Adaptive Fuzzy Hysteresis Internal Model Tracking Control of Piezoelectric Actuators With Nanoscale Application
In this paper, a novel Takagi-Sugeno (T-S) fuzzy-system-based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the developed fuzzy hysteresis model (FHM) can be identified online through uniform partition approach and recursive least squares (R...
Ausführliche Beschreibung
Autor*in: |
Li, Pengzhi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on fuzzy systems - New York, NY : Inst., 1993, 24(2016), 5, Seite 1246-1254 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2016 ; number:5 ; pages:1246-1254 |
Links: |
---|
DOI / URN: |
10.1109/TFUZZ.2015.2502282 |
---|
Katalog-ID: |
OLC198601777X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC198601777X | ||
003 | DE-627 | ||
005 | 20230714233013.0 | ||
007 | tu | ||
008 | 161202s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TFUZZ.2015.2502282 |2 doi | |
028 | 5 | 2 | |a PQ20170301 |
035 | |a (DE-627)OLC198601777X | ||
035 | |a (DE-599)GBVOLC198601777X | ||
035 | |a (PRQ)c1378-4b85d752b2f477ed02bbb21418ca3a0f7195d2f69f4ce0061d86346cf7bbe74a0 | ||
035 | |a (KEY)0226257620160000024000501246adaptivefuzzyhysteresisinternalmodeltrackingcontro | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DNB |
100 | 1 | |a Li, Pengzhi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adaptive Fuzzy Hysteresis Internal Model Tracking Control of Piezoelectric Actuators With Nanoscale Application |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, a novel Takagi-Sugeno (T-S) fuzzy-system-based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the developed fuzzy hysteresis model (FHM) can be identified online through uniform partition approach and recursive least squares (RLS) algorithm, respectively. With respect to the controller design, the inverse of FHM is used to develop a fuzzy internal model (FIM) controller. Decreasing the hysteresis effect, the FIM controller has a good performance of high-speed trajectory tracking. To achieve nanometer-scale tracking precision, the novel fuzzy adaptive internal model (FAIM) controller is uniquely developed. Based on real-time input and output data to update FHM, the FAIM controller is capable of compensating for the hysteresis effect of the piezoelectric actuator in real time. Finally, the experimental results for two cases are shown: the first is with 50 Hz and the other with multiple-frequency (50 + 25 Hz) sinusoidal trajectories tracking that demonstrate the efficiency of the proposed controllers. Especially, being 0.32% of the maximum desired displacement, the maximum error of 50-Hz sinusoidal tracking is greatly reduced to 6 nm. This result clearly indicates the nanometer-scale tracking performance of the novel FAIM controller. | ||
650 | 4 | |a Fuzzy sets | |
650 | 4 | |a Adaptation models | |
650 | 4 | |a Takagi–Sugeno (T–S) | |
650 | 4 | |a piezoelectric actuator | |
650 | 4 | |a Fuzzy adaptive internal model (FAIM) | |
650 | 4 | |a trajectory tracking | |
650 | 4 | |a Chlorine | |
650 | 4 | |a Hysteresis | |
650 | 4 | |a Autoregressive processes | |
650 | 4 | |a Piezoelectric actuators | |
650 | 4 | |a Takagi-Sugeno (T-S) | |
700 | 1 | |a Li, Peiyue |4 oth | |
700 | 1 | |a Sui, Yongxin |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on fuzzy systems |d New York, NY : Inst., 1993 |g 24(2016), 5, Seite 1246-1254 |w (DE-627)171085515 |w (DE-600)1149610-1 |w (DE-576)034198547 |x 1063-6706 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2016 |g number:5 |g pages:1246-1254 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TFUZZ.2015.2502282 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7332769 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 24 |j 2016 |e 5 |h 1246-1254 |
author_variant |
p l pl |
---|---|
matchkey_str |
article:10636706:2016----::dpieuzhseeiitramdlrcigotoopeolcrccut |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/TFUZZ.2015.2502282 doi PQ20170301 (DE-627)OLC198601777X (DE-599)GBVOLC198601777X (PRQ)c1378-4b85d752b2f477ed02bbb21418ca3a0f7195d2f69f4ce0061d86346cf7bbe74a0 (KEY)0226257620160000024000501246adaptivefuzzyhysteresisinternalmodeltrackingcontro DE-627 ger DE-627 rakwb eng 004 DNB Li, Pengzhi verfasserin aut Adaptive Fuzzy Hysteresis Internal Model Tracking Control of Piezoelectric Actuators With Nanoscale Application 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a novel Takagi-Sugeno (T-S) fuzzy-system-based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the developed fuzzy hysteresis model (FHM) can be identified online through uniform partition approach and recursive least squares (RLS) algorithm, respectively. With respect to the controller design, the inverse of FHM is used to develop a fuzzy internal model (FIM) controller. Decreasing the hysteresis effect, the FIM controller has a good performance of high-speed trajectory tracking. To achieve nanometer-scale tracking precision, the novel fuzzy adaptive internal model (FAIM) controller is uniquely developed. Based on real-time input and output data to update FHM, the FAIM controller is capable of compensating for the hysteresis effect of the piezoelectric actuator in real time. Finally, the experimental results for two cases are shown: the first is with 50 Hz and the other with multiple-frequency (50 + 25 Hz) sinusoidal trajectories tracking that demonstrate the efficiency of the proposed controllers. Especially, being 0.32% of the maximum desired displacement, the maximum error of 50-Hz sinusoidal tracking is greatly reduced to 6 nm. This result clearly indicates the nanometer-scale tracking performance of the novel FAIM controller. Fuzzy sets Adaptation models Takagi–Sugeno (T–S) piezoelectric actuator Fuzzy adaptive internal model (FAIM) trajectory tracking Chlorine Hysteresis Autoregressive processes Piezoelectric actuators Takagi-Sugeno (T-S) Li, Peiyue oth Sui, Yongxin oth Enthalten in IEEE transactions on fuzzy systems New York, NY : Inst., 1993 24(2016), 5, Seite 1246-1254 (DE-627)171085515 (DE-600)1149610-1 (DE-576)034198547 1063-6706 nnns volume:24 year:2016 number:5 pages:1246-1254 http://dx.doi.org/10.1109/TFUZZ.2015.2502282 Volltext http://ieeexplore.ieee.org/document/7332769 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_30 GBV_ILN_70 AR 24 2016 5 1246-1254 |
spelling |
10.1109/TFUZZ.2015.2502282 doi PQ20170301 (DE-627)OLC198601777X (DE-599)GBVOLC198601777X (PRQ)c1378-4b85d752b2f477ed02bbb21418ca3a0f7195d2f69f4ce0061d86346cf7bbe74a0 (KEY)0226257620160000024000501246adaptivefuzzyhysteresisinternalmodeltrackingcontro DE-627 ger DE-627 rakwb eng 004 DNB Li, Pengzhi verfasserin aut Adaptive Fuzzy Hysteresis Internal Model Tracking Control of Piezoelectric Actuators With Nanoscale Application 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a novel Takagi-Sugeno (T-S) fuzzy-system-based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the developed fuzzy hysteresis model (FHM) can be identified online through uniform partition approach and recursive least squares (RLS) algorithm, respectively. With respect to the controller design, the inverse of FHM is used to develop a fuzzy internal model (FIM) controller. Decreasing the hysteresis effect, the FIM controller has a good performance of high-speed trajectory tracking. To achieve nanometer-scale tracking precision, the novel fuzzy adaptive internal model (FAIM) controller is uniquely developed. Based on real-time input and output data to update FHM, the FAIM controller is capable of compensating for the hysteresis effect of the piezoelectric actuator in real time. Finally, the experimental results for two cases are shown: the first is with 50 Hz and the other with multiple-frequency (50 + 25 Hz) sinusoidal trajectories tracking that demonstrate the efficiency of the proposed controllers. Especially, being 0.32% of the maximum desired displacement, the maximum error of 50-Hz sinusoidal tracking is greatly reduced to 6 nm. This result clearly indicates the nanometer-scale tracking performance of the novel FAIM controller. Fuzzy sets Adaptation models Takagi–Sugeno (T–S) piezoelectric actuator Fuzzy adaptive internal model (FAIM) trajectory tracking Chlorine Hysteresis Autoregressive processes Piezoelectric actuators Takagi-Sugeno (T-S) Li, Peiyue oth Sui, Yongxin oth Enthalten in IEEE transactions on fuzzy systems New York, NY : Inst., 1993 24(2016), 5, Seite 1246-1254 (DE-627)171085515 (DE-600)1149610-1 (DE-576)034198547 1063-6706 nnns volume:24 year:2016 number:5 pages:1246-1254 http://dx.doi.org/10.1109/TFUZZ.2015.2502282 Volltext http://ieeexplore.ieee.org/document/7332769 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_30 GBV_ILN_70 AR 24 2016 5 1246-1254 |
allfields_unstemmed |
10.1109/TFUZZ.2015.2502282 doi PQ20170301 (DE-627)OLC198601777X (DE-599)GBVOLC198601777X (PRQ)c1378-4b85d752b2f477ed02bbb21418ca3a0f7195d2f69f4ce0061d86346cf7bbe74a0 (KEY)0226257620160000024000501246adaptivefuzzyhysteresisinternalmodeltrackingcontro DE-627 ger DE-627 rakwb eng 004 DNB Li, Pengzhi verfasserin aut Adaptive Fuzzy Hysteresis Internal Model Tracking Control of Piezoelectric Actuators With Nanoscale Application 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a novel Takagi-Sugeno (T-S) fuzzy-system-based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the developed fuzzy hysteresis model (FHM) can be identified online through uniform partition approach and recursive least squares (RLS) algorithm, respectively. With respect to the controller design, the inverse of FHM is used to develop a fuzzy internal model (FIM) controller. Decreasing the hysteresis effect, the FIM controller has a good performance of high-speed trajectory tracking. To achieve nanometer-scale tracking precision, the novel fuzzy adaptive internal model (FAIM) controller is uniquely developed. Based on real-time input and output data to update FHM, the FAIM controller is capable of compensating for the hysteresis effect of the piezoelectric actuator in real time. Finally, the experimental results for two cases are shown: the first is with 50 Hz and the other with multiple-frequency (50 + 25 Hz) sinusoidal trajectories tracking that demonstrate the efficiency of the proposed controllers. Especially, being 0.32% of the maximum desired displacement, the maximum error of 50-Hz sinusoidal tracking is greatly reduced to 6 nm. This result clearly indicates the nanometer-scale tracking performance of the novel FAIM controller. Fuzzy sets Adaptation models Takagi–Sugeno (T–S) piezoelectric actuator Fuzzy adaptive internal model (FAIM) trajectory tracking Chlorine Hysteresis Autoregressive processes Piezoelectric actuators Takagi-Sugeno (T-S) Li, Peiyue oth Sui, Yongxin oth Enthalten in IEEE transactions on fuzzy systems New York, NY : Inst., 1993 24(2016), 5, Seite 1246-1254 (DE-627)171085515 (DE-600)1149610-1 (DE-576)034198547 1063-6706 nnns volume:24 year:2016 number:5 pages:1246-1254 http://dx.doi.org/10.1109/TFUZZ.2015.2502282 Volltext http://ieeexplore.ieee.org/document/7332769 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_30 GBV_ILN_70 AR 24 2016 5 1246-1254 |
allfieldsGer |
10.1109/TFUZZ.2015.2502282 doi PQ20170301 (DE-627)OLC198601777X (DE-599)GBVOLC198601777X (PRQ)c1378-4b85d752b2f477ed02bbb21418ca3a0f7195d2f69f4ce0061d86346cf7bbe74a0 (KEY)0226257620160000024000501246adaptivefuzzyhysteresisinternalmodeltrackingcontro DE-627 ger DE-627 rakwb eng 004 DNB Li, Pengzhi verfasserin aut Adaptive Fuzzy Hysteresis Internal Model Tracking Control of Piezoelectric Actuators With Nanoscale Application 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a novel Takagi-Sugeno (T-S) fuzzy-system-based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the developed fuzzy hysteresis model (FHM) can be identified online through uniform partition approach and recursive least squares (RLS) algorithm, respectively. With respect to the controller design, the inverse of FHM is used to develop a fuzzy internal model (FIM) controller. Decreasing the hysteresis effect, the FIM controller has a good performance of high-speed trajectory tracking. To achieve nanometer-scale tracking precision, the novel fuzzy adaptive internal model (FAIM) controller is uniquely developed. Based on real-time input and output data to update FHM, the FAIM controller is capable of compensating for the hysteresis effect of the piezoelectric actuator in real time. Finally, the experimental results for two cases are shown: the first is with 50 Hz and the other with multiple-frequency (50 + 25 Hz) sinusoidal trajectories tracking that demonstrate the efficiency of the proposed controllers. Especially, being 0.32% of the maximum desired displacement, the maximum error of 50-Hz sinusoidal tracking is greatly reduced to 6 nm. This result clearly indicates the nanometer-scale tracking performance of the novel FAIM controller. Fuzzy sets Adaptation models Takagi–Sugeno (T–S) piezoelectric actuator Fuzzy adaptive internal model (FAIM) trajectory tracking Chlorine Hysteresis Autoregressive processes Piezoelectric actuators Takagi-Sugeno (T-S) Li, Peiyue oth Sui, Yongxin oth Enthalten in IEEE transactions on fuzzy systems New York, NY : Inst., 1993 24(2016), 5, Seite 1246-1254 (DE-627)171085515 (DE-600)1149610-1 (DE-576)034198547 1063-6706 nnns volume:24 year:2016 number:5 pages:1246-1254 http://dx.doi.org/10.1109/TFUZZ.2015.2502282 Volltext http://ieeexplore.ieee.org/document/7332769 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_30 GBV_ILN_70 AR 24 2016 5 1246-1254 |
allfieldsSound |
10.1109/TFUZZ.2015.2502282 doi PQ20170301 (DE-627)OLC198601777X (DE-599)GBVOLC198601777X (PRQ)c1378-4b85d752b2f477ed02bbb21418ca3a0f7195d2f69f4ce0061d86346cf7bbe74a0 (KEY)0226257620160000024000501246adaptivefuzzyhysteresisinternalmodeltrackingcontro DE-627 ger DE-627 rakwb eng 004 DNB Li, Pengzhi verfasserin aut Adaptive Fuzzy Hysteresis Internal Model Tracking Control of Piezoelectric Actuators With Nanoscale Application 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a novel Takagi-Sugeno (T-S) fuzzy-system-based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the developed fuzzy hysteresis model (FHM) can be identified online through uniform partition approach and recursive least squares (RLS) algorithm, respectively. With respect to the controller design, the inverse of FHM is used to develop a fuzzy internal model (FIM) controller. Decreasing the hysteresis effect, the FIM controller has a good performance of high-speed trajectory tracking. To achieve nanometer-scale tracking precision, the novel fuzzy adaptive internal model (FAIM) controller is uniquely developed. Based on real-time input and output data to update FHM, the FAIM controller is capable of compensating for the hysteresis effect of the piezoelectric actuator in real time. Finally, the experimental results for two cases are shown: the first is with 50 Hz and the other with multiple-frequency (50 + 25 Hz) sinusoidal trajectories tracking that demonstrate the efficiency of the proposed controllers. Especially, being 0.32% of the maximum desired displacement, the maximum error of 50-Hz sinusoidal tracking is greatly reduced to 6 nm. This result clearly indicates the nanometer-scale tracking performance of the novel FAIM controller. Fuzzy sets Adaptation models Takagi–Sugeno (T–S) piezoelectric actuator Fuzzy adaptive internal model (FAIM) trajectory tracking Chlorine Hysteresis Autoregressive processes Piezoelectric actuators Takagi-Sugeno (T-S) Li, Peiyue oth Sui, Yongxin oth Enthalten in IEEE transactions on fuzzy systems New York, NY : Inst., 1993 24(2016), 5, Seite 1246-1254 (DE-627)171085515 (DE-600)1149610-1 (DE-576)034198547 1063-6706 nnns volume:24 year:2016 number:5 pages:1246-1254 http://dx.doi.org/10.1109/TFUZZ.2015.2502282 Volltext http://ieeexplore.ieee.org/document/7332769 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_30 GBV_ILN_70 AR 24 2016 5 1246-1254 |
language |
English |
source |
Enthalten in IEEE transactions on fuzzy systems 24(2016), 5, Seite 1246-1254 volume:24 year:2016 number:5 pages:1246-1254 |
sourceStr |
Enthalten in IEEE transactions on fuzzy systems 24(2016), 5, Seite 1246-1254 volume:24 year:2016 number:5 pages:1246-1254 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fuzzy sets Adaptation models Takagi–Sugeno (T–S) piezoelectric actuator Fuzzy adaptive internal model (FAIM) trajectory tracking Chlorine Hysteresis Autoregressive processes Piezoelectric actuators Takagi-Sugeno (T-S) |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on fuzzy systems |
authorswithroles_txt_mv |
Li, Pengzhi @@aut@@ Li, Peiyue @@oth@@ Sui, Yongxin @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
171085515 |
dewey-sort |
14 |
id |
OLC198601777X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198601777X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714233013.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TFUZZ.2015.2502282</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198601777X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198601777X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1378-4b85d752b2f477ed02bbb21418ca3a0f7195d2f69f4ce0061d86346cf7bbe74a0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0226257620160000024000501246adaptivefuzzyhysteresisinternalmodeltrackingcontro</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Pengzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive Fuzzy Hysteresis Internal Model Tracking Control of Piezoelectric Actuators With Nanoscale Application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a novel Takagi-Sugeno (T-S) fuzzy-system-based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the developed fuzzy hysteresis model (FHM) can be identified online through uniform partition approach and recursive least squares (RLS) algorithm, respectively. With respect to the controller design, the inverse of FHM is used to develop a fuzzy internal model (FIM) controller. Decreasing the hysteresis effect, the FIM controller has a good performance of high-speed trajectory tracking. To achieve nanometer-scale tracking precision, the novel fuzzy adaptive internal model (FAIM) controller is uniquely developed. Based on real-time input and output data to update FHM, the FAIM controller is capable of compensating for the hysteresis effect of the piezoelectric actuator in real time. Finally, the experimental results for two cases are shown: the first is with 50 Hz and the other with multiple-frequency (50 + 25 Hz) sinusoidal trajectories tracking that demonstrate the efficiency of the proposed controllers. Especially, being 0.32% of the maximum desired displacement, the maximum error of 50-Hz sinusoidal tracking is greatly reduced to 6 nm. This result clearly indicates the nanometer-scale tracking performance of the novel FAIM controller.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptation models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Takagi–Sugeno (T–S)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">piezoelectric actuator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy adaptive internal model (FAIM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">trajectory tracking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chlorine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hysteresis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autoregressive processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piezoelectric actuators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Takagi-Sugeno (T-S)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Peiyue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sui, Yongxin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on fuzzy systems</subfield><subfield code="d">New York, NY : Inst., 1993</subfield><subfield code="g">24(2016), 5, Seite 1246-1254</subfield><subfield code="w">(DE-627)171085515</subfield><subfield code="w">(DE-600)1149610-1</subfield><subfield code="w">(DE-576)034198547</subfield><subfield code="x">1063-6706</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1246-1254</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TFUZZ.2015.2502282</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7332769</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">1246-1254</subfield></datafield></record></collection>
|
author |
Li, Pengzhi |
spellingShingle |
Li, Pengzhi ddc 004 misc Fuzzy sets misc Adaptation models misc Takagi–Sugeno (T–S) misc piezoelectric actuator misc Fuzzy adaptive internal model (FAIM) misc trajectory tracking misc Chlorine misc Hysteresis misc Autoregressive processes misc Piezoelectric actuators misc Takagi-Sugeno (T-S) Adaptive Fuzzy Hysteresis Internal Model Tracking Control of Piezoelectric Actuators With Nanoscale Application |
authorStr |
Li, Pengzhi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171085515 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1063-6706 |
topic_title |
004 DNB Adaptive Fuzzy Hysteresis Internal Model Tracking Control of Piezoelectric Actuators With Nanoscale Application Fuzzy sets Adaptation models Takagi–Sugeno (T–S) piezoelectric actuator Fuzzy adaptive internal model (FAIM) trajectory tracking Chlorine Hysteresis Autoregressive processes Piezoelectric actuators Takagi-Sugeno (T-S) |
topic |
ddc 004 misc Fuzzy sets misc Adaptation models misc Takagi–Sugeno (T–S) misc piezoelectric actuator misc Fuzzy adaptive internal model (FAIM) misc trajectory tracking misc Chlorine misc Hysteresis misc Autoregressive processes misc Piezoelectric actuators misc Takagi-Sugeno (T-S) |
topic_unstemmed |
ddc 004 misc Fuzzy sets misc Adaptation models misc Takagi–Sugeno (T–S) misc piezoelectric actuator misc Fuzzy adaptive internal model (FAIM) misc trajectory tracking misc Chlorine misc Hysteresis misc Autoregressive processes misc Piezoelectric actuators misc Takagi-Sugeno (T-S) |
topic_browse |
ddc 004 misc Fuzzy sets misc Adaptation models misc Takagi–Sugeno (T–S) misc piezoelectric actuator misc Fuzzy adaptive internal model (FAIM) misc trajectory tracking misc Chlorine misc Hysteresis misc Autoregressive processes misc Piezoelectric actuators misc Takagi-Sugeno (T-S) |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
p l pl y s ys |
hierarchy_parent_title |
IEEE transactions on fuzzy systems |
hierarchy_parent_id |
171085515 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
IEEE transactions on fuzzy systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171085515 (DE-600)1149610-1 (DE-576)034198547 |
title |
Adaptive Fuzzy Hysteresis Internal Model Tracking Control of Piezoelectric Actuators With Nanoscale Application |
ctrlnum |
(DE-627)OLC198601777X (DE-599)GBVOLC198601777X (PRQ)c1378-4b85d752b2f477ed02bbb21418ca3a0f7195d2f69f4ce0061d86346cf7bbe74a0 (KEY)0226257620160000024000501246adaptivefuzzyhysteresisinternalmodeltrackingcontro |
title_full |
Adaptive Fuzzy Hysteresis Internal Model Tracking Control of Piezoelectric Actuators With Nanoscale Application |
author_sort |
Li, Pengzhi |
journal |
IEEE transactions on fuzzy systems |
journalStr |
IEEE transactions on fuzzy systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1246 |
author_browse |
Li, Pengzhi |
container_volume |
24 |
class |
004 DNB |
format_se |
Aufsätze |
author-letter |
Li, Pengzhi |
doi_str_mv |
10.1109/TFUZZ.2015.2502282 |
dewey-full |
004 |
title_sort |
adaptive fuzzy hysteresis internal model tracking control of piezoelectric actuators with nanoscale application |
title_auth |
Adaptive Fuzzy Hysteresis Internal Model Tracking Control of Piezoelectric Actuators With Nanoscale Application |
abstract |
In this paper, a novel Takagi-Sugeno (T-S) fuzzy-system-based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the developed fuzzy hysteresis model (FHM) can be identified online through uniform partition approach and recursive least squares (RLS) algorithm, respectively. With respect to the controller design, the inverse of FHM is used to develop a fuzzy internal model (FIM) controller. Decreasing the hysteresis effect, the FIM controller has a good performance of high-speed trajectory tracking. To achieve nanometer-scale tracking precision, the novel fuzzy adaptive internal model (FAIM) controller is uniquely developed. Based on real-time input and output data to update FHM, the FAIM controller is capable of compensating for the hysteresis effect of the piezoelectric actuator in real time. Finally, the experimental results for two cases are shown: the first is with 50 Hz and the other with multiple-frequency (50 + 25 Hz) sinusoidal trajectories tracking that demonstrate the efficiency of the proposed controllers. Especially, being 0.32% of the maximum desired displacement, the maximum error of 50-Hz sinusoidal tracking is greatly reduced to 6 nm. This result clearly indicates the nanometer-scale tracking performance of the novel FAIM controller. |
abstractGer |
In this paper, a novel Takagi-Sugeno (T-S) fuzzy-system-based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the developed fuzzy hysteresis model (FHM) can be identified online through uniform partition approach and recursive least squares (RLS) algorithm, respectively. With respect to the controller design, the inverse of FHM is used to develop a fuzzy internal model (FIM) controller. Decreasing the hysteresis effect, the FIM controller has a good performance of high-speed trajectory tracking. To achieve nanometer-scale tracking precision, the novel fuzzy adaptive internal model (FAIM) controller is uniquely developed. Based on real-time input and output data to update FHM, the FAIM controller is capable of compensating for the hysteresis effect of the piezoelectric actuator in real time. Finally, the experimental results for two cases are shown: the first is with 50 Hz and the other with multiple-frequency (50 + 25 Hz) sinusoidal trajectories tracking that demonstrate the efficiency of the proposed controllers. Especially, being 0.32% of the maximum desired displacement, the maximum error of 50-Hz sinusoidal tracking is greatly reduced to 6 nm. This result clearly indicates the nanometer-scale tracking performance of the novel FAIM controller. |
abstract_unstemmed |
In this paper, a novel Takagi-Sugeno (T-S) fuzzy-system-based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the developed fuzzy hysteresis model (FHM) can be identified online through uniform partition approach and recursive least squares (RLS) algorithm, respectively. With respect to the controller design, the inverse of FHM is used to develop a fuzzy internal model (FIM) controller. Decreasing the hysteresis effect, the FIM controller has a good performance of high-speed trajectory tracking. To achieve nanometer-scale tracking precision, the novel fuzzy adaptive internal model (FAIM) controller is uniquely developed. Based on real-time input and output data to update FHM, the FAIM controller is capable of compensating for the hysteresis effect of the piezoelectric actuator in real time. Finally, the experimental results for two cases are shown: the first is with 50 Hz and the other with multiple-frequency (50 + 25 Hz) sinusoidal trajectories tracking that demonstrate the efficiency of the proposed controllers. Especially, being 0.32% of the maximum desired displacement, the maximum error of 50-Hz sinusoidal tracking is greatly reduced to 6 nm. This result clearly indicates the nanometer-scale tracking performance of the novel FAIM controller. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_30 GBV_ILN_70 |
container_issue |
5 |
title_short |
Adaptive Fuzzy Hysteresis Internal Model Tracking Control of Piezoelectric Actuators With Nanoscale Application |
url |
http://dx.doi.org/10.1109/TFUZZ.2015.2502282 http://ieeexplore.ieee.org/document/7332769 |
remote_bool |
false |
author2 |
Li, Peiyue Sui, Yongxin |
author2Str |
Li, Peiyue Sui, Yongxin |
ppnlink |
171085515 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/TFUZZ.2015.2502282 |
up_date |
2024-07-04T03:56:11.631Z |
_version_ |
1803619267139076096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198601777X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714233013.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TFUZZ.2015.2502282</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198601777X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198601777X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1378-4b85d752b2f477ed02bbb21418ca3a0f7195d2f69f4ce0061d86346cf7bbe74a0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0226257620160000024000501246adaptivefuzzyhysteresisinternalmodeltrackingcontro</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Pengzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive Fuzzy Hysteresis Internal Model Tracking Control of Piezoelectric Actuators With Nanoscale Application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a novel Takagi-Sugeno (T-S) fuzzy-system-based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the developed fuzzy hysteresis model (FHM) can be identified online through uniform partition approach and recursive least squares (RLS) algorithm, respectively. With respect to the controller design, the inverse of FHM is used to develop a fuzzy internal model (FIM) controller. Decreasing the hysteresis effect, the FIM controller has a good performance of high-speed trajectory tracking. To achieve nanometer-scale tracking precision, the novel fuzzy adaptive internal model (FAIM) controller is uniquely developed. Based on real-time input and output data to update FHM, the FAIM controller is capable of compensating for the hysteresis effect of the piezoelectric actuator in real time. Finally, the experimental results for two cases are shown: the first is with 50 Hz and the other with multiple-frequency (50 + 25 Hz) sinusoidal trajectories tracking that demonstrate the efficiency of the proposed controllers. Especially, being 0.32% of the maximum desired displacement, the maximum error of 50-Hz sinusoidal tracking is greatly reduced to 6 nm. This result clearly indicates the nanometer-scale tracking performance of the novel FAIM controller.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptation models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Takagi–Sugeno (T–S)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">piezoelectric actuator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy adaptive internal model (FAIM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">trajectory tracking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chlorine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hysteresis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autoregressive processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piezoelectric actuators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Takagi-Sugeno (T-S)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Peiyue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sui, Yongxin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on fuzzy systems</subfield><subfield code="d">New York, NY : Inst., 1993</subfield><subfield code="g">24(2016), 5, Seite 1246-1254</subfield><subfield code="w">(DE-627)171085515</subfield><subfield code="w">(DE-600)1149610-1</subfield><subfield code="w">(DE-576)034198547</subfield><subfield code="x">1063-6706</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1246-1254</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TFUZZ.2015.2502282</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7332769</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">1246-1254</subfield></datafield></record></collection>
|
score |
7.3993244 |