Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications
Micro-electro-mechanical systems (MEMS)-based cantilever platform have capability for the detection of chemical and biological agents. This paper reports about the finite element method (FEM) based design and simulations of MEMS-based piezoresistor cantilever platform to be used for detection of che...
Ausführliche Beschreibung
Autor*in: |
R Agarwal [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
Label-free, bio-sensing, bulk micromachining, micro-cantilever, piezoresistor |
---|
Übergeordnetes Werk: |
Enthalten in: Defence science journal - New Delhi : Centre, 1951, 66(2016), 5, Seite 485-488 |
---|---|
Übergeordnetes Werk: |
volume:66 ; year:2016 ; number:5 ; pages:485-488 |
Links: |
---|
DOI / URN: |
10.14429/dsj.66.10702 |
---|
Katalog-ID: |
OLC1984755536 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1984755536 | ||
003 | DE-627 | ||
005 | 20230714224737.0 | ||
007 | tu | ||
008 | 161202s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.14429/dsj.66.10702 |2 doi | |
028 | 5 | 2 | |a PQ20170206 |
035 | |a (DE-627)OLC1984755536 | ||
035 | |a (DE-599)GBVOLC1984755536 | ||
035 | |a (PRQ)c2217-e9607983a48a9a6dc0f532bc6e96c34b0c6cc75b55fd31f461754c745d020af43 | ||
035 | |a (KEY)0060171320160000066000500485finiteelementmethodbaseddesignandsimulationsofmicr | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 320 |q ZDB |
084 | |a 89.00 |2 bkl | ||
100 | 0 | |a R Agarwal |e verfasserin |4 aut | |
245 | 1 | 0 | |a Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Micro-electro-mechanical systems (MEMS)-based cantilever platform have capability for the detection of chemical and biological agents. This paper reports about the finite element method (FEM) based design and simulations of MEMS-based piezoresistor cantilever platform to be used for detection of chemical and biological toxic agents. Bulk micromachining technique is adopted for the realisation of the device structure. MEMS piezoresistive biosensing platforms are having potential for a field-based label-free detection of various types of bio-molecules. Using the MEMMECH module of CoventorWare® simulations are performed on the designed model of the device and it is observed that principal stress is maximum along the length (among other dimensions of the micro-cantilever) and remains almost constant for 90 per cent of the length of the micro-cantilever. The dimensions of piezoresistor are optimised and the output voltage vs. stress analysis for various lengths of the piezoresistor is performed using the MEMPZR module of the CoventorWare®. | ||
650 | 4 | |a bio-sensing | |
650 | 4 | |a micro-cantilever | |
650 | 4 | |a bulk micromachining | |
650 | 4 | |a Label-free | |
650 | 4 | |a Simulation | |
650 | 4 | |a piezoresistor | |
650 | 4 | |a Biological & chemical weapons | |
650 | 4 | |a Design | |
650 | 4 | |a Label-free, bio-sensing, bulk micromachining, micro-cantilever, piezoresistor | |
650 | 4 | |a Military Science | |
700 | 0 | |a R Mukhiya |4 oth | |
700 | 0 | |a R Sharma |4 oth | |
700 | 0 | |a M K Sharma |4 oth | |
700 | 0 | |a A K Goel |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Defence science journal |d New Delhi : Centre, 1951 |g 66(2016), 5, Seite 485-488 |w (DE-627)130313327 |w (DE-600)588844-X |w (DE-576)9130313325 |x 0011-748X |7 nnns |
773 | 1 | 8 | |g volume:66 |g year:2016 |g number:5 |g pages:485-488 |
856 | 4 | 1 | |u http://dx.doi.org/10.14429/dsj.66.10702 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1838716848 |
856 | 4 | 2 | |u https://doaj.org/article/86379652e10f409c9ad4ca4b8b13b2a0 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-POL | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-IBL | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 89.00 |q AVZ |
951 | |a AR | ||
952 | |d 66 |j 2016 |e 5 |h 485-488 |
author_variant |
r a ra |
---|---|
matchkey_str |
article:0011748X:2016----::iielmnmtobsdeinnsmltosfircnieepafrfrhmc |
hierarchy_sort_str |
2016 |
bklnumber |
89.00 |
publishDate |
2016 |
allfields |
10.14429/dsj.66.10702 doi PQ20170206 (DE-627)OLC1984755536 (DE-599)GBVOLC1984755536 (PRQ)c2217-e9607983a48a9a6dc0f532bc6e96c34b0c6cc75b55fd31f461754c745d020af43 (KEY)0060171320160000066000500485finiteelementmethodbaseddesignandsimulationsofmicr DE-627 ger DE-627 rakwb eng 320 ZDB 89.00 bkl R Agarwal verfasserin aut Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Micro-electro-mechanical systems (MEMS)-based cantilever platform have capability for the detection of chemical and biological agents. This paper reports about the finite element method (FEM) based design and simulations of MEMS-based piezoresistor cantilever platform to be used for detection of chemical and biological toxic agents. Bulk micromachining technique is adopted for the realisation of the device structure. MEMS piezoresistive biosensing platforms are having potential for a field-based label-free detection of various types of bio-molecules. Using the MEMMECH module of CoventorWare® simulations are performed on the designed model of the device and it is observed that principal stress is maximum along the length (among other dimensions of the micro-cantilever) and remains almost constant for 90 per cent of the length of the micro-cantilever. The dimensions of piezoresistor are optimised and the output voltage vs. stress analysis for various lengths of the piezoresistor is performed using the MEMPZR module of the CoventorWare®. bio-sensing micro-cantilever bulk micromachining Label-free Simulation piezoresistor Biological & chemical weapons Design Label-free, bio-sensing, bulk micromachining, micro-cantilever, piezoresistor Military Science R Mukhiya oth R Sharma oth M K Sharma oth A K Goel oth Enthalten in Defence science journal New Delhi : Centre, 1951 66(2016), 5, Seite 485-488 (DE-627)130313327 (DE-600)588844-X (DE-576)9130313325 0011-748X nnns volume:66 year:2016 number:5 pages:485-488 http://dx.doi.org/10.14429/dsj.66.10702 Volltext http://search.proquest.com/docview/1838716848 https://doaj.org/article/86379652e10f409c9ad4ca4b8b13b2a0 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-POL SSG-OLC-TEC SSG-OLC-IBL SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_70 89.00 AVZ AR 66 2016 5 485-488 |
spelling |
10.14429/dsj.66.10702 doi PQ20170206 (DE-627)OLC1984755536 (DE-599)GBVOLC1984755536 (PRQ)c2217-e9607983a48a9a6dc0f532bc6e96c34b0c6cc75b55fd31f461754c745d020af43 (KEY)0060171320160000066000500485finiteelementmethodbaseddesignandsimulationsofmicr DE-627 ger DE-627 rakwb eng 320 ZDB 89.00 bkl R Agarwal verfasserin aut Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Micro-electro-mechanical systems (MEMS)-based cantilever platform have capability for the detection of chemical and biological agents. This paper reports about the finite element method (FEM) based design and simulations of MEMS-based piezoresistor cantilever platform to be used for detection of chemical and biological toxic agents. Bulk micromachining technique is adopted for the realisation of the device structure. MEMS piezoresistive biosensing platforms are having potential for a field-based label-free detection of various types of bio-molecules. Using the MEMMECH module of CoventorWare® simulations are performed on the designed model of the device and it is observed that principal stress is maximum along the length (among other dimensions of the micro-cantilever) and remains almost constant for 90 per cent of the length of the micro-cantilever. The dimensions of piezoresistor are optimised and the output voltage vs. stress analysis for various lengths of the piezoresistor is performed using the MEMPZR module of the CoventorWare®. bio-sensing micro-cantilever bulk micromachining Label-free Simulation piezoresistor Biological & chemical weapons Design Label-free, bio-sensing, bulk micromachining, micro-cantilever, piezoresistor Military Science R Mukhiya oth R Sharma oth M K Sharma oth A K Goel oth Enthalten in Defence science journal New Delhi : Centre, 1951 66(2016), 5, Seite 485-488 (DE-627)130313327 (DE-600)588844-X (DE-576)9130313325 0011-748X nnns volume:66 year:2016 number:5 pages:485-488 http://dx.doi.org/10.14429/dsj.66.10702 Volltext http://search.proquest.com/docview/1838716848 https://doaj.org/article/86379652e10f409c9ad4ca4b8b13b2a0 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-POL SSG-OLC-TEC SSG-OLC-IBL SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_70 89.00 AVZ AR 66 2016 5 485-488 |
allfields_unstemmed |
10.14429/dsj.66.10702 doi PQ20170206 (DE-627)OLC1984755536 (DE-599)GBVOLC1984755536 (PRQ)c2217-e9607983a48a9a6dc0f532bc6e96c34b0c6cc75b55fd31f461754c745d020af43 (KEY)0060171320160000066000500485finiteelementmethodbaseddesignandsimulationsofmicr DE-627 ger DE-627 rakwb eng 320 ZDB 89.00 bkl R Agarwal verfasserin aut Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Micro-electro-mechanical systems (MEMS)-based cantilever platform have capability for the detection of chemical and biological agents. This paper reports about the finite element method (FEM) based design and simulations of MEMS-based piezoresistor cantilever platform to be used for detection of chemical and biological toxic agents. Bulk micromachining technique is adopted for the realisation of the device structure. MEMS piezoresistive biosensing platforms are having potential for a field-based label-free detection of various types of bio-molecules. Using the MEMMECH module of CoventorWare® simulations are performed on the designed model of the device and it is observed that principal stress is maximum along the length (among other dimensions of the micro-cantilever) and remains almost constant for 90 per cent of the length of the micro-cantilever. The dimensions of piezoresistor are optimised and the output voltage vs. stress analysis for various lengths of the piezoresistor is performed using the MEMPZR module of the CoventorWare®. bio-sensing micro-cantilever bulk micromachining Label-free Simulation piezoresistor Biological & chemical weapons Design Label-free, bio-sensing, bulk micromachining, micro-cantilever, piezoresistor Military Science R Mukhiya oth R Sharma oth M K Sharma oth A K Goel oth Enthalten in Defence science journal New Delhi : Centre, 1951 66(2016), 5, Seite 485-488 (DE-627)130313327 (DE-600)588844-X (DE-576)9130313325 0011-748X nnns volume:66 year:2016 number:5 pages:485-488 http://dx.doi.org/10.14429/dsj.66.10702 Volltext http://search.proquest.com/docview/1838716848 https://doaj.org/article/86379652e10f409c9ad4ca4b8b13b2a0 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-POL SSG-OLC-TEC SSG-OLC-IBL SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_70 89.00 AVZ AR 66 2016 5 485-488 |
allfieldsGer |
10.14429/dsj.66.10702 doi PQ20170206 (DE-627)OLC1984755536 (DE-599)GBVOLC1984755536 (PRQ)c2217-e9607983a48a9a6dc0f532bc6e96c34b0c6cc75b55fd31f461754c745d020af43 (KEY)0060171320160000066000500485finiteelementmethodbaseddesignandsimulationsofmicr DE-627 ger DE-627 rakwb eng 320 ZDB 89.00 bkl R Agarwal verfasserin aut Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Micro-electro-mechanical systems (MEMS)-based cantilever platform have capability for the detection of chemical and biological agents. This paper reports about the finite element method (FEM) based design and simulations of MEMS-based piezoresistor cantilever platform to be used for detection of chemical and biological toxic agents. Bulk micromachining technique is adopted for the realisation of the device structure. MEMS piezoresistive biosensing platforms are having potential for a field-based label-free detection of various types of bio-molecules. Using the MEMMECH module of CoventorWare® simulations are performed on the designed model of the device and it is observed that principal stress is maximum along the length (among other dimensions of the micro-cantilever) and remains almost constant for 90 per cent of the length of the micro-cantilever. The dimensions of piezoresistor are optimised and the output voltage vs. stress analysis for various lengths of the piezoresistor is performed using the MEMPZR module of the CoventorWare®. bio-sensing micro-cantilever bulk micromachining Label-free Simulation piezoresistor Biological & chemical weapons Design Label-free, bio-sensing, bulk micromachining, micro-cantilever, piezoresistor Military Science R Mukhiya oth R Sharma oth M K Sharma oth A K Goel oth Enthalten in Defence science journal New Delhi : Centre, 1951 66(2016), 5, Seite 485-488 (DE-627)130313327 (DE-600)588844-X (DE-576)9130313325 0011-748X nnns volume:66 year:2016 number:5 pages:485-488 http://dx.doi.org/10.14429/dsj.66.10702 Volltext http://search.proquest.com/docview/1838716848 https://doaj.org/article/86379652e10f409c9ad4ca4b8b13b2a0 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-POL SSG-OLC-TEC SSG-OLC-IBL SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_70 89.00 AVZ AR 66 2016 5 485-488 |
allfieldsSound |
10.14429/dsj.66.10702 doi PQ20170206 (DE-627)OLC1984755536 (DE-599)GBVOLC1984755536 (PRQ)c2217-e9607983a48a9a6dc0f532bc6e96c34b0c6cc75b55fd31f461754c745d020af43 (KEY)0060171320160000066000500485finiteelementmethodbaseddesignandsimulationsofmicr DE-627 ger DE-627 rakwb eng 320 ZDB 89.00 bkl R Agarwal verfasserin aut Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Micro-electro-mechanical systems (MEMS)-based cantilever platform have capability for the detection of chemical and biological agents. This paper reports about the finite element method (FEM) based design and simulations of MEMS-based piezoresistor cantilever platform to be used for detection of chemical and biological toxic agents. Bulk micromachining technique is adopted for the realisation of the device structure. MEMS piezoresistive biosensing platforms are having potential for a field-based label-free detection of various types of bio-molecules. Using the MEMMECH module of CoventorWare® simulations are performed on the designed model of the device and it is observed that principal stress is maximum along the length (among other dimensions of the micro-cantilever) and remains almost constant for 90 per cent of the length of the micro-cantilever. The dimensions of piezoresistor are optimised and the output voltage vs. stress analysis for various lengths of the piezoresistor is performed using the MEMPZR module of the CoventorWare®. bio-sensing micro-cantilever bulk micromachining Label-free Simulation piezoresistor Biological & chemical weapons Design Label-free, bio-sensing, bulk micromachining, micro-cantilever, piezoresistor Military Science R Mukhiya oth R Sharma oth M K Sharma oth A K Goel oth Enthalten in Defence science journal New Delhi : Centre, 1951 66(2016), 5, Seite 485-488 (DE-627)130313327 (DE-600)588844-X (DE-576)9130313325 0011-748X nnns volume:66 year:2016 number:5 pages:485-488 http://dx.doi.org/10.14429/dsj.66.10702 Volltext http://search.proquest.com/docview/1838716848 https://doaj.org/article/86379652e10f409c9ad4ca4b8b13b2a0 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-POL SSG-OLC-TEC SSG-OLC-IBL SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_70 89.00 AVZ AR 66 2016 5 485-488 |
language |
English |
source |
Enthalten in Defence science journal 66(2016), 5, Seite 485-488 volume:66 year:2016 number:5 pages:485-488 |
sourceStr |
Enthalten in Defence science journal 66(2016), 5, Seite 485-488 volume:66 year:2016 number:5 pages:485-488 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
bio-sensing micro-cantilever bulk micromachining Label-free Simulation piezoresistor Biological & chemical weapons Design Label-free, bio-sensing, bulk micromachining, micro-cantilever, piezoresistor Military Science |
dewey-raw |
320 |
isfreeaccess_bool |
false |
container_title |
Defence science journal |
authorswithroles_txt_mv |
R Agarwal @@aut@@ R Mukhiya @@oth@@ R Sharma @@oth@@ M K Sharma @@oth@@ A K Goel @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130313327 |
dewey-sort |
3320 |
id |
OLC1984755536 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1984755536</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714224737.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.14429/dsj.66.10702</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1984755536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1984755536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2217-e9607983a48a9a6dc0f532bc6e96c34b0c6cc75b55fd31f461754c745d020af43</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0060171320160000066000500485finiteelementmethodbaseddesignandsimulationsofmicr</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">320</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">89.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">R Agarwal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Micro-electro-mechanical systems (MEMS)-based cantilever platform have capability for the detection of chemical and biological agents. This paper reports about the finite element method (FEM) based design and simulations of MEMS-based piezoresistor cantilever platform to be used for detection of chemical and biological toxic agents. Bulk micromachining technique is adopted for the realisation of the device structure. MEMS piezoresistive biosensing platforms are having potential for a field-based label-free detection of various types of bio-molecules. Using the MEMMECH module of CoventorWare® simulations are performed on the designed model of the device and it is observed that principal stress is maximum along the length (among other dimensions of the micro-cantilever) and remains almost constant for 90 per cent of the length of the micro-cantilever. The dimensions of piezoresistor are optimised and the output voltage vs. stress analysis for various lengths of the piezoresistor is performed using the MEMPZR module of the CoventorWare®.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bio-sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">micro-cantilever</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bulk micromachining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Label-free</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">piezoresistor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological & chemical weapons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Label-free, bio-sensing, bulk micromachining, micro-cantilever, piezoresistor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Military Science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">R Mukhiya</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">R Sharma</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M K Sharma</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A K Goel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Defence science journal</subfield><subfield code="d">New Delhi : Centre, 1951</subfield><subfield code="g">66(2016), 5, Seite 485-488</subfield><subfield code="w">(DE-627)130313327</subfield><subfield code="w">(DE-600)588844-X</subfield><subfield code="w">(DE-576)9130313325</subfield><subfield code="x">0011-748X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:485-488</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.14429/dsj.66.10702</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1838716848</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/article/86379652e10f409c9ad4ca4b8b13b2a0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-POL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-IBL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">89.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">485-488</subfield></datafield></record></collection>
|
author |
R Agarwal |
spellingShingle |
R Agarwal ddc 320 bkl 89.00 misc bio-sensing misc micro-cantilever misc bulk micromachining misc Label-free misc Simulation misc piezoresistor misc Biological & chemical weapons misc Design misc Label-free, bio-sensing, bulk micromachining, micro-cantilever, piezoresistor misc Military Science Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications |
authorStr |
R Agarwal |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130313327 |
format |
Article |
dewey-ones |
320 - Political science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0011-748X |
topic_title |
320 ZDB 89.00 bkl Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications bio-sensing micro-cantilever bulk micromachining Label-free Simulation piezoresistor Biological & chemical weapons Design Label-free, bio-sensing, bulk micromachining, micro-cantilever, piezoresistor Military Science |
topic |
ddc 320 bkl 89.00 misc bio-sensing misc micro-cantilever misc bulk micromachining misc Label-free misc Simulation misc piezoresistor misc Biological & chemical weapons misc Design misc Label-free, bio-sensing, bulk micromachining, micro-cantilever, piezoresistor misc Military Science |
topic_unstemmed |
ddc 320 bkl 89.00 misc bio-sensing misc micro-cantilever misc bulk micromachining misc Label-free misc Simulation misc piezoresistor misc Biological & chemical weapons misc Design misc Label-free, bio-sensing, bulk micromachining, micro-cantilever, piezoresistor misc Military Science |
topic_browse |
ddc 320 bkl 89.00 misc bio-sensing misc micro-cantilever misc bulk micromachining misc Label-free misc Simulation misc piezoresistor misc Biological & chemical weapons misc Design misc Label-free, bio-sensing, bulk micromachining, micro-cantilever, piezoresistor misc Military Science |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
r m rm r s rs m k s mks a k g akg |
hierarchy_parent_title |
Defence science journal |
hierarchy_parent_id |
130313327 |
dewey-tens |
320 - Political science |
hierarchy_top_title |
Defence science journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130313327 (DE-600)588844-X (DE-576)9130313325 |
title |
Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications |
ctrlnum |
(DE-627)OLC1984755536 (DE-599)GBVOLC1984755536 (PRQ)c2217-e9607983a48a9a6dc0f532bc6e96c34b0c6cc75b55fd31f461754c745d020af43 (KEY)0060171320160000066000500485finiteelementmethodbaseddesignandsimulationsofmicr |
title_full |
Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications |
author_sort |
R Agarwal |
journal |
Defence science journal |
journalStr |
Defence science journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
485 |
author_browse |
R Agarwal |
container_volume |
66 |
class |
320 ZDB 89.00 bkl |
format_se |
Aufsätze |
author-letter |
R Agarwal |
doi_str_mv |
10.14429/dsj.66.10702 |
dewey-full |
320 |
title_sort |
finite element method-based design and simulations of micro-cantilever platform for chemical and bio-sensing applications |
title_auth |
Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications |
abstract |
Micro-electro-mechanical systems (MEMS)-based cantilever platform have capability for the detection of chemical and biological agents. This paper reports about the finite element method (FEM) based design and simulations of MEMS-based piezoresistor cantilever platform to be used for detection of chemical and biological toxic agents. Bulk micromachining technique is adopted for the realisation of the device structure. MEMS piezoresistive biosensing platforms are having potential for a field-based label-free detection of various types of bio-molecules. Using the MEMMECH module of CoventorWare® simulations are performed on the designed model of the device and it is observed that principal stress is maximum along the length (among other dimensions of the micro-cantilever) and remains almost constant for 90 per cent of the length of the micro-cantilever. The dimensions of piezoresistor are optimised and the output voltage vs. stress analysis for various lengths of the piezoresistor is performed using the MEMPZR module of the CoventorWare®. |
abstractGer |
Micro-electro-mechanical systems (MEMS)-based cantilever platform have capability for the detection of chemical and biological agents. This paper reports about the finite element method (FEM) based design and simulations of MEMS-based piezoresistor cantilever platform to be used for detection of chemical and biological toxic agents. Bulk micromachining technique is adopted for the realisation of the device structure. MEMS piezoresistive biosensing platforms are having potential for a field-based label-free detection of various types of bio-molecules. Using the MEMMECH module of CoventorWare® simulations are performed on the designed model of the device and it is observed that principal stress is maximum along the length (among other dimensions of the micro-cantilever) and remains almost constant for 90 per cent of the length of the micro-cantilever. The dimensions of piezoresistor are optimised and the output voltage vs. stress analysis for various lengths of the piezoresistor is performed using the MEMPZR module of the CoventorWare®. |
abstract_unstemmed |
Micro-electro-mechanical systems (MEMS)-based cantilever platform have capability for the detection of chemical and biological agents. This paper reports about the finite element method (FEM) based design and simulations of MEMS-based piezoresistor cantilever platform to be used for detection of chemical and biological toxic agents. Bulk micromachining technique is adopted for the realisation of the device structure. MEMS piezoresistive biosensing platforms are having potential for a field-based label-free detection of various types of bio-molecules. Using the MEMMECH module of CoventorWare® simulations are performed on the designed model of the device and it is observed that principal stress is maximum along the length (among other dimensions of the micro-cantilever) and remains almost constant for 90 per cent of the length of the micro-cantilever. The dimensions of piezoresistor are optimised and the output voltage vs. stress analysis for various lengths of the piezoresistor is performed using the MEMPZR module of the CoventorWare®. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-POL SSG-OLC-TEC SSG-OLC-IBL SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_70 |
container_issue |
5 |
title_short |
Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications |
url |
http://dx.doi.org/10.14429/dsj.66.10702 http://search.proquest.com/docview/1838716848 https://doaj.org/article/86379652e10f409c9ad4ca4b8b13b2a0 |
remote_bool |
false |
author2 |
R Mukhiya R Sharma M K Sharma A K Goel |
author2Str |
R Mukhiya R Sharma M K Sharma A K Goel |
ppnlink |
130313327 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.14429/dsj.66.10702 |
up_date |
2024-07-04T01:23:17.343Z |
_version_ |
1803609647189327872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1984755536</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714224737.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.14429/dsj.66.10702</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1984755536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1984755536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2217-e9607983a48a9a6dc0f532bc6e96c34b0c6cc75b55fd31f461754c745d020af43</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0060171320160000066000500485finiteelementmethodbaseddesignandsimulationsofmicr</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">320</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">89.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">R Agarwal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Micro-electro-mechanical systems (MEMS)-based cantilever platform have capability for the detection of chemical and biological agents. This paper reports about the finite element method (FEM) based design and simulations of MEMS-based piezoresistor cantilever platform to be used for detection of chemical and biological toxic agents. Bulk micromachining technique is adopted for the realisation of the device structure. MEMS piezoresistive biosensing platforms are having potential for a field-based label-free detection of various types of bio-molecules. Using the MEMMECH module of CoventorWare® simulations are performed on the designed model of the device and it is observed that principal stress is maximum along the length (among other dimensions of the micro-cantilever) and remains almost constant for 90 per cent of the length of the micro-cantilever. The dimensions of piezoresistor are optimised and the output voltage vs. stress analysis for various lengths of the piezoresistor is performed using the MEMPZR module of the CoventorWare®.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bio-sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">micro-cantilever</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bulk micromachining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Label-free</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">piezoresistor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological & chemical weapons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Label-free, bio-sensing, bulk micromachining, micro-cantilever, piezoresistor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Military Science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">R Mukhiya</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">R Sharma</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M K Sharma</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A K Goel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Defence science journal</subfield><subfield code="d">New Delhi : Centre, 1951</subfield><subfield code="g">66(2016), 5, Seite 485-488</subfield><subfield code="w">(DE-627)130313327</subfield><subfield code="w">(DE-600)588844-X</subfield><subfield code="w">(DE-576)9130313325</subfield><subfield code="x">0011-748X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:485-488</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.14429/dsj.66.10702</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1838716848</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/article/86379652e10f409c9ad4ca4b8b13b2a0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-POL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-IBL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">89.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">485-488</subfield></datafield></record></collection>
|
score |
7.4024982 |