Evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction
We investigated nonlinear ultrasonic characterization, nonlinear three-wave interaction, of the pure copper during fatigue with EMAR (Electromagnetic Acoustic Resonance), which was the combination with ultrasonic resonance and non-contacting transducer, EMAT (Electromagnetic Acoustic Transducer). In...
Ausführliche Beschreibung
Autor*in: |
Ishii, Yutaka [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © Acoustical Society of America |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: The journal of the Acoustical Society of America - Melville, NY : AIP, 1929, 140(2016), 4, Seite 3325-3325 |
---|---|
Übergeordnetes Werk: |
volume:140 ; year:2016 ; number:4 ; pages:3325-3325 |
Links: |
---|
DOI / URN: |
10.1121/1.4970593 |
---|
Katalog-ID: |
OLC1985257351 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1985257351 | ||
003 | DE-627 | ||
005 | 20220223210459.0 | ||
007 | tu | ||
008 | 161202s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1121/1.4970593 |2 doi | |
028 | 5 | 2 | |a PQ20170206 |
035 | |a (DE-627)OLC1985257351 | ||
035 | |a (DE-599)GBVOLC1985257351 | ||
035 | |a (PRQ)c693-4b719dc895631ca8ccd89e8a405851829813feec26ea3163392adfdc8186536b0 | ||
035 | |a (KEY)0112299120160000140000403325evaluationoffatiguedamageinapurecopperwithnonlinea | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a LING |2 fid | ||
084 | |a EQ 1000: |q AVZ |2 rvk | ||
084 | |a 33.12 |2 bkl | ||
084 | |a 50.36 |2 bkl | ||
100 | 1 | |a Ishii, Yutaka |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We investigated nonlinear ultrasonic characterization, nonlinear three-wave interaction, of the pure copper during fatigue with EMAR (Electromagnetic Acoustic Resonance), which was the combination with ultrasonic resonance and non-contacting transducer, EMAT (Electromagnetic Acoustic Transducer). In nonlinear three-wave interaction method, two intersecting ultrasonic waves produced a scattered wave when the resonance condition was satisfied. The amplitude in resonant scattering wave was measured. Nonlinear three-wave interaction method exhibited high sensitivity to micro-structural change of the damaged material. It rapidly increased from 50% of fatigue life to the fracture. TEM (Transmission Electron Microscope) and EBSD (Electron Backscatter Diffraction) observations supported this phenomenon caused by dislocation movement. The sensitivity in three-wave interaction method was higher than that in linear methods. The noncontact resonance-EMAT measurement can monitor the evolution of nonlinearity throughout the fatigue life and has a potential to assess the damage advance and to predict the fatigue life of metals. | ||
540 | |a Nutzungsrecht: © Acoustical Society of America | ||
700 | 1 | |a Ohtani, Toshihiro |4 oth | |
700 | 1 | |a Nakaniwa, Masayoshi |4 oth | |
700 | 1 | |a Kamaya, Masayuki |4 oth | |
773 | 0 | 8 | |i Enthalten in |t The journal of the Acoustical Society of America |d Melville, NY : AIP, 1929 |g 140(2016), 4, Seite 3325-3325 |w (DE-627)129550264 |w (DE-600)219231-7 |w (DE-576)015003663 |x 0001-4966 |7 nnns |
773 | 1 | 8 | |g volume:140 |g year:2016 |g number:4 |g pages:3325-3325 |
856 | 4 | 1 | |u http://dx.doi.org/10.1121/1.4970593 |3 Volltext |
856 | 4 | 2 | |u http://dx.doi.org/10.1121/1.4970593 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-LING | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MUS | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_201 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2045 | ||
912 | |a GBV_ILN_2192 | ||
912 | |a GBV_ILN_2256 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a EQ 1000: |
936 | b | k | |a 33.12 |q AVZ |
936 | b | k | |a 50.36 |q AVZ |
951 | |a AR | ||
952 | |d 140 |j 2016 |e 4 |h 3325-3325 |
author_variant |
y i yi |
---|---|
matchkey_str |
article:00014966:2016----::vlainfaiudmgiaueopriholna |
hierarchy_sort_str |
2016 |
bklnumber |
33.12 50.36 |
publishDate |
2016 |
allfields |
10.1121/1.4970593 doi PQ20170206 (DE-627)OLC1985257351 (DE-599)GBVOLC1985257351 (PRQ)c693-4b719dc895631ca8ccd89e8a405851829813feec26ea3163392adfdc8186536b0 (KEY)0112299120160000140000403325evaluationoffatiguedamageinapurecopperwithnonlinea DE-627 ger DE-627 rakwb eng 530 DE-600 LING fid EQ 1000: AVZ rvk 33.12 bkl 50.36 bkl Ishii, Yutaka verfasserin aut Evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We investigated nonlinear ultrasonic characterization, nonlinear three-wave interaction, of the pure copper during fatigue with EMAR (Electromagnetic Acoustic Resonance), which was the combination with ultrasonic resonance and non-contacting transducer, EMAT (Electromagnetic Acoustic Transducer). In nonlinear three-wave interaction method, two intersecting ultrasonic waves produced a scattered wave when the resonance condition was satisfied. The amplitude in resonant scattering wave was measured. Nonlinear three-wave interaction method exhibited high sensitivity to micro-structural change of the damaged material. It rapidly increased from 50% of fatigue life to the fracture. TEM (Transmission Electron Microscope) and EBSD (Electron Backscatter Diffraction) observations supported this phenomenon caused by dislocation movement. The sensitivity in three-wave interaction method was higher than that in linear methods. The noncontact resonance-EMAT measurement can monitor the evolution of nonlinearity throughout the fatigue life and has a potential to assess the damage advance and to predict the fatigue life of metals. Nutzungsrecht: © Acoustical Society of America Ohtani, Toshihiro oth Nakaniwa, Masayoshi oth Kamaya, Masayuki oth Enthalten in The journal of the Acoustical Society of America Melville, NY : AIP, 1929 140(2016), 4, Seite 3325-3325 (DE-627)129550264 (DE-600)219231-7 (DE-576)015003663 0001-4966 nnns volume:140 year:2016 number:4 pages:3325-3325 http://dx.doi.org/10.1121/1.4970593 Volltext http://dx.doi.org/10.1121/1.4970593 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-PHY SSG-OLC-MUS GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_170 GBV_ILN_201 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2045 GBV_ILN_2192 GBV_ILN_2256 GBV_ILN_4219 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4700 EQ 1000: 33.12 AVZ 50.36 AVZ AR 140 2016 4 3325-3325 |
spelling |
10.1121/1.4970593 doi PQ20170206 (DE-627)OLC1985257351 (DE-599)GBVOLC1985257351 (PRQ)c693-4b719dc895631ca8ccd89e8a405851829813feec26ea3163392adfdc8186536b0 (KEY)0112299120160000140000403325evaluationoffatiguedamageinapurecopperwithnonlinea DE-627 ger DE-627 rakwb eng 530 DE-600 LING fid EQ 1000: AVZ rvk 33.12 bkl 50.36 bkl Ishii, Yutaka verfasserin aut Evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We investigated nonlinear ultrasonic characterization, nonlinear three-wave interaction, of the pure copper during fatigue with EMAR (Electromagnetic Acoustic Resonance), which was the combination with ultrasonic resonance and non-contacting transducer, EMAT (Electromagnetic Acoustic Transducer). In nonlinear three-wave interaction method, two intersecting ultrasonic waves produced a scattered wave when the resonance condition was satisfied. The amplitude in resonant scattering wave was measured. Nonlinear three-wave interaction method exhibited high sensitivity to micro-structural change of the damaged material. It rapidly increased from 50% of fatigue life to the fracture. TEM (Transmission Electron Microscope) and EBSD (Electron Backscatter Diffraction) observations supported this phenomenon caused by dislocation movement. The sensitivity in three-wave interaction method was higher than that in linear methods. The noncontact resonance-EMAT measurement can monitor the evolution of nonlinearity throughout the fatigue life and has a potential to assess the damage advance and to predict the fatigue life of metals. Nutzungsrecht: © Acoustical Society of America Ohtani, Toshihiro oth Nakaniwa, Masayoshi oth Kamaya, Masayuki oth Enthalten in The journal of the Acoustical Society of America Melville, NY : AIP, 1929 140(2016), 4, Seite 3325-3325 (DE-627)129550264 (DE-600)219231-7 (DE-576)015003663 0001-4966 nnns volume:140 year:2016 number:4 pages:3325-3325 http://dx.doi.org/10.1121/1.4970593 Volltext http://dx.doi.org/10.1121/1.4970593 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-PHY SSG-OLC-MUS GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_170 GBV_ILN_201 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2045 GBV_ILN_2192 GBV_ILN_2256 GBV_ILN_4219 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4700 EQ 1000: 33.12 AVZ 50.36 AVZ AR 140 2016 4 3325-3325 |
allfields_unstemmed |
10.1121/1.4970593 doi PQ20170206 (DE-627)OLC1985257351 (DE-599)GBVOLC1985257351 (PRQ)c693-4b719dc895631ca8ccd89e8a405851829813feec26ea3163392adfdc8186536b0 (KEY)0112299120160000140000403325evaluationoffatiguedamageinapurecopperwithnonlinea DE-627 ger DE-627 rakwb eng 530 DE-600 LING fid EQ 1000: AVZ rvk 33.12 bkl 50.36 bkl Ishii, Yutaka verfasserin aut Evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We investigated nonlinear ultrasonic characterization, nonlinear three-wave interaction, of the pure copper during fatigue with EMAR (Electromagnetic Acoustic Resonance), which was the combination with ultrasonic resonance and non-contacting transducer, EMAT (Electromagnetic Acoustic Transducer). In nonlinear three-wave interaction method, two intersecting ultrasonic waves produced a scattered wave when the resonance condition was satisfied. The amplitude in resonant scattering wave was measured. Nonlinear three-wave interaction method exhibited high sensitivity to micro-structural change of the damaged material. It rapidly increased from 50% of fatigue life to the fracture. TEM (Transmission Electron Microscope) and EBSD (Electron Backscatter Diffraction) observations supported this phenomenon caused by dislocation movement. The sensitivity in three-wave interaction method was higher than that in linear methods. The noncontact resonance-EMAT measurement can monitor the evolution of nonlinearity throughout the fatigue life and has a potential to assess the damage advance and to predict the fatigue life of metals. Nutzungsrecht: © Acoustical Society of America Ohtani, Toshihiro oth Nakaniwa, Masayoshi oth Kamaya, Masayuki oth Enthalten in The journal of the Acoustical Society of America Melville, NY : AIP, 1929 140(2016), 4, Seite 3325-3325 (DE-627)129550264 (DE-600)219231-7 (DE-576)015003663 0001-4966 nnns volume:140 year:2016 number:4 pages:3325-3325 http://dx.doi.org/10.1121/1.4970593 Volltext http://dx.doi.org/10.1121/1.4970593 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-PHY SSG-OLC-MUS GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_170 GBV_ILN_201 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2045 GBV_ILN_2192 GBV_ILN_2256 GBV_ILN_4219 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4700 EQ 1000: 33.12 AVZ 50.36 AVZ AR 140 2016 4 3325-3325 |
allfieldsGer |
10.1121/1.4970593 doi PQ20170206 (DE-627)OLC1985257351 (DE-599)GBVOLC1985257351 (PRQ)c693-4b719dc895631ca8ccd89e8a405851829813feec26ea3163392adfdc8186536b0 (KEY)0112299120160000140000403325evaluationoffatiguedamageinapurecopperwithnonlinea DE-627 ger DE-627 rakwb eng 530 DE-600 LING fid EQ 1000: AVZ rvk 33.12 bkl 50.36 bkl Ishii, Yutaka verfasserin aut Evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We investigated nonlinear ultrasonic characterization, nonlinear three-wave interaction, of the pure copper during fatigue with EMAR (Electromagnetic Acoustic Resonance), which was the combination with ultrasonic resonance and non-contacting transducer, EMAT (Electromagnetic Acoustic Transducer). In nonlinear three-wave interaction method, two intersecting ultrasonic waves produced a scattered wave when the resonance condition was satisfied. The amplitude in resonant scattering wave was measured. Nonlinear three-wave interaction method exhibited high sensitivity to micro-structural change of the damaged material. It rapidly increased from 50% of fatigue life to the fracture. TEM (Transmission Electron Microscope) and EBSD (Electron Backscatter Diffraction) observations supported this phenomenon caused by dislocation movement. The sensitivity in three-wave interaction method was higher than that in linear methods. The noncontact resonance-EMAT measurement can monitor the evolution of nonlinearity throughout the fatigue life and has a potential to assess the damage advance and to predict the fatigue life of metals. Nutzungsrecht: © Acoustical Society of America Ohtani, Toshihiro oth Nakaniwa, Masayoshi oth Kamaya, Masayuki oth Enthalten in The journal of the Acoustical Society of America Melville, NY : AIP, 1929 140(2016), 4, Seite 3325-3325 (DE-627)129550264 (DE-600)219231-7 (DE-576)015003663 0001-4966 nnns volume:140 year:2016 number:4 pages:3325-3325 http://dx.doi.org/10.1121/1.4970593 Volltext http://dx.doi.org/10.1121/1.4970593 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-PHY SSG-OLC-MUS GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_170 GBV_ILN_201 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2045 GBV_ILN_2192 GBV_ILN_2256 GBV_ILN_4219 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4700 EQ 1000: 33.12 AVZ 50.36 AVZ AR 140 2016 4 3325-3325 |
allfieldsSound |
10.1121/1.4970593 doi PQ20170206 (DE-627)OLC1985257351 (DE-599)GBVOLC1985257351 (PRQ)c693-4b719dc895631ca8ccd89e8a405851829813feec26ea3163392adfdc8186536b0 (KEY)0112299120160000140000403325evaluationoffatiguedamageinapurecopperwithnonlinea DE-627 ger DE-627 rakwb eng 530 DE-600 LING fid EQ 1000: AVZ rvk 33.12 bkl 50.36 bkl Ishii, Yutaka verfasserin aut Evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We investigated nonlinear ultrasonic characterization, nonlinear three-wave interaction, of the pure copper during fatigue with EMAR (Electromagnetic Acoustic Resonance), which was the combination with ultrasonic resonance and non-contacting transducer, EMAT (Electromagnetic Acoustic Transducer). In nonlinear three-wave interaction method, two intersecting ultrasonic waves produced a scattered wave when the resonance condition was satisfied. The amplitude in resonant scattering wave was measured. Nonlinear three-wave interaction method exhibited high sensitivity to micro-structural change of the damaged material. It rapidly increased from 50% of fatigue life to the fracture. TEM (Transmission Electron Microscope) and EBSD (Electron Backscatter Diffraction) observations supported this phenomenon caused by dislocation movement. The sensitivity in three-wave interaction method was higher than that in linear methods. The noncontact resonance-EMAT measurement can monitor the evolution of nonlinearity throughout the fatigue life and has a potential to assess the damage advance and to predict the fatigue life of metals. Nutzungsrecht: © Acoustical Society of America Ohtani, Toshihiro oth Nakaniwa, Masayoshi oth Kamaya, Masayuki oth Enthalten in The journal of the Acoustical Society of America Melville, NY : AIP, 1929 140(2016), 4, Seite 3325-3325 (DE-627)129550264 (DE-600)219231-7 (DE-576)015003663 0001-4966 nnns volume:140 year:2016 number:4 pages:3325-3325 http://dx.doi.org/10.1121/1.4970593 Volltext http://dx.doi.org/10.1121/1.4970593 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-PHY SSG-OLC-MUS GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_170 GBV_ILN_201 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2045 GBV_ILN_2192 GBV_ILN_2256 GBV_ILN_4219 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4700 EQ 1000: 33.12 AVZ 50.36 AVZ AR 140 2016 4 3325-3325 |
language |
English |
source |
Enthalten in The journal of the Acoustical Society of America 140(2016), 4, Seite 3325-3325 volume:140 year:2016 number:4 pages:3325-3325 |
sourceStr |
Enthalten in The journal of the Acoustical Society of America 140(2016), 4, Seite 3325-3325 volume:140 year:2016 number:4 pages:3325-3325 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
The journal of the Acoustical Society of America |
authorswithroles_txt_mv |
Ishii, Yutaka @@aut@@ Ohtani, Toshihiro @@oth@@ Nakaniwa, Masayoshi @@oth@@ Kamaya, Masayuki @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129550264 |
dewey-sort |
3530 |
id |
OLC1985257351 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1985257351</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223210459.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1121/1.4970593</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1985257351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1985257351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c693-4b719dc895631ca8ccd89e8a405851829813feec26ea3163392adfdc8186536b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0112299120160000140000403325evaluationoffatiguedamageinapurecopperwithnonlinea</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">EQ 1000:</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ishii, Yutaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We investigated nonlinear ultrasonic characterization, nonlinear three-wave interaction, of the pure copper during fatigue with EMAR (Electromagnetic Acoustic Resonance), which was the combination with ultrasonic resonance and non-contacting transducer, EMAT (Electromagnetic Acoustic Transducer). In nonlinear three-wave interaction method, two intersecting ultrasonic waves produced a scattered wave when the resonance condition was satisfied. The amplitude in resonant scattering wave was measured. Nonlinear three-wave interaction method exhibited high sensitivity to micro-structural change of the damaged material. It rapidly increased from 50% of fatigue life to the fracture. TEM (Transmission Electron Microscope) and EBSD (Electron Backscatter Diffraction) observations supported this phenomenon caused by dislocation movement. The sensitivity in three-wave interaction method was higher than that in linear methods. The noncontact resonance-EMAT measurement can monitor the evolution of nonlinearity throughout the fatigue life and has a potential to assess the damage advance and to predict the fatigue life of metals.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Acoustical Society of America</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ohtani, Toshihiro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakaniwa, Masayoshi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kamaya, Masayuki</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of the Acoustical Society of America</subfield><subfield code="d">Melville, NY : AIP, 1929</subfield><subfield code="g">140(2016), 4, Seite 3325-3325</subfield><subfield code="w">(DE-627)129550264</subfield><subfield code="w">(DE-600)219231-7</subfield><subfield code="w">(DE-576)015003663</subfield><subfield code="x">0001-4966</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:140</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:3325-3325</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1121/1.4970593</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1121/1.4970593</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MUS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2045</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2256</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">EQ 1000:</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.12</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.36</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">140</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">3325-3325</subfield></datafield></record></collection>
|
author |
Ishii, Yutaka |
spellingShingle |
Ishii, Yutaka ddc 530 fid LING rvk EQ 1000: bkl 33.12 bkl 50.36 Evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction |
authorStr |
Ishii, Yutaka |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129550264 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-4966 |
topic_title |
530 DE-600 LING fid EQ 1000: AVZ rvk 33.12 bkl 50.36 bkl Evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction |
topic |
ddc 530 fid LING rvk EQ 1000: bkl 33.12 bkl 50.36 |
topic_unstemmed |
ddc 530 fid LING rvk EQ 1000: bkl 33.12 bkl 50.36 |
topic_browse |
ddc 530 fid LING rvk EQ 1000: bkl 33.12 bkl 50.36 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t o to m n mn m k mk |
hierarchy_parent_title |
The journal of the Acoustical Society of America |
hierarchy_parent_id |
129550264 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
The journal of the Acoustical Society of America |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129550264 (DE-600)219231-7 (DE-576)015003663 |
title |
Evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction |
ctrlnum |
(DE-627)OLC1985257351 (DE-599)GBVOLC1985257351 (PRQ)c693-4b719dc895631ca8ccd89e8a405851829813feec26ea3163392adfdc8186536b0 (KEY)0112299120160000140000403325evaluationoffatiguedamageinapurecopperwithnonlinea |
title_full |
Evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction |
author_sort |
Ishii, Yutaka |
journal |
The journal of the Acoustical Society of America |
journalStr |
The journal of the Acoustical Society of America |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
3325 |
author_browse |
Ishii, Yutaka |
container_volume |
140 |
class |
530 DE-600 LING fid EQ 1000: AVZ rvk 33.12 bkl 50.36 bkl |
format_se |
Aufsätze |
author-letter |
Ishii, Yutaka |
doi_str_mv |
10.1121/1.4970593 |
dewey-full |
530 |
title_sort |
evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction |
title_auth |
Evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction |
abstract |
We investigated nonlinear ultrasonic characterization, nonlinear three-wave interaction, of the pure copper during fatigue with EMAR (Electromagnetic Acoustic Resonance), which was the combination with ultrasonic resonance and non-contacting transducer, EMAT (Electromagnetic Acoustic Transducer). In nonlinear three-wave interaction method, two intersecting ultrasonic waves produced a scattered wave when the resonance condition was satisfied. The amplitude in resonant scattering wave was measured. Nonlinear three-wave interaction method exhibited high sensitivity to micro-structural change of the damaged material. It rapidly increased from 50% of fatigue life to the fracture. TEM (Transmission Electron Microscope) and EBSD (Electron Backscatter Diffraction) observations supported this phenomenon caused by dislocation movement. The sensitivity in three-wave interaction method was higher than that in linear methods. The noncontact resonance-EMAT measurement can monitor the evolution of nonlinearity throughout the fatigue life and has a potential to assess the damage advance and to predict the fatigue life of metals. |
abstractGer |
We investigated nonlinear ultrasonic characterization, nonlinear three-wave interaction, of the pure copper during fatigue with EMAR (Electromagnetic Acoustic Resonance), which was the combination with ultrasonic resonance and non-contacting transducer, EMAT (Electromagnetic Acoustic Transducer). In nonlinear three-wave interaction method, two intersecting ultrasonic waves produced a scattered wave when the resonance condition was satisfied. The amplitude in resonant scattering wave was measured. Nonlinear three-wave interaction method exhibited high sensitivity to micro-structural change of the damaged material. It rapidly increased from 50% of fatigue life to the fracture. TEM (Transmission Electron Microscope) and EBSD (Electron Backscatter Diffraction) observations supported this phenomenon caused by dislocation movement. The sensitivity in three-wave interaction method was higher than that in linear methods. The noncontact resonance-EMAT measurement can monitor the evolution of nonlinearity throughout the fatigue life and has a potential to assess the damage advance and to predict the fatigue life of metals. |
abstract_unstemmed |
We investigated nonlinear ultrasonic characterization, nonlinear three-wave interaction, of the pure copper during fatigue with EMAR (Electromagnetic Acoustic Resonance), which was the combination with ultrasonic resonance and non-contacting transducer, EMAT (Electromagnetic Acoustic Transducer). In nonlinear three-wave interaction method, two intersecting ultrasonic waves produced a scattered wave when the resonance condition was satisfied. The amplitude in resonant scattering wave was measured. Nonlinear three-wave interaction method exhibited high sensitivity to micro-structural change of the damaged material. It rapidly increased from 50% of fatigue life to the fracture. TEM (Transmission Electron Microscope) and EBSD (Electron Backscatter Diffraction) observations supported this phenomenon caused by dislocation movement. The sensitivity in three-wave interaction method was higher than that in linear methods. The noncontact resonance-EMAT measurement can monitor the evolution of nonlinearity throughout the fatigue life and has a potential to assess the damage advance and to predict the fatigue life of metals. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING SSG-OLC-PHY SSG-OLC-MUS GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_170 GBV_ILN_201 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2027 GBV_ILN_2045 GBV_ILN_2192 GBV_ILN_2256 GBV_ILN_4219 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction |
url |
http://dx.doi.org/10.1121/1.4970593 |
remote_bool |
false |
author2 |
Ohtani, Toshihiro Nakaniwa, Masayoshi Kamaya, Masayuki |
author2Str |
Ohtani, Toshihiro Nakaniwa, Masayoshi Kamaya, Masayuki |
ppnlink |
129550264 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1121/1.4970593 |
up_date |
2024-07-04T02:34:15.752Z |
_version_ |
1803614112452706304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1985257351</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223210459.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1121/1.4970593</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1985257351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1985257351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c693-4b719dc895631ca8ccd89e8a405851829813feec26ea3163392adfdc8186536b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0112299120160000140000403325evaluationoffatiguedamageinapurecopperwithnonlinea</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">EQ 1000:</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ishii, Yutaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of fatigue damage in a pure copper with nonlinear three-wave interaction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We investigated nonlinear ultrasonic characterization, nonlinear three-wave interaction, of the pure copper during fatigue with EMAR (Electromagnetic Acoustic Resonance), which was the combination with ultrasonic resonance and non-contacting transducer, EMAT (Electromagnetic Acoustic Transducer). In nonlinear three-wave interaction method, two intersecting ultrasonic waves produced a scattered wave when the resonance condition was satisfied. The amplitude in resonant scattering wave was measured. Nonlinear three-wave interaction method exhibited high sensitivity to micro-structural change of the damaged material. It rapidly increased from 50% of fatigue life to the fracture. TEM (Transmission Electron Microscope) and EBSD (Electron Backscatter Diffraction) observations supported this phenomenon caused by dislocation movement. The sensitivity in three-wave interaction method was higher than that in linear methods. The noncontact resonance-EMAT measurement can monitor the evolution of nonlinearity throughout the fatigue life and has a potential to assess the damage advance and to predict the fatigue life of metals.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Acoustical Society of America</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ohtani, Toshihiro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakaniwa, Masayoshi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kamaya, Masayuki</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of the Acoustical Society of America</subfield><subfield code="d">Melville, NY : AIP, 1929</subfield><subfield code="g">140(2016), 4, Seite 3325-3325</subfield><subfield code="w">(DE-627)129550264</subfield><subfield code="w">(DE-600)219231-7</subfield><subfield code="w">(DE-576)015003663</subfield><subfield code="x">0001-4966</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:140</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:3325-3325</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1121/1.4970593</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1121/1.4970593</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MUS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2045</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2256</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">EQ 1000:</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.12</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.36</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">140</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">3325-3325</subfield></datafield></record></collection>
|
score |
7.4022045 |