature of the beam window and the up plate increases by about 8 °C when the offsetting distance of proton beam is 5 mm along z direction. The cooling water will not effectively take all away the heat when the flow rate of the cooling water drops below 72% of the normal setpoint. Chen, Qun oth Lu, You-Lian oth Wang, Song-Lin oth Yu, Quan-Zhi oth Ji, Quan oth Liang, Tian-Jiao oth Enthalten in Journal of heat transfer New York, NY : ASME, 1959 139(2017), 1 (DE-627)129596353 (DE-600)240766-8 (DE-576)015089401 0022-1481 nnns volume:139 year:2017 number:1 http://dx.doi.org/10.1115/1.4034720 Volltext http://dx.doi.org/10.1115/1.4034720 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_4315 AR 139 2017 1 |
allfields_unstemmed |
10.1115/1.4034720 doi PQ20170301 (DE-627)OLC1984496646 (DE-599)GBVOLC1984496646 (PRQ)a774-adef7c2642cf9bbc8ba926d380c934d46d36bb31f3c84f43f37fb35511fa3f8b0 (KEY)0041034920170000139000100000thermalhydraulicanalysisofchinaspallationneutronso DE-627 ger DE-627 rakwb eng 620 DNB Hao, Jun-Hong verfasserin aut Thermal Hydraulic Analysis of China Spallation Neutron Source Target System Under Abnormal Situations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The analysis of thermal hydraulic performance under three abnormal conditions is very important for the design of China spallation neutron source (CSNS) target system, which could provide some important information for developing an emergency plan. In this study, we first introduce the design of the CSNS target system and create a three-dimensional physical model, calculate the heat source and decay heat distribution using the MCNPX 2.5 Monte Carlo code and the CINDER’90 activation code, and simulate and analyze the temperature distribution in the tungsten target and the steel container under normal operation using fluent. By using the same model, the thermal hydraulic characteristics are analyzed under three different abnormal conditions including power failure, off-center of proton beam, and cooling water failure. The results show that in order to keep the cooling water temperature below the boil point at normal operating pressure, the emergency power for the cooling water should start immediately after power failure. The maximum temperature of the beam window and the up plate increases by about 8 °C when the offsetting distance of proton beam is 5 mm along z direction. The cooling water will not effectively take all away the heat when the flow rate of the cooling water drops below 72% of the normal setpoint. Chen, Qun oth Lu, You-Lian oth Wang, Song-Lin oth Yu, Quan-Zhi oth Ji, Quan oth Liang, Tian-Jiao oth Enthalten in Journal of heat transfer New York, NY : ASME, 1959 139(2017), 1 (DE-627)129596353 (DE-600)240766-8 (DE-576)015089401 0022-1481 nnns volume:139 year:2017 number:1 http://dx.doi.org/10.1115/1.4034720 Volltext http://dx.doi.org/10.1115/1.4034720 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_4315 AR 139 2017 1 |
allfieldsGer |
10.1115/1.4034720 doi PQ20170301 (DE-627)OLC1984496646 (DE-599)GBVOLC1984496646 (PRQ)a774-adef7c2642cf9bbc8ba926d380c934d46d36bb31f3c84f43f37fb35511fa3f8b0 (KEY)0041034920170000139000100000thermalhydraulicanalysisofchinaspallationneutronso DE-627 ger DE-627 rakwb eng 620 DNB Hao, Jun-Hong verfasserin aut Thermal Hydraulic Analysis of China Spallation Neutron Source Target System Under Abnormal Situations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The analysis of thermal hydraulic performance under three abnormal conditions is very important for the design of China spallation neutron source (CSNS) target system, which could provide some important information for developing an emergency plan. In this study, we first introduce the design of the CSNS target system and create a three-dimensional physical model, calculate the heat source and decay heat distribution using the MCNPX 2.5 Monte Carlo code and the CINDER’90 activation code, and simulate and analyze the temperature distribution in the tungsten target and the steel container under normal operation using fluent. By using the same model, the thermal hydraulic characteristics are analyzed under three different abnormal conditions including power failure, off-center of proton beam, and cooling water failure. The results show that in order to keep the cooling water temperature below the boil point at normal operating pressure, the emergency power for the cooling water should start immediately after power failure. The maximum temperature of the beam window and the up plate increases by about 8 °C when the offsetting distance of proton beam is 5 mm along z direction. The cooling water will not effectively take all away the heat when the flow rate of the cooling water drops below 72% of the normal setpoint. Chen, Qun oth Lu, You-Lian oth Wang, Song-Lin oth Yu, Quan-Zhi oth Ji, Quan oth Liang, Tian-Jiao oth Enthalten in Journal of heat transfer New York, NY : ASME, 1959 139(2017), 1 (DE-627)129596353 (DE-600)240766-8 (DE-576)015089401 0022-1481 nnns volume:139 year:2017 number:1 http://dx.doi.org/10.1115/1.4034720 Volltext http://dx.doi.org/10.1115/1.4034720 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_4315 AR 139 2017 1 |
allfieldsSound |
10.1115/1.4034720 doi PQ20170301 (DE-627)OLC1984496646 (DE-599)GBVOLC1984496646 (PRQ)a774-adef7c2642cf9bbc8ba926d380c934d46d36bb31f3c84f43f37fb35511fa3f8b0 (KEY)0041034920170000139000100000thermalhydraulicanalysisofchinaspallationneutronso DE-627 ger DE-627 rakwb eng 620 DNB Hao, Jun-Hong verfasserin aut Thermal Hydraulic Analysis of China Spallation Neutron Source Target System Under Abnormal Situations 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The analysis of thermal hydraulic performance under three abnormal conditions is very important for the design of China spallation neutron source (CSNS) target system, which could provide some important information for developing an emergency plan. In this study, we first introduce the design of the CSNS target system and create a three-dimensional physical model, calculate the heat source and decay heat distribution using the MCNPX 2.5 Monte Carlo code and the CINDER’90 activation code, and simulate and analyze the temperature distribution in the tungsten target and the steel container under normal operation using fluent. By using the same model, the thermal hydraulic characteristics are analyzed under three different abnormal conditions including power failure, off-center of proton beam, and cooling water failure. The results show that in order to keep the cooling water temperature below the boil point at normal operating pressure, the emergency power for the cooling water should start immediately after power failure. The maximum temperature of the beam window and the up plate increases by about 8 °C when the offsetting distance of proton beam is 5 mm along z direction. The cooling water will not effectively take all away the heat when the flow rate of the cooling water drops below 72% of the normal setpoint. Chen, Qun oth Lu, You-Lian oth Wang, Song-Lin oth Yu, Quan-Zhi oth Ji, Quan oth Liang, Tian-Jiao oth Enthalten in Journal of heat transfer New York, NY : ASME, 1959 139(2017), 1 (DE-627)129596353 (DE-600)240766-8 (DE-576)015089401 0022-1481 nnns volume:139 year:2017 number:1 http://dx.doi.org/10.1115/1.4034720 Volltext http://dx.doi.org/10.1115/1.4034720 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_4315 AR 139 2017 1 |
language |
English |
source |
Enthalten in Journal of heat transfer 139(2017), 1 volume:139 year:2017 number:1 |
sourceStr |
Enthalten in Journal of heat transfer 139(2017), 1 volume:139 year:2017 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of heat transfer |
authorswithroles_txt_mv |
Hao, Jun-Hong @@aut@@ Chen, Qun @@oth@@ Lu, You-Lian @@oth@@ Wang, Song-Lin @@oth@@ Yu, Quan-Zhi @@oth@@ Ji, Quan @@oth@@ Liang, Tian-Jiao @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129596353 |
dewey-sort |
3620 |
id |
OLC1984496646 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1984496646</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714224007.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1115/1.4034720</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1984496646</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1984496646</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a774-adef7c2642cf9bbc8ba926d380c934d46d36bb31f3c84f43f37fb35511fa3f8b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0041034920170000139000100000thermalhydraulicanalysisofchinaspallationneutronso</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hao, Jun-Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal Hydraulic Analysis of China Spallation Neutron Source Target System Under Abnormal Situations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The analysis of thermal hydraulic performance under three abnormal conditions is very important for the design of China spallation neutron source (CSNS) target system, which could provide some important information for developing an emergency plan. In this study, we first introduce the design of the CSNS target system and create a three-dimensional physical model, calculate the heat source and decay heat distribution using the MCNPX 2.5 Monte Carlo code and the CINDER’90 activation code, and simulate and analyze the temperature distribution in the tungsten target and the steel container under normal operation using fluent. By using the same model, the thermal hydraulic characteristics are analyzed under three different abnormal conditions including power failure, off-center of proton beam, and cooling water failure. The results show that in order to keep the cooling water temperature below the boil point at normal operating pressure, the emergency power for the cooling water should start immediately after power failure. The maximum temperature of the beam window and the up plate increases by about 8 °C when the offsetting distance of proton beam is 5 mm along z direction. The cooling water will not effectively take all away the heat when the flow rate of the cooling water drops below 72% of the normal setpoint.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Qun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, You-Lian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Song-Lin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Quan-Zhi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Quan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Tian-Jiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of heat transfer</subfield><subfield code="d">New York, NY : ASME, 1959</subfield><subfield code="g">139(2017), 1</subfield><subfield code="w">(DE-627)129596353</subfield><subfield code="w">(DE-600)240766-8</subfield><subfield code="w">(DE-576)015089401</subfield><subfield code="x">0022-1481</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:139</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1115/1.4034720</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1115/1.4034720</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">139</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
author |
Hao, Jun-Hong |
spellingShingle |
Hao, Jun-Hong ddc 620 Thermal Hydraulic Analysis of China Spallation Neutron Source Target System Under Abnormal Situations |
authorStr |
Hao, Jun-Hong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129596353 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-1481 |
topic_title |
620 DNB Thermal Hydraulic Analysis of China Spallation Neutron Source Target System Under Abnormal Situations |
topic |
ddc 620 |
topic_unstemmed |
ddc 620 |
topic_browse |
ddc 620 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
q c qc y l l yll s l w slw q z y qzy q j qj t j l tjl |
hierarchy_parent_title |
Journal of heat transfer |
hierarchy_parent_id |
129596353 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Journal of heat transfer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129596353 (DE-600)240766-8 (DE-576)015089401 |
title |
Thermal Hydraulic Analysis of China Spallation Neutron Source Target System Under Abnormal Situations |
ctrlnum |
(DE-627)OLC1984496646 (DE-599)GBVOLC1984496646 (PRQ)a774-adef7c2642cf9bbc8ba926d380c934d46d36bb31f3c84f43f37fb35511fa3f8b0 (KEY)0041034920170000139000100000thermalhydraulicanalysisofchinaspallationneutronso |
title_full |
Thermal Hydraulic Analysis of China Spallation Neutron Source Target System Under Abnormal Situations |
author_sort |
Hao, Jun-Hong |
journal |
Journal of heat transfer |
journalStr |
Journal of heat transfer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Hao, Jun-Hong |
container_volume |
139 |
class |
620 DNB |
format_se |
Aufsätze |
author-letter |
Hao, Jun-Hong |
doi_str_mv |
10.1115/1.4034720 |
dewey-full |
620 |
title_sort |
thermal hydraulic analysis of china spallation neutron source target system under abnormal situations |
title_auth |
Thermal Hydraulic Analysis of China Spallation Neutron Source Target System Under Abnormal Situations |
abstract |
The analysis of thermal hydraulic performance under three abnormal conditions is very important for the design of China spallation neutron source (CSNS) target system, which could provide some important information for developing an emergency plan. In this study, we first introduce the design of the CSNS target system and create a three-dimensional physical model, calculate the heat source and decay heat distribution using the MCNPX 2.5 Monte Carlo code and the CINDER’90 activation code, and simulate and analyze the temperature distribution in the tungsten target and the steel container under normal operation using fluent. By using the same model, the thermal hydraulic characteristics are analyzed under three different abnormal conditions including power failure, off-center of proton beam, and cooling water failure. The results show that in order to keep the cooling water temperature below the boil point at normal operating pressure, the emergency power for the cooling water should start immediately after power failure. The maximum temperature of the beam window and the up plate increases by about 8 °C when the offsetting distance of proton beam is 5 mm along z direction. The cooling water will not effectively take all away the heat when the flow rate of the cooling water drops below 72% of the normal setpoint. |
abstractGer |
The analysis of thermal hydraulic performance under three abnormal conditions is very important for the design of China spallation neutron source (CSNS) target system, which could provide some important information for developing an emergency plan. In this study, we first introduce the design of the CSNS target system and create a three-dimensional physical model, calculate the heat source and decay heat distribution using the MCNPX 2.5 Monte Carlo code and the CINDER’90 activation code, and simulate and analyze the temperature distribution in the tungsten target and the steel container under normal operation using fluent. By using the same model, the thermal hydraulic characteristics are analyzed under three different abnormal conditions including power failure, off-center of proton beam, and cooling water failure. The results show that in order to keep the cooling water temperature below the boil point at normal operating pressure, the emergency power for the cooling water should start immediately after power failure. The maximum temperature of the beam window and the up plate increases by about 8 °C when the offsetting distance of proton beam is 5 mm along z direction. The cooling water will not effectively take all away the heat when the flow rate of the cooling water drops below 72% of the normal setpoint. |
abstract_unstemmed |
The analysis of thermal hydraulic performance under three abnormal conditions is very important for the design of China spallation neutron source (CSNS) target system, which could provide some important information for developing an emergency plan. In this study, we first introduce the design of the CSNS target system and create a three-dimensional physical model, calculate the heat source and decay heat distribution using the MCNPX 2.5 Monte Carlo code and the CINDER’90 activation code, and simulate and analyze the temperature distribution in the tungsten target and the steel container under normal operation using fluent. By using the same model, the thermal hydraulic characteristics are analyzed under three different abnormal conditions including power failure, off-center of proton beam, and cooling water failure. The results show that in order to keep the cooling water temperature below the boil point at normal operating pressure, the emergency power for the cooling water should start immediately after power failure. The maximum temperature of the beam window and the up plate increases by about 8 °C when the offsetting distance of proton beam is 5 mm along z direction. The cooling water will not effectively take all away the heat when the flow rate of the cooling water drops below 72% of the normal setpoint. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_4315 |
container_issue |
1 |
title_short |
Thermal Hydraulic Analysis of China Spallation Neutron Source Target System Under Abnormal Situations |
url |
http://dx.doi.org/10.1115/1.4034720 |
remote_bool |
false |
author2 |
Chen, Qun Lu, You-Lian Wang, Song-Lin Yu, Quan-Zhi Ji, Quan Liang, Tian-Jiao |
author2Str |
Chen, Qun Lu, You-Lian Wang, Song-Lin Yu, Quan-Zhi Ji, Quan Liang, Tian-Jiao |
ppnlink |
129596353 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1115/1.4034720 |
up_date |
2024-07-04T00:38:17.331Z |
_version_ |
1803606816017350656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1984496646</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714224007.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1115/1.4034720</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1984496646</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1984496646</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a774-adef7c2642cf9bbc8ba926d380c934d46d36bb31f3c84f43f37fb35511fa3f8b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0041034920170000139000100000thermalhydraulicanalysisofchinaspallationneutronso</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hao, Jun-Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal Hydraulic Analysis of China Spallation Neutron Source Target System Under Abnormal Situations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The analysis of thermal hydraulic performance under three abnormal conditions is very important for the design of China spallation neutron source (CSNS) target system, which could provide some important information for developing an emergency plan. In this study, we first introduce the design of the CSNS target system and create a three-dimensional physical model, calculate the heat source and decay heat distribution using the MCNPX 2.5 Monte Carlo code and the CINDER’90 activation code, and simulate and analyze the temperature distribution in the tungsten target and the steel container under normal operation using fluent. By using the same model, the thermal hydraulic characteristics are analyzed under three different abnormal conditions including power failure, off-center of proton beam, and cooling water failure. The results show that in order to keep the cooling water temperature below the boil point at normal operating pressure, the emergency power for the cooling water should start immediately after power failure. The maximum temperature of the beam window and the up plate increases by about 8 °C when the offsetting distance of proton beam is 5 mm along z direction. The cooling water will not effectively take all away the heat when the flow rate of the cooling water drops below 72% of the normal setpoint.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Qun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, You-Lian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Song-Lin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Quan-Zhi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Quan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Tian-Jiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of heat transfer</subfield><subfield code="d">New York, NY : ASME, 1959</subfield><subfield code="g">139(2017), 1</subfield><subfield code="w">(DE-627)129596353</subfield><subfield code="w">(DE-600)240766-8</subfield><subfield code="w">(DE-576)015089401</subfield><subfield code="x">0022-1481</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:139</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1115/1.4034720</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1115/1.4034720</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">139</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.4014273 |