Fracture behavior of metallized electrode for capacitor under pulsed current
The fracture behavior of metallized electrode (ME) under pulsed current with current density of 10 11 ∼10 12 A/m 2 and pulse with width of microseconds is studied in this paper. High-speed camera is applied to record the surface state of metallized electrode. Based on photos of the surface state and...
Ausführliche Beschreibung
Autor*in: |
Jiang, Zhenglong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on dielectrics and electrical insulation - New York, NY : IEEE, 1965, 23(2016), 5, Seite 2517-2525 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2016 ; number:5 ; pages:2517-2525 |
Links: |
---|
DOI / URN: |
10.1109/TDEI.2016.7736808 |
---|
Katalog-ID: |
OLC1984716158 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1984716158 | ||
003 | DE-627 | ||
005 | 20230714224644.0 | ||
007 | tu | ||
008 | 161202s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TDEI.2016.7736808 |2 doi | |
028 | 5 | 2 | |a PQ20161201 |
035 | |a (DE-627)OLC1984716158 | ||
035 | |a (DE-599)GBVOLC1984716158 | ||
035 | |a (PRQ)i588-cb1b03a8496e70d4039d681dc8fa6a98f10f0df8e47ca98c753fccca551eba820 | ||
035 | |a (KEY)0057128820160000023000502517fracturebehaviorofmetallizedelectrodeforcapacitoru | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
100 | 1 | |a Jiang, Zhenglong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Fracture behavior of metallized electrode for capacitor under pulsed current |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The fracture behavior of metallized electrode (ME) under pulsed current with current density of 10 11 ∼10 12 A/m 2 and pulse with width of microseconds is studied in this paper. High-speed camera is applied to record the surface state of metallized electrode. Based on photos of the surface state and waveforms of the current and voltage, the fracture behavior under the stages of melting, liquefaction, vaporization and plasma are acquired. The process of the exploding phenomenon is discussed in detail. The photos show that the fracture direction is perpendicular to the current. Joule heating and electromagnetic force is the reason for the development direction of the fracture. The influencing factors of electric explosion are experimentally analyzed. Results indicate that the specific action integral (h) can not be considered as a constant. The specific action integral (h) and energy transfer efficiency (η) will decrease with the increasing of di/dt (ratio of peak current value to peak time) and current density (j). The energy transfer efficiency (η) increases from 36% to 71% when the current density ranges from 2.3×1011 A/m 2 to 1.1×1011 A/m 2 , which means the threshold value of electric explosion of 5 nm ME is closely to 1×1011 A/m 2 . The research results indicate that the high current density (1011~1012 A/m 2 ) and high di/dt may lead to the electrode fracture in the metallized film capacitor. The safe-use current density of capacitors must be below 1×1011 A/m 2 . | ||
650 | 4 | |a energy transfer efficiency | |
650 | 4 | |a Metals | |
650 | 4 | |a Metallized electrode | |
650 | 4 | |a electric explosion | |
650 | 4 | |a Current density | |
650 | 4 | |a Resistance | |
650 | 4 | |a specific action integral | |
650 | 4 | |a Electrodes | |
650 | 4 | |a fracture | |
650 | 4 | |a Discharges (electric) | |
650 | 4 | |a Capacitors | |
650 | 4 | |a Films | |
700 | 1 | |a Li, Hua |4 oth | |
700 | 1 | |a Wang, Bowen |4 oth | |
700 | 1 | |a Wang, Wenjuan |4 oth | |
700 | 1 | |a Li, Haoyuan |4 oth | |
700 | 1 | |a He, Junjia |4 oth | |
700 | 1 | |a Lin, Fuchang |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on dielectrics and electrical insulation |d New York, NY : IEEE, 1965 |g 23(2016), 5, Seite 2517-2525 |w (DE-627)129594873 |w (DE-600)240581-7 |w (DE-576)015087778 |x 0018-9367 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2016 |g number:5 |g pages:2517-2525 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TDEI.2016.7736808 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7736808 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2016 | ||
951 | |a AR | ||
952 | |d 23 |j 2016 |e 5 |h 2517-2525 |
author_variant |
z j zj |
---|---|
matchkey_str |
article:00189367:2016----::rcueeairfealzdlcrdfraaio |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/TDEI.2016.7736808 doi PQ20161201 (DE-627)OLC1984716158 (DE-599)GBVOLC1984716158 (PRQ)i588-cb1b03a8496e70d4039d681dc8fa6a98f10f0df8e47ca98c753fccca551eba820 (KEY)0057128820160000023000502517fracturebehaviorofmetallizedelectrodeforcapacitoru DE-627 ger DE-627 rakwb eng 620 DNB Jiang, Zhenglong verfasserin aut Fracture behavior of metallized electrode for capacitor under pulsed current 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The fracture behavior of metallized electrode (ME) under pulsed current with current density of 10 11 ∼10 12 A/m 2 and pulse with width of microseconds is studied in this paper. High-speed camera is applied to record the surface state of metallized electrode. Based on photos of the surface state and waveforms of the current and voltage, the fracture behavior under the stages of melting, liquefaction, vaporization and plasma are acquired. The process of the exploding phenomenon is discussed in detail. The photos show that the fracture direction is perpendicular to the current. Joule heating and electromagnetic force is the reason for the development direction of the fracture. The influencing factors of electric explosion are experimentally analyzed. Results indicate that the specific action integral (h) can not be considered as a constant. The specific action integral (h) and energy transfer efficiency (η) will decrease with the increasing of di/dt (ratio of peak current value to peak time) and current density (j). The energy transfer efficiency (η) increases from 36% to 71% when the current density ranges from 2.3×1011 A/m 2 to 1.1×1011 A/m 2 , which means the threshold value of electric explosion of 5 nm ME is closely to 1×1011 A/m 2 . The research results indicate that the high current density (1011~1012 A/m 2 ) and high di/dt may lead to the electrode fracture in the metallized film capacitor. The safe-use current density of capacitors must be below 1×1011 A/m 2 . energy transfer efficiency Metals Metallized electrode electric explosion Current density Resistance specific action integral Electrodes fracture Discharges (electric) Capacitors Films Li, Hua oth Wang, Bowen oth Wang, Wenjuan oth Li, Haoyuan oth He, Junjia oth Lin, Fuchang oth Enthalten in IEEE transactions on dielectrics and electrical insulation New York, NY : IEEE, 1965 23(2016), 5, Seite 2517-2525 (DE-627)129594873 (DE-600)240581-7 (DE-576)015087778 0018-9367 nnns volume:23 year:2016 number:5 pages:2517-2525 http://dx.doi.org/10.1109/TDEI.2016.7736808 Volltext http://ieeexplore.ieee.org/document/7736808 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2016 AR 23 2016 5 2517-2525 |
spelling |
10.1109/TDEI.2016.7736808 doi PQ20161201 (DE-627)OLC1984716158 (DE-599)GBVOLC1984716158 (PRQ)i588-cb1b03a8496e70d4039d681dc8fa6a98f10f0df8e47ca98c753fccca551eba820 (KEY)0057128820160000023000502517fracturebehaviorofmetallizedelectrodeforcapacitoru DE-627 ger DE-627 rakwb eng 620 DNB Jiang, Zhenglong verfasserin aut Fracture behavior of metallized electrode for capacitor under pulsed current 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The fracture behavior of metallized electrode (ME) under pulsed current with current density of 10 11 ∼10 12 A/m 2 and pulse with width of microseconds is studied in this paper. High-speed camera is applied to record the surface state of metallized electrode. Based on photos of the surface state and waveforms of the current and voltage, the fracture behavior under the stages of melting, liquefaction, vaporization and plasma are acquired. The process of the exploding phenomenon is discussed in detail. The photos show that the fracture direction is perpendicular to the current. Joule heating and electromagnetic force is the reason for the development direction of the fracture. The influencing factors of electric explosion are experimentally analyzed. Results indicate that the specific action integral (h) can not be considered as a constant. The specific action integral (h) and energy transfer efficiency (η) will decrease with the increasing of di/dt (ratio of peak current value to peak time) and current density (j). The energy transfer efficiency (η) increases from 36% to 71% when the current density ranges from 2.3×1011 A/m 2 to 1.1×1011 A/m 2 , which means the threshold value of electric explosion of 5 nm ME is closely to 1×1011 A/m 2 . The research results indicate that the high current density (1011~1012 A/m 2 ) and high di/dt may lead to the electrode fracture in the metallized film capacitor. The safe-use current density of capacitors must be below 1×1011 A/m 2 . energy transfer efficiency Metals Metallized electrode electric explosion Current density Resistance specific action integral Electrodes fracture Discharges (electric) Capacitors Films Li, Hua oth Wang, Bowen oth Wang, Wenjuan oth Li, Haoyuan oth He, Junjia oth Lin, Fuchang oth Enthalten in IEEE transactions on dielectrics and electrical insulation New York, NY : IEEE, 1965 23(2016), 5, Seite 2517-2525 (DE-627)129594873 (DE-600)240581-7 (DE-576)015087778 0018-9367 nnns volume:23 year:2016 number:5 pages:2517-2525 http://dx.doi.org/10.1109/TDEI.2016.7736808 Volltext http://ieeexplore.ieee.org/document/7736808 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2016 AR 23 2016 5 2517-2525 |
allfields_unstemmed |
10.1109/TDEI.2016.7736808 doi PQ20161201 (DE-627)OLC1984716158 (DE-599)GBVOLC1984716158 (PRQ)i588-cb1b03a8496e70d4039d681dc8fa6a98f10f0df8e47ca98c753fccca551eba820 (KEY)0057128820160000023000502517fracturebehaviorofmetallizedelectrodeforcapacitoru DE-627 ger DE-627 rakwb eng 620 DNB Jiang, Zhenglong verfasserin aut Fracture behavior of metallized electrode for capacitor under pulsed current 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The fracture behavior of metallized electrode (ME) under pulsed current with current density of 10 11 ∼10 12 A/m 2 and pulse with width of microseconds is studied in this paper. High-speed camera is applied to record the surface state of metallized electrode. Based on photos of the surface state and waveforms of the current and voltage, the fracture behavior under the stages of melting, liquefaction, vaporization and plasma are acquired. The process of the exploding phenomenon is discussed in detail. The photos show that the fracture direction is perpendicular to the current. Joule heating and electromagnetic force is the reason for the development direction of the fracture. The influencing factors of electric explosion are experimentally analyzed. Results indicate that the specific action integral (h) can not be considered as a constant. The specific action integral (h) and energy transfer efficiency (η) will decrease with the increasing of di/dt (ratio of peak current value to peak time) and current density (j). The energy transfer efficiency (η) increases from 36% to 71% when the current density ranges from 2.3×1011 A/m 2 to 1.1×1011 A/m 2 , which means the threshold value of electric explosion of 5 nm ME is closely to 1×1011 A/m 2 . The research results indicate that the high current density (1011~1012 A/m 2 ) and high di/dt may lead to the electrode fracture in the metallized film capacitor. The safe-use current density of capacitors must be below 1×1011 A/m 2 . energy transfer efficiency Metals Metallized electrode electric explosion Current density Resistance specific action integral Electrodes fracture Discharges (electric) Capacitors Films Li, Hua oth Wang, Bowen oth Wang, Wenjuan oth Li, Haoyuan oth He, Junjia oth Lin, Fuchang oth Enthalten in IEEE transactions on dielectrics and electrical insulation New York, NY : IEEE, 1965 23(2016), 5, Seite 2517-2525 (DE-627)129594873 (DE-600)240581-7 (DE-576)015087778 0018-9367 nnns volume:23 year:2016 number:5 pages:2517-2525 http://dx.doi.org/10.1109/TDEI.2016.7736808 Volltext http://ieeexplore.ieee.org/document/7736808 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2016 AR 23 2016 5 2517-2525 |
allfieldsGer |
10.1109/TDEI.2016.7736808 doi PQ20161201 (DE-627)OLC1984716158 (DE-599)GBVOLC1984716158 (PRQ)i588-cb1b03a8496e70d4039d681dc8fa6a98f10f0df8e47ca98c753fccca551eba820 (KEY)0057128820160000023000502517fracturebehaviorofmetallizedelectrodeforcapacitoru DE-627 ger DE-627 rakwb eng 620 DNB Jiang, Zhenglong verfasserin aut Fracture behavior of metallized electrode for capacitor under pulsed current 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The fracture behavior of metallized electrode (ME) under pulsed current with current density of 10 11 ∼10 12 A/m 2 and pulse with width of microseconds is studied in this paper. High-speed camera is applied to record the surface state of metallized electrode. Based on photos of the surface state and waveforms of the current and voltage, the fracture behavior under the stages of melting, liquefaction, vaporization and plasma are acquired. The process of the exploding phenomenon is discussed in detail. The photos show that the fracture direction is perpendicular to the current. Joule heating and electromagnetic force is the reason for the development direction of the fracture. The influencing factors of electric explosion are experimentally analyzed. Results indicate that the specific action integral (h) can not be considered as a constant. The specific action integral (h) and energy transfer efficiency (η) will decrease with the increasing of di/dt (ratio of peak current value to peak time) and current density (j). The energy transfer efficiency (η) increases from 36% to 71% when the current density ranges from 2.3×1011 A/m 2 to 1.1×1011 A/m 2 , which means the threshold value of electric explosion of 5 nm ME is closely to 1×1011 A/m 2 . The research results indicate that the high current density (1011~1012 A/m 2 ) and high di/dt may lead to the electrode fracture in the metallized film capacitor. The safe-use current density of capacitors must be below 1×1011 A/m 2 . energy transfer efficiency Metals Metallized electrode electric explosion Current density Resistance specific action integral Electrodes fracture Discharges (electric) Capacitors Films Li, Hua oth Wang, Bowen oth Wang, Wenjuan oth Li, Haoyuan oth He, Junjia oth Lin, Fuchang oth Enthalten in IEEE transactions on dielectrics and electrical insulation New York, NY : IEEE, 1965 23(2016), 5, Seite 2517-2525 (DE-627)129594873 (DE-600)240581-7 (DE-576)015087778 0018-9367 nnns volume:23 year:2016 number:5 pages:2517-2525 http://dx.doi.org/10.1109/TDEI.2016.7736808 Volltext http://ieeexplore.ieee.org/document/7736808 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2016 AR 23 2016 5 2517-2525 |
allfieldsSound |
10.1109/TDEI.2016.7736808 doi PQ20161201 (DE-627)OLC1984716158 (DE-599)GBVOLC1984716158 (PRQ)i588-cb1b03a8496e70d4039d681dc8fa6a98f10f0df8e47ca98c753fccca551eba820 (KEY)0057128820160000023000502517fracturebehaviorofmetallizedelectrodeforcapacitoru DE-627 ger DE-627 rakwb eng 620 DNB Jiang, Zhenglong verfasserin aut Fracture behavior of metallized electrode for capacitor under pulsed current 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The fracture behavior of metallized electrode (ME) under pulsed current with current density of 10 11 ∼10 12 A/m 2 and pulse with width of microseconds is studied in this paper. High-speed camera is applied to record the surface state of metallized electrode. Based on photos of the surface state and waveforms of the current and voltage, the fracture behavior under the stages of melting, liquefaction, vaporization and plasma are acquired. The process of the exploding phenomenon is discussed in detail. The photos show that the fracture direction is perpendicular to the current. Joule heating and electromagnetic force is the reason for the development direction of the fracture. The influencing factors of electric explosion are experimentally analyzed. Results indicate that the specific action integral (h) can not be considered as a constant. The specific action integral (h) and energy transfer efficiency (η) will decrease with the increasing of di/dt (ratio of peak current value to peak time) and current density (j). The energy transfer efficiency (η) increases from 36% to 71% when the current density ranges from 2.3×1011 A/m 2 to 1.1×1011 A/m 2 , which means the threshold value of electric explosion of 5 nm ME is closely to 1×1011 A/m 2 . The research results indicate that the high current density (1011~1012 A/m 2 ) and high di/dt may lead to the electrode fracture in the metallized film capacitor. The safe-use current density of capacitors must be below 1×1011 A/m 2 . energy transfer efficiency Metals Metallized electrode electric explosion Current density Resistance specific action integral Electrodes fracture Discharges (electric) Capacitors Films Li, Hua oth Wang, Bowen oth Wang, Wenjuan oth Li, Haoyuan oth He, Junjia oth Lin, Fuchang oth Enthalten in IEEE transactions on dielectrics and electrical insulation New York, NY : IEEE, 1965 23(2016), 5, Seite 2517-2525 (DE-627)129594873 (DE-600)240581-7 (DE-576)015087778 0018-9367 nnns volume:23 year:2016 number:5 pages:2517-2525 http://dx.doi.org/10.1109/TDEI.2016.7736808 Volltext http://ieeexplore.ieee.org/document/7736808 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2016 AR 23 2016 5 2517-2525 |
language |
English |
source |
Enthalten in IEEE transactions on dielectrics and electrical insulation 23(2016), 5, Seite 2517-2525 volume:23 year:2016 number:5 pages:2517-2525 |
sourceStr |
Enthalten in IEEE transactions on dielectrics and electrical insulation 23(2016), 5, Seite 2517-2525 volume:23 year:2016 number:5 pages:2517-2525 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
energy transfer efficiency Metals Metallized electrode electric explosion Current density Resistance specific action integral Electrodes fracture Discharges (electric) Capacitors Films |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on dielectrics and electrical insulation |
authorswithroles_txt_mv |
Jiang, Zhenglong @@aut@@ Li, Hua @@oth@@ Wang, Bowen @@oth@@ Wang, Wenjuan @@oth@@ Li, Haoyuan @@oth@@ He, Junjia @@oth@@ Lin, Fuchang @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129594873 |
dewey-sort |
3620 |
id |
OLC1984716158 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1984716158</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714224644.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TDEI.2016.7736808</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1984716158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1984716158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i588-cb1b03a8496e70d4039d681dc8fa6a98f10f0df8e47ca98c753fccca551eba820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0057128820160000023000502517fracturebehaviorofmetallizedelectrodeforcapacitoru</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Zhenglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fracture behavior of metallized electrode for capacitor under pulsed current</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The fracture behavior of metallized electrode (ME) under pulsed current with current density of 10 11 ∼10 12 A/m 2 and pulse with width of microseconds is studied in this paper. High-speed camera is applied to record the surface state of metallized electrode. Based on photos of the surface state and waveforms of the current and voltage, the fracture behavior under the stages of melting, liquefaction, vaporization and plasma are acquired. The process of the exploding phenomenon is discussed in detail. The photos show that the fracture direction is perpendicular to the current. Joule heating and electromagnetic force is the reason for the development direction of the fracture. The influencing factors of electric explosion are experimentally analyzed. Results indicate that the specific action integral (h) can not be considered as a constant. The specific action integral (h) and energy transfer efficiency (η) will decrease with the increasing of di/dt (ratio of peak current value to peak time) and current density (j). The energy transfer efficiency (η) increases from 36% to 71% when the current density ranges from 2.3×1011 A/m 2 to 1.1×1011 A/m 2 , which means the threshold value of electric explosion of 5 nm ME is closely to 1×1011 A/m 2 . The research results indicate that the high current density (1011~1012 A/m 2 ) and high di/dt may lead to the electrode fracture in the metallized film capacitor. The safe-use current density of capacitors must be below 1×1011 A/m 2 .</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy transfer efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metallized electrode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electric explosion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">specific action integral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fracture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discharges (electric)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Capacitors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Hua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Bowen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wenjuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Haoyuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Junjia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Fuchang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on dielectrics and electrical insulation</subfield><subfield code="d">New York, NY : IEEE, 1965</subfield><subfield code="g">23(2016), 5, Seite 2517-2525</subfield><subfield code="w">(DE-627)129594873</subfield><subfield code="w">(DE-600)240581-7</subfield><subfield code="w">(DE-576)015087778</subfield><subfield code="x">0018-9367</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:2517-2525</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TDEI.2016.7736808</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7736808</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">2517-2525</subfield></datafield></record></collection>
|
author |
Jiang, Zhenglong |
spellingShingle |
Jiang, Zhenglong ddc 620 misc energy transfer efficiency misc Metals misc Metallized electrode misc electric explosion misc Current density misc Resistance misc specific action integral misc Electrodes misc fracture misc Discharges (electric) misc Capacitors misc Films Fracture behavior of metallized electrode for capacitor under pulsed current |
authorStr |
Jiang, Zhenglong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129594873 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9367 |
topic_title |
620 DNB Fracture behavior of metallized electrode for capacitor under pulsed current energy transfer efficiency Metals Metallized electrode electric explosion Current density Resistance specific action integral Electrodes fracture Discharges (electric) Capacitors Films |
topic |
ddc 620 misc energy transfer efficiency misc Metals misc Metallized electrode misc electric explosion misc Current density misc Resistance misc specific action integral misc Electrodes misc fracture misc Discharges (electric) misc Capacitors misc Films |
topic_unstemmed |
ddc 620 misc energy transfer efficiency misc Metals misc Metallized electrode misc electric explosion misc Current density misc Resistance misc specific action integral misc Electrodes misc fracture misc Discharges (electric) misc Capacitors misc Films |
topic_browse |
ddc 620 misc energy transfer efficiency misc Metals misc Metallized electrode misc electric explosion misc Current density misc Resistance misc specific action integral misc Electrodes misc fracture misc Discharges (electric) misc Capacitors misc Films |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
h l hl b w bw w w ww h l hl j h jh f l fl |
hierarchy_parent_title |
IEEE transactions on dielectrics and electrical insulation |
hierarchy_parent_id |
129594873 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on dielectrics and electrical insulation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129594873 (DE-600)240581-7 (DE-576)015087778 |
title |
Fracture behavior of metallized electrode for capacitor under pulsed current |
ctrlnum |
(DE-627)OLC1984716158 (DE-599)GBVOLC1984716158 (PRQ)i588-cb1b03a8496e70d4039d681dc8fa6a98f10f0df8e47ca98c753fccca551eba820 (KEY)0057128820160000023000502517fracturebehaviorofmetallizedelectrodeforcapacitoru |
title_full |
Fracture behavior of metallized electrode for capacitor under pulsed current |
author_sort |
Jiang, Zhenglong |
journal |
IEEE transactions on dielectrics and electrical insulation |
journalStr |
IEEE transactions on dielectrics and electrical insulation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
2517 |
author_browse |
Jiang, Zhenglong |
container_volume |
23 |
class |
620 DNB |
format_se |
Aufsätze |
author-letter |
Jiang, Zhenglong |
doi_str_mv |
10.1109/TDEI.2016.7736808 |
dewey-full |
620 |
title_sort |
fracture behavior of metallized electrode for capacitor under pulsed current |
title_auth |
Fracture behavior of metallized electrode for capacitor under pulsed current |
abstract |
The fracture behavior of metallized electrode (ME) under pulsed current with current density of 10 11 ∼10 12 A/m 2 and pulse with width of microseconds is studied in this paper. High-speed camera is applied to record the surface state of metallized electrode. Based on photos of the surface state and waveforms of the current and voltage, the fracture behavior under the stages of melting, liquefaction, vaporization and plasma are acquired. The process of the exploding phenomenon is discussed in detail. The photos show that the fracture direction is perpendicular to the current. Joule heating and electromagnetic force is the reason for the development direction of the fracture. The influencing factors of electric explosion are experimentally analyzed. Results indicate that the specific action integral (h) can not be considered as a constant. The specific action integral (h) and energy transfer efficiency (η) will decrease with the increasing of di/dt (ratio of peak current value to peak time) and current density (j). The energy transfer efficiency (η) increases from 36% to 71% when the current density ranges from 2.3×1011 A/m 2 to 1.1×1011 A/m 2 , which means the threshold value of electric explosion of 5 nm ME is closely to 1×1011 A/m 2 . The research results indicate that the high current density (1011~1012 A/m 2 ) and high di/dt may lead to the electrode fracture in the metallized film capacitor. The safe-use current density of capacitors must be below 1×1011 A/m 2 . |
abstractGer |
The fracture behavior of metallized electrode (ME) under pulsed current with current density of 10 11 ∼10 12 A/m 2 and pulse with width of microseconds is studied in this paper. High-speed camera is applied to record the surface state of metallized electrode. Based on photos of the surface state and waveforms of the current and voltage, the fracture behavior under the stages of melting, liquefaction, vaporization and plasma are acquired. The process of the exploding phenomenon is discussed in detail. The photos show that the fracture direction is perpendicular to the current. Joule heating and electromagnetic force is the reason for the development direction of the fracture. The influencing factors of electric explosion are experimentally analyzed. Results indicate that the specific action integral (h) can not be considered as a constant. The specific action integral (h) and energy transfer efficiency (η) will decrease with the increasing of di/dt (ratio of peak current value to peak time) and current density (j). The energy transfer efficiency (η) increases from 36% to 71% when the current density ranges from 2.3×1011 A/m 2 to 1.1×1011 A/m 2 , which means the threshold value of electric explosion of 5 nm ME is closely to 1×1011 A/m 2 . The research results indicate that the high current density (1011~1012 A/m 2 ) and high di/dt may lead to the electrode fracture in the metallized film capacitor. The safe-use current density of capacitors must be below 1×1011 A/m 2 . |
abstract_unstemmed |
The fracture behavior of metallized electrode (ME) under pulsed current with current density of 10 11 ∼10 12 A/m 2 and pulse with width of microseconds is studied in this paper. High-speed camera is applied to record the surface state of metallized electrode. Based on photos of the surface state and waveforms of the current and voltage, the fracture behavior under the stages of melting, liquefaction, vaporization and plasma are acquired. The process of the exploding phenomenon is discussed in detail. The photos show that the fracture direction is perpendicular to the current. Joule heating and electromagnetic force is the reason for the development direction of the fracture. The influencing factors of electric explosion are experimentally analyzed. Results indicate that the specific action integral (h) can not be considered as a constant. The specific action integral (h) and energy transfer efficiency (η) will decrease with the increasing of di/dt (ratio of peak current value to peak time) and current density (j). The energy transfer efficiency (η) increases from 36% to 71% when the current density ranges from 2.3×1011 A/m 2 to 1.1×1011 A/m 2 , which means the threshold value of electric explosion of 5 nm ME is closely to 1×1011 A/m 2 . The research results indicate that the high current density (1011~1012 A/m 2 ) and high di/dt may lead to the electrode fracture in the metallized film capacitor. The safe-use current density of capacitors must be below 1×1011 A/m 2 . |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2016 |
container_issue |
5 |
title_short |
Fracture behavior of metallized electrode for capacitor under pulsed current |
url |
http://dx.doi.org/10.1109/TDEI.2016.7736808 http://ieeexplore.ieee.org/document/7736808 |
remote_bool |
false |
author2 |
Li, Hua Wang, Bowen Wang, Wenjuan Li, Haoyuan He, Junjia Lin, Fuchang |
author2Str |
Li, Hua Wang, Bowen Wang, Wenjuan Li, Haoyuan He, Junjia Lin, Fuchang |
ppnlink |
129594873 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1109/TDEI.2016.7736808 |
up_date |
2024-07-04T01:17:47.879Z |
_version_ |
1803609301721284608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1984716158</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714224644.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TDEI.2016.7736808</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1984716158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1984716158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i588-cb1b03a8496e70d4039d681dc8fa6a98f10f0df8e47ca98c753fccca551eba820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0057128820160000023000502517fracturebehaviorofmetallizedelectrodeforcapacitoru</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Zhenglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fracture behavior of metallized electrode for capacitor under pulsed current</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The fracture behavior of metallized electrode (ME) under pulsed current with current density of 10 11 ∼10 12 A/m 2 and pulse with width of microseconds is studied in this paper. High-speed camera is applied to record the surface state of metallized electrode. Based on photos of the surface state and waveforms of the current and voltage, the fracture behavior under the stages of melting, liquefaction, vaporization and plasma are acquired. The process of the exploding phenomenon is discussed in detail. The photos show that the fracture direction is perpendicular to the current. Joule heating and electromagnetic force is the reason for the development direction of the fracture. The influencing factors of electric explosion are experimentally analyzed. Results indicate that the specific action integral (h) can not be considered as a constant. The specific action integral (h) and energy transfer efficiency (η) will decrease with the increasing of di/dt (ratio of peak current value to peak time) and current density (j). The energy transfer efficiency (η) increases from 36% to 71% when the current density ranges from 2.3×1011 A/m 2 to 1.1×1011 A/m 2 , which means the threshold value of electric explosion of 5 nm ME is closely to 1×1011 A/m 2 . The research results indicate that the high current density (1011~1012 A/m 2 ) and high di/dt may lead to the electrode fracture in the metallized film capacitor. The safe-use current density of capacitors must be below 1×1011 A/m 2 .</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy transfer efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metallized electrode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electric explosion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">specific action integral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fracture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discharges (electric)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Capacitors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Hua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Bowen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wenjuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Haoyuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Junjia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Fuchang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on dielectrics and electrical insulation</subfield><subfield code="d">New York, NY : IEEE, 1965</subfield><subfield code="g">23(2016), 5, Seite 2517-2525</subfield><subfield code="w">(DE-627)129594873</subfield><subfield code="w">(DE-600)240581-7</subfield><subfield code="w">(DE-576)015087778</subfield><subfield code="x">0018-9367</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:2517-2525</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TDEI.2016.7736808</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7736808</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">2517-2525</subfield></datafield></record></collection>
|
score |
7.4018335 |