Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach
Significant losses in the maximum range of electric vehicles and stricter emission norms have drawn attention to further development endeavors in the optimization of passenger compartment conditioning. This need for revision in climatization concepts stems from the focus on defusing the trade-off be...
Ausführliche Beschreibung
Autor*in: |
Wirth, Steffen [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © Daimler AG 2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Heat transfer engineering - Washington, DC : Taylor & Francis, 1979, 37(2016), 16, Seite 1418 |
---|---|
Übergeordnetes Werk: |
volume:37 ; year:2016 ; number:16 ; pages:1418 |
Links: |
---|
DOI / URN: |
10.1080/01457632.2015.1136170 |
---|
Katalog-ID: |
OLC1985127377 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1985127377 | ||
003 | DE-627 | ||
005 | 20220216155825.0 | ||
007 | tu | ||
008 | 161202s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/01457632.2015.1136170 |2 doi | |
028 | 5 | 2 | |a PQ20161201 |
035 | |a (DE-627)OLC1985127377 | ||
035 | |a (DE-599)GBVOLC1985127377 | ||
035 | |a (PRQ)i2098-f5e61380554e3bc31e1f2e4d1a4d11322da976ba1353c445bfe256f8243504ce0 | ||
035 | |a (KEY)0099344120160000037001601418improvedthermalinsulationforcontemporaryautomotive | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Wirth, Steffen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Significant losses in the maximum range of electric vehicles and stricter emission norms have drawn attention to further development endeavors in the optimization of passenger compartment conditioning. This need for revision in climatization concepts stems from the focus on defusing the trade-off between thermal comfort and operating distance. Thermal insulation of the drive cabin offers a promising solution. Within this framework, this paper outlines an approach to systematically analyze prevalent heat transfer phenomena within enclosing body surfaces. The conventional roof structure comprising a functionally integrated air gap was chosen as one such representative part. Detailed analysis at this component level presents itself as rather challenging and has therefore contemporarily not been investigated in depth. Computational fluid dynamics simulations are hence employed to analyze the existing complex conjugate heat transfer scenario. As a first step, thermal characterization of the simulation methodology was validated by conducting hot box measurements. Further detailed investigation using these numerical models provided an insight into the understanding of existing heat transfer modes. The obtained results contributed toward efficiently deriving concrete insulation concepts, overcoming restrictions placed by time -and cost-intensive testing procedures. | ||
540 | |a Nutzungsrecht: Copyright © Daimler AG 2016 | ||
650 | 4 | |a Fluid dynamics | |
650 | 4 | |a Insulation | |
650 | 4 | |a Heat transfer | |
700 | 1 | |a Niebling, Frank |4 oth | |
700 | 1 | |a Logasanjeevi, Umashankar |4 oth | |
700 | 1 | |a Premchandran, Vijay |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Heat transfer engineering |d Washington, DC : Taylor & Francis, 1979 |g 37(2016), 16, Seite 1418 |w (DE-627)130491543 |w (DE-600)756635-9 |w (DE-576)016075919 |x 0145-7632 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2016 |g number:16 |g pages:1418 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/01457632.2015.1136170 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/01457632.2015.1136170 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1789765532 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2016 | ||
936 | b | k | |a 50.38 |q AVZ |
951 | |a AR | ||
952 | |d 37 |j 2016 |e 16 |h 1418 |
author_variant |
s w sw |
---|---|
matchkey_str |
article:01457632:2016----::mrvdhraisltofrotmoayuooieoftutrsaeoaopttoa |
hierarchy_sort_str |
2016 |
bklnumber |
50.38 |
publishDate |
2016 |
allfields |
10.1080/01457632.2015.1136170 doi PQ20161201 (DE-627)OLC1985127377 (DE-599)GBVOLC1985127377 (PRQ)i2098-f5e61380554e3bc31e1f2e4d1a4d11322da976ba1353c445bfe256f8243504ce0 (KEY)0099344120160000037001601418improvedthermalinsulationforcontemporaryautomotive DE-627 ger DE-627 rakwb eng 620 DNB 50.38 bkl Wirth, Steffen verfasserin aut Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Significant losses in the maximum range of electric vehicles and stricter emission norms have drawn attention to further development endeavors in the optimization of passenger compartment conditioning. This need for revision in climatization concepts stems from the focus on defusing the trade-off between thermal comfort and operating distance. Thermal insulation of the drive cabin offers a promising solution. Within this framework, this paper outlines an approach to systematically analyze prevalent heat transfer phenomena within enclosing body surfaces. The conventional roof structure comprising a functionally integrated air gap was chosen as one such representative part. Detailed analysis at this component level presents itself as rather challenging and has therefore contemporarily not been investigated in depth. Computational fluid dynamics simulations are hence employed to analyze the existing complex conjugate heat transfer scenario. As a first step, thermal characterization of the simulation methodology was validated by conducting hot box measurements. Further detailed investigation using these numerical models provided an insight into the understanding of existing heat transfer modes. The obtained results contributed toward efficiently deriving concrete insulation concepts, overcoming restrictions placed by time -and cost-intensive testing procedures. Nutzungsrecht: Copyright © Daimler AG 2016 Fluid dynamics Insulation Heat transfer Niebling, Frank oth Logasanjeevi, Umashankar oth Premchandran, Vijay oth Enthalten in Heat transfer engineering Washington, DC : Taylor & Francis, 1979 37(2016), 16, Seite 1418 (DE-627)130491543 (DE-600)756635-9 (DE-576)016075919 0145-7632 nnns volume:37 year:2016 number:16 pages:1418 http://dx.doi.org/10.1080/01457632.2015.1136170 Volltext http://www.tandfonline.com/doi/abs/10.1080/01457632.2015.1136170 http://search.proquest.com/docview/1789765532 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2016 50.38 AVZ AR 37 2016 16 1418 |
spelling |
10.1080/01457632.2015.1136170 doi PQ20161201 (DE-627)OLC1985127377 (DE-599)GBVOLC1985127377 (PRQ)i2098-f5e61380554e3bc31e1f2e4d1a4d11322da976ba1353c445bfe256f8243504ce0 (KEY)0099344120160000037001601418improvedthermalinsulationforcontemporaryautomotive DE-627 ger DE-627 rakwb eng 620 DNB 50.38 bkl Wirth, Steffen verfasserin aut Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Significant losses in the maximum range of electric vehicles and stricter emission norms have drawn attention to further development endeavors in the optimization of passenger compartment conditioning. This need for revision in climatization concepts stems from the focus on defusing the trade-off between thermal comfort and operating distance. Thermal insulation of the drive cabin offers a promising solution. Within this framework, this paper outlines an approach to systematically analyze prevalent heat transfer phenomena within enclosing body surfaces. The conventional roof structure comprising a functionally integrated air gap was chosen as one such representative part. Detailed analysis at this component level presents itself as rather challenging and has therefore contemporarily not been investigated in depth. Computational fluid dynamics simulations are hence employed to analyze the existing complex conjugate heat transfer scenario. As a first step, thermal characterization of the simulation methodology was validated by conducting hot box measurements. Further detailed investigation using these numerical models provided an insight into the understanding of existing heat transfer modes. The obtained results contributed toward efficiently deriving concrete insulation concepts, overcoming restrictions placed by time -and cost-intensive testing procedures. Nutzungsrecht: Copyright © Daimler AG 2016 Fluid dynamics Insulation Heat transfer Niebling, Frank oth Logasanjeevi, Umashankar oth Premchandran, Vijay oth Enthalten in Heat transfer engineering Washington, DC : Taylor & Francis, 1979 37(2016), 16, Seite 1418 (DE-627)130491543 (DE-600)756635-9 (DE-576)016075919 0145-7632 nnns volume:37 year:2016 number:16 pages:1418 http://dx.doi.org/10.1080/01457632.2015.1136170 Volltext http://www.tandfonline.com/doi/abs/10.1080/01457632.2015.1136170 http://search.proquest.com/docview/1789765532 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2016 50.38 AVZ AR 37 2016 16 1418 |
allfields_unstemmed |
10.1080/01457632.2015.1136170 doi PQ20161201 (DE-627)OLC1985127377 (DE-599)GBVOLC1985127377 (PRQ)i2098-f5e61380554e3bc31e1f2e4d1a4d11322da976ba1353c445bfe256f8243504ce0 (KEY)0099344120160000037001601418improvedthermalinsulationforcontemporaryautomotive DE-627 ger DE-627 rakwb eng 620 DNB 50.38 bkl Wirth, Steffen verfasserin aut Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Significant losses in the maximum range of electric vehicles and stricter emission norms have drawn attention to further development endeavors in the optimization of passenger compartment conditioning. This need for revision in climatization concepts stems from the focus on defusing the trade-off between thermal comfort and operating distance. Thermal insulation of the drive cabin offers a promising solution. Within this framework, this paper outlines an approach to systematically analyze prevalent heat transfer phenomena within enclosing body surfaces. The conventional roof structure comprising a functionally integrated air gap was chosen as one such representative part. Detailed analysis at this component level presents itself as rather challenging and has therefore contemporarily not been investigated in depth. Computational fluid dynamics simulations are hence employed to analyze the existing complex conjugate heat transfer scenario. As a first step, thermal characterization of the simulation methodology was validated by conducting hot box measurements. Further detailed investigation using these numerical models provided an insight into the understanding of existing heat transfer modes. The obtained results contributed toward efficiently deriving concrete insulation concepts, overcoming restrictions placed by time -and cost-intensive testing procedures. Nutzungsrecht: Copyright © Daimler AG 2016 Fluid dynamics Insulation Heat transfer Niebling, Frank oth Logasanjeevi, Umashankar oth Premchandran, Vijay oth Enthalten in Heat transfer engineering Washington, DC : Taylor & Francis, 1979 37(2016), 16, Seite 1418 (DE-627)130491543 (DE-600)756635-9 (DE-576)016075919 0145-7632 nnns volume:37 year:2016 number:16 pages:1418 http://dx.doi.org/10.1080/01457632.2015.1136170 Volltext http://www.tandfonline.com/doi/abs/10.1080/01457632.2015.1136170 http://search.proquest.com/docview/1789765532 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2016 50.38 AVZ AR 37 2016 16 1418 |
allfieldsGer |
10.1080/01457632.2015.1136170 doi PQ20161201 (DE-627)OLC1985127377 (DE-599)GBVOLC1985127377 (PRQ)i2098-f5e61380554e3bc31e1f2e4d1a4d11322da976ba1353c445bfe256f8243504ce0 (KEY)0099344120160000037001601418improvedthermalinsulationforcontemporaryautomotive DE-627 ger DE-627 rakwb eng 620 DNB 50.38 bkl Wirth, Steffen verfasserin aut Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Significant losses in the maximum range of electric vehicles and stricter emission norms have drawn attention to further development endeavors in the optimization of passenger compartment conditioning. This need for revision in climatization concepts stems from the focus on defusing the trade-off between thermal comfort and operating distance. Thermal insulation of the drive cabin offers a promising solution. Within this framework, this paper outlines an approach to systematically analyze prevalent heat transfer phenomena within enclosing body surfaces. The conventional roof structure comprising a functionally integrated air gap was chosen as one such representative part. Detailed analysis at this component level presents itself as rather challenging and has therefore contemporarily not been investigated in depth. Computational fluid dynamics simulations are hence employed to analyze the existing complex conjugate heat transfer scenario. As a first step, thermal characterization of the simulation methodology was validated by conducting hot box measurements. Further detailed investigation using these numerical models provided an insight into the understanding of existing heat transfer modes. The obtained results contributed toward efficiently deriving concrete insulation concepts, overcoming restrictions placed by time -and cost-intensive testing procedures. Nutzungsrecht: Copyright © Daimler AG 2016 Fluid dynamics Insulation Heat transfer Niebling, Frank oth Logasanjeevi, Umashankar oth Premchandran, Vijay oth Enthalten in Heat transfer engineering Washington, DC : Taylor & Francis, 1979 37(2016), 16, Seite 1418 (DE-627)130491543 (DE-600)756635-9 (DE-576)016075919 0145-7632 nnns volume:37 year:2016 number:16 pages:1418 http://dx.doi.org/10.1080/01457632.2015.1136170 Volltext http://www.tandfonline.com/doi/abs/10.1080/01457632.2015.1136170 http://search.proquest.com/docview/1789765532 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2016 50.38 AVZ AR 37 2016 16 1418 |
allfieldsSound |
10.1080/01457632.2015.1136170 doi PQ20161201 (DE-627)OLC1985127377 (DE-599)GBVOLC1985127377 (PRQ)i2098-f5e61380554e3bc31e1f2e4d1a4d11322da976ba1353c445bfe256f8243504ce0 (KEY)0099344120160000037001601418improvedthermalinsulationforcontemporaryautomotive DE-627 ger DE-627 rakwb eng 620 DNB 50.38 bkl Wirth, Steffen verfasserin aut Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Significant losses in the maximum range of electric vehicles and stricter emission norms have drawn attention to further development endeavors in the optimization of passenger compartment conditioning. This need for revision in climatization concepts stems from the focus on defusing the trade-off between thermal comfort and operating distance. Thermal insulation of the drive cabin offers a promising solution. Within this framework, this paper outlines an approach to systematically analyze prevalent heat transfer phenomena within enclosing body surfaces. The conventional roof structure comprising a functionally integrated air gap was chosen as one such representative part. Detailed analysis at this component level presents itself as rather challenging and has therefore contemporarily not been investigated in depth. Computational fluid dynamics simulations are hence employed to analyze the existing complex conjugate heat transfer scenario. As a first step, thermal characterization of the simulation methodology was validated by conducting hot box measurements. Further detailed investigation using these numerical models provided an insight into the understanding of existing heat transfer modes. The obtained results contributed toward efficiently deriving concrete insulation concepts, overcoming restrictions placed by time -and cost-intensive testing procedures. Nutzungsrecht: Copyright © Daimler AG 2016 Fluid dynamics Insulation Heat transfer Niebling, Frank oth Logasanjeevi, Umashankar oth Premchandran, Vijay oth Enthalten in Heat transfer engineering Washington, DC : Taylor & Francis, 1979 37(2016), 16, Seite 1418 (DE-627)130491543 (DE-600)756635-9 (DE-576)016075919 0145-7632 nnns volume:37 year:2016 number:16 pages:1418 http://dx.doi.org/10.1080/01457632.2015.1136170 Volltext http://www.tandfonline.com/doi/abs/10.1080/01457632.2015.1136170 http://search.proquest.com/docview/1789765532 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2016 50.38 AVZ AR 37 2016 16 1418 |
language |
English |
source |
Enthalten in Heat transfer engineering 37(2016), 16, Seite 1418 volume:37 year:2016 number:16 pages:1418 |
sourceStr |
Enthalten in Heat transfer engineering 37(2016), 16, Seite 1418 volume:37 year:2016 number:16 pages:1418 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fluid dynamics Insulation Heat transfer |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Heat transfer engineering |
authorswithroles_txt_mv |
Wirth, Steffen @@aut@@ Niebling, Frank @@oth@@ Logasanjeevi, Umashankar @@oth@@ Premchandran, Vijay @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130491543 |
dewey-sort |
3620 |
id |
OLC1985127377 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1985127377</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216155825.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/01457632.2015.1136170</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1985127377</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1985127377</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i2098-f5e61380554e3bc31e1f2e4d1a4d11322da976ba1353c445bfe256f8243504ce0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0099344120160000037001601418improvedthermalinsulationforcontemporaryautomotive</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wirth, Steffen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Significant losses in the maximum range of electric vehicles and stricter emission norms have drawn attention to further development endeavors in the optimization of passenger compartment conditioning. This need for revision in climatization concepts stems from the focus on defusing the trade-off between thermal comfort and operating distance. Thermal insulation of the drive cabin offers a promising solution. Within this framework, this paper outlines an approach to systematically analyze prevalent heat transfer phenomena within enclosing body surfaces. The conventional roof structure comprising a functionally integrated air gap was chosen as one such representative part. Detailed analysis at this component level presents itself as rather challenging and has therefore contemporarily not been investigated in depth. Computational fluid dynamics simulations are hence employed to analyze the existing complex conjugate heat transfer scenario. As a first step, thermal characterization of the simulation methodology was validated by conducting hot box measurements. Further detailed investigation using these numerical models provided an insight into the understanding of existing heat transfer modes. The obtained results contributed toward efficiently deriving concrete insulation concepts, overcoming restrictions placed by time -and cost-intensive testing procedures.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © Daimler AG 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niebling, Frank</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Logasanjeevi, Umashankar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Premchandran, Vijay</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Heat transfer engineering</subfield><subfield code="d">Washington, DC : Taylor & Francis, 1979</subfield><subfield code="g">37(2016), 16, Seite 1418</subfield><subfield code="w">(DE-627)130491543</subfield><subfield code="w">(DE-600)756635-9</subfield><subfield code="w">(DE-576)016075919</subfield><subfield code="x">0145-7632</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:16</subfield><subfield code="g">pages:1418</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/01457632.2015.1136170</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/01457632.2015.1136170</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1789765532</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2016</subfield><subfield code="e">16</subfield><subfield code="h">1418</subfield></datafield></record></collection>
|
author |
Wirth, Steffen |
spellingShingle |
Wirth, Steffen ddc 620 bkl 50.38 misc Fluid dynamics misc Insulation misc Heat transfer Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach |
authorStr |
Wirth, Steffen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130491543 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0145-7632 |
topic_title |
620 DNB 50.38 bkl Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach Fluid dynamics Insulation Heat transfer |
topic |
ddc 620 bkl 50.38 misc Fluid dynamics misc Insulation misc Heat transfer |
topic_unstemmed |
ddc 620 bkl 50.38 misc Fluid dynamics misc Insulation misc Heat transfer |
topic_browse |
ddc 620 bkl 50.38 misc Fluid dynamics misc Insulation misc Heat transfer |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
f n fn u l ul v p vp |
hierarchy_parent_title |
Heat transfer engineering |
hierarchy_parent_id |
130491543 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Heat transfer engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130491543 (DE-600)756635-9 (DE-576)016075919 |
title |
Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach |
ctrlnum |
(DE-627)OLC1985127377 (DE-599)GBVOLC1985127377 (PRQ)i2098-f5e61380554e3bc31e1f2e4d1a4d11322da976ba1353c445bfe256f8243504ce0 (KEY)0099344120160000037001601418improvedthermalinsulationforcontemporaryautomotive |
title_full |
Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach |
author_sort |
Wirth, Steffen |
journal |
Heat transfer engineering |
journalStr |
Heat transfer engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1418 |
author_browse |
Wirth, Steffen |
container_volume |
37 |
class |
620 DNB 50.38 bkl |
format_se |
Aufsätze |
author-letter |
Wirth, Steffen |
doi_str_mv |
10.1080/01457632.2015.1136170 |
dewey-full |
620 |
title_sort |
improved thermal insulation for contemporary automotive roof structures based on a computational fluid dynamics heat flux approach |
title_auth |
Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach |
abstract |
Significant losses in the maximum range of electric vehicles and stricter emission norms have drawn attention to further development endeavors in the optimization of passenger compartment conditioning. This need for revision in climatization concepts stems from the focus on defusing the trade-off between thermal comfort and operating distance. Thermal insulation of the drive cabin offers a promising solution. Within this framework, this paper outlines an approach to systematically analyze prevalent heat transfer phenomena within enclosing body surfaces. The conventional roof structure comprising a functionally integrated air gap was chosen as one such representative part. Detailed analysis at this component level presents itself as rather challenging and has therefore contemporarily not been investigated in depth. Computational fluid dynamics simulations are hence employed to analyze the existing complex conjugate heat transfer scenario. As a first step, thermal characterization of the simulation methodology was validated by conducting hot box measurements. Further detailed investigation using these numerical models provided an insight into the understanding of existing heat transfer modes. The obtained results contributed toward efficiently deriving concrete insulation concepts, overcoming restrictions placed by time -and cost-intensive testing procedures. |
abstractGer |
Significant losses in the maximum range of electric vehicles and stricter emission norms have drawn attention to further development endeavors in the optimization of passenger compartment conditioning. This need for revision in climatization concepts stems from the focus on defusing the trade-off between thermal comfort and operating distance. Thermal insulation of the drive cabin offers a promising solution. Within this framework, this paper outlines an approach to systematically analyze prevalent heat transfer phenomena within enclosing body surfaces. The conventional roof structure comprising a functionally integrated air gap was chosen as one such representative part. Detailed analysis at this component level presents itself as rather challenging and has therefore contemporarily not been investigated in depth. Computational fluid dynamics simulations are hence employed to analyze the existing complex conjugate heat transfer scenario. As a first step, thermal characterization of the simulation methodology was validated by conducting hot box measurements. Further detailed investigation using these numerical models provided an insight into the understanding of existing heat transfer modes. The obtained results contributed toward efficiently deriving concrete insulation concepts, overcoming restrictions placed by time -and cost-intensive testing procedures. |
abstract_unstemmed |
Significant losses in the maximum range of electric vehicles and stricter emission norms have drawn attention to further development endeavors in the optimization of passenger compartment conditioning. This need for revision in climatization concepts stems from the focus on defusing the trade-off between thermal comfort and operating distance. Thermal insulation of the drive cabin offers a promising solution. Within this framework, this paper outlines an approach to systematically analyze prevalent heat transfer phenomena within enclosing body surfaces. The conventional roof structure comprising a functionally integrated air gap was chosen as one such representative part. Detailed analysis at this component level presents itself as rather challenging and has therefore contemporarily not been investigated in depth. Computational fluid dynamics simulations are hence employed to analyze the existing complex conjugate heat transfer scenario. As a first step, thermal characterization of the simulation methodology was validated by conducting hot box measurements. Further detailed investigation using these numerical models provided an insight into the understanding of existing heat transfer modes. The obtained results contributed toward efficiently deriving concrete insulation concepts, overcoming restrictions placed by time -and cost-intensive testing procedures. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2016 |
container_issue |
16 |
title_short |
Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach |
url |
http://dx.doi.org/10.1080/01457632.2015.1136170 http://www.tandfonline.com/doi/abs/10.1080/01457632.2015.1136170 http://search.proquest.com/docview/1789765532 |
remote_bool |
false |
author2 |
Niebling, Frank Logasanjeevi, Umashankar Premchandran, Vijay |
author2Str |
Niebling, Frank Logasanjeevi, Umashankar Premchandran, Vijay |
ppnlink |
130491543 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1080/01457632.2015.1136170 |
up_date |
2024-07-04T02:18:27.730Z |
_version_ |
1803613118377492480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1985127377</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216155825.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/01457632.2015.1136170</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1985127377</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1985127377</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i2098-f5e61380554e3bc31e1f2e4d1a4d11322da976ba1353c445bfe256f8243504ce0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0099344120160000037001601418improvedthermalinsulationforcontemporaryautomotive</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wirth, Steffen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved Thermal Insulation for Contemporary Automotive Roof Structures Based on a Computational Fluid Dynamics Heat Flux Approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Significant losses in the maximum range of electric vehicles and stricter emission norms have drawn attention to further development endeavors in the optimization of passenger compartment conditioning. This need for revision in climatization concepts stems from the focus on defusing the trade-off between thermal comfort and operating distance. Thermal insulation of the drive cabin offers a promising solution. Within this framework, this paper outlines an approach to systematically analyze prevalent heat transfer phenomena within enclosing body surfaces. The conventional roof structure comprising a functionally integrated air gap was chosen as one such representative part. Detailed analysis at this component level presents itself as rather challenging and has therefore contemporarily not been investigated in depth. Computational fluid dynamics simulations are hence employed to analyze the existing complex conjugate heat transfer scenario. As a first step, thermal characterization of the simulation methodology was validated by conducting hot box measurements. Further detailed investigation using these numerical models provided an insight into the understanding of existing heat transfer modes. The obtained results contributed toward efficiently deriving concrete insulation concepts, overcoming restrictions placed by time -and cost-intensive testing procedures.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © Daimler AG 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niebling, Frank</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Logasanjeevi, Umashankar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Premchandran, Vijay</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Heat transfer engineering</subfield><subfield code="d">Washington, DC : Taylor & Francis, 1979</subfield><subfield code="g">37(2016), 16, Seite 1418</subfield><subfield code="w">(DE-627)130491543</subfield><subfield code="w">(DE-600)756635-9</subfield><subfield code="w">(DE-576)016075919</subfield><subfield code="x">0145-7632</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:16</subfield><subfield code="g">pages:1418</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/01457632.2015.1136170</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/01457632.2015.1136170</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1789765532</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2016</subfield><subfield code="e">16</subfield><subfield code="h">1418</subfield></datafield></record></collection>
|
score |
7.4019346 |