Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides
Silicon-based optofluidic devices are very attractive for applications in biophotonics and chemical sensing. Understanding and controlling the properties of their dielectric waveguides is critical for the performance of these chips. We report that thermal annealing of PECVD-grown silicon dioxide (Si...
Ausführliche Beschreibung
Autor*in: |
Parks, Joshua W [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE journal of selected topics in quantum electronics - New York, NY : IEEE, 1995, 22(2016), 6, Seite 1-6 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2016 ; number:6 ; pages:1-6 |
Links: |
---|
DOI / URN: |
10.1109/JSTQE.2016.2549801 |
---|
Katalog-ID: |
OLC1986127222 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1986127222 | ||
003 | DE-627 | ||
005 | 20230714233523.0 | ||
007 | tu | ||
008 | 161202s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/JSTQE.2016.2549801 |2 doi | |
028 | 5 | 2 | |a PQ20161201 |
035 | |a (DE-627)OLC1986127222 | ||
035 | |a (DE-599)GBVOLC1986127222 | ||
035 | |a (PRQ)i826-f4842870f045004f40991c0a732fcc2cf1b72770d7d05560f15c8273f1439bc0 | ||
035 | |a (KEY)0272399920160000022000600001enhancementofarrowphotonicdeviceperformanceviather | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DNB |
100 | 1 | |a Parks, Joshua W |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Silicon-based optofluidic devices are very attractive for applications in biophotonics and chemical sensing. Understanding and controlling the properties of their dielectric waveguides is critical for the performance of these chips. We report that thermal annealing of PECVD-grown silicon dioxide (SiO 2 ) ridge waveguides results in considerable improvements to optical transmission and particle detection. There are two fundamental changes that yield higher optical transmission: 1) propagation loss in solid-core waveguides is reduced by over 70%, and 2) coupling efficiencies between solid- and liquid-core waveguides are optimized. The combined effects result in improved optical chip transmission by a factor of 100-1000 times. These improvements are shown to arise from the elimination of a high-index layer at the surface of the SiO 2 caused by water absorption into the porous oxide. The effects of this layer on optical transmission and mode confinement are shown to be reversible by alternating subjection of waveguides to water and subsequent low temperature annealing. Finally, we show that annealing improves the detection of fluorescent analytes in optofluidic chips with a signal-to-noise ratio improvement of 166x and a particle detection efficiency improvement of 94%. | ||
650 | 4 | |a Annealing | |
650 | 4 | |a Liquid waveguides | |
650 | 4 | |a PECVD | |
650 | 4 | |a silicon dioxide | |
650 | 4 | |a biophotonics | |
650 | 4 | |a Optical imaging | |
650 | 4 | |a Optical refraction | |
650 | 4 | |a integrated waveguides | |
650 | 4 | |a Optical waveguides | |
650 | 4 | |a Optical variables control | |
650 | 4 | |a liquid core waveguides | |
650 | 4 | |a optofluidics | |
650 | 4 | |a anti-resonant reflecting optical waveguides (ARROWs) | |
650 | 4 | |a Optical device fabrication | |
700 | 1 | |a Wall, Thomas A |4 oth | |
700 | 1 | |a Cai, Hong |4 oth | |
700 | 1 | |a Hawkins, Aaron R |4 oth | |
700 | 1 | |a Schmidt, Holger |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE journal of selected topics in quantum electronics |d New York, NY : IEEE, 1995 |g 22(2016), 6, Seite 1-6 |w (DE-627)184666007 |w (DE-600)1232977-0 |w (DE-576)046708901 |x 1077-260X |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2016 |g number:6 |g pages:1-6 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/JSTQE.2016.2549801 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7457660 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
951 | |a AR | ||
952 | |d 22 |j 2016 |e 6 |h 1-6 |
author_variant |
j w p jw jwp |
---|---|
matchkey_str |
article:1077260X:2016----::nacmnoarwhtnceieefracvahraanaigfe |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/JSTQE.2016.2549801 doi PQ20161201 (DE-627)OLC1986127222 (DE-599)GBVOLC1986127222 (PRQ)i826-f4842870f045004f40991c0a732fcc2cf1b72770d7d05560f15c8273f1439bc0 (KEY)0272399920160000022000600001enhancementofarrowphotonicdeviceperformanceviather DE-627 ger DE-627 rakwb eng 530 620 DNB Parks, Joshua W verfasserin aut Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Silicon-based optofluidic devices are very attractive for applications in biophotonics and chemical sensing. Understanding and controlling the properties of their dielectric waveguides is critical for the performance of these chips. We report that thermal annealing of PECVD-grown silicon dioxide (SiO 2 ) ridge waveguides results in considerable improvements to optical transmission and particle detection. There are two fundamental changes that yield higher optical transmission: 1) propagation loss in solid-core waveguides is reduced by over 70%, and 2) coupling efficiencies between solid- and liquid-core waveguides are optimized. The combined effects result in improved optical chip transmission by a factor of 100-1000 times. These improvements are shown to arise from the elimination of a high-index layer at the surface of the SiO 2 caused by water absorption into the porous oxide. The effects of this layer on optical transmission and mode confinement are shown to be reversible by alternating subjection of waveguides to water and subsequent low temperature annealing. Finally, we show that annealing improves the detection of fluorescent analytes in optofluidic chips with a signal-to-noise ratio improvement of 166x and a particle detection efficiency improvement of 94%. Annealing Liquid waveguides PECVD silicon dioxide biophotonics Optical imaging Optical refraction integrated waveguides Optical waveguides Optical variables control liquid core waveguides optofluidics anti-resonant reflecting optical waveguides (ARROWs) Optical device fabrication Wall, Thomas A oth Cai, Hong oth Hawkins, Aaron R oth Schmidt, Holger oth Enthalten in IEEE journal of selected topics in quantum electronics New York, NY : IEEE, 1995 22(2016), 6, Seite 1-6 (DE-627)184666007 (DE-600)1232977-0 (DE-576)046708901 1077-260X nnns volume:22 year:2016 number:6 pages:1-6 http://dx.doi.org/10.1109/JSTQE.2016.2549801 Volltext http://ieeexplore.ieee.org/document/7457660 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2006 AR 22 2016 6 1-6 |
spelling |
10.1109/JSTQE.2016.2549801 doi PQ20161201 (DE-627)OLC1986127222 (DE-599)GBVOLC1986127222 (PRQ)i826-f4842870f045004f40991c0a732fcc2cf1b72770d7d05560f15c8273f1439bc0 (KEY)0272399920160000022000600001enhancementofarrowphotonicdeviceperformanceviather DE-627 ger DE-627 rakwb eng 530 620 DNB Parks, Joshua W verfasserin aut Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Silicon-based optofluidic devices are very attractive for applications in biophotonics and chemical sensing. Understanding and controlling the properties of their dielectric waveguides is critical for the performance of these chips. We report that thermal annealing of PECVD-grown silicon dioxide (SiO 2 ) ridge waveguides results in considerable improvements to optical transmission and particle detection. There are two fundamental changes that yield higher optical transmission: 1) propagation loss in solid-core waveguides is reduced by over 70%, and 2) coupling efficiencies between solid- and liquid-core waveguides are optimized. The combined effects result in improved optical chip transmission by a factor of 100-1000 times. These improvements are shown to arise from the elimination of a high-index layer at the surface of the SiO 2 caused by water absorption into the porous oxide. The effects of this layer on optical transmission and mode confinement are shown to be reversible by alternating subjection of waveguides to water and subsequent low temperature annealing. Finally, we show that annealing improves the detection of fluorescent analytes in optofluidic chips with a signal-to-noise ratio improvement of 166x and a particle detection efficiency improvement of 94%. Annealing Liquid waveguides PECVD silicon dioxide biophotonics Optical imaging Optical refraction integrated waveguides Optical waveguides Optical variables control liquid core waveguides optofluidics anti-resonant reflecting optical waveguides (ARROWs) Optical device fabrication Wall, Thomas A oth Cai, Hong oth Hawkins, Aaron R oth Schmidt, Holger oth Enthalten in IEEE journal of selected topics in quantum electronics New York, NY : IEEE, 1995 22(2016), 6, Seite 1-6 (DE-627)184666007 (DE-600)1232977-0 (DE-576)046708901 1077-260X nnns volume:22 year:2016 number:6 pages:1-6 http://dx.doi.org/10.1109/JSTQE.2016.2549801 Volltext http://ieeexplore.ieee.org/document/7457660 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2006 AR 22 2016 6 1-6 |
allfields_unstemmed |
10.1109/JSTQE.2016.2549801 doi PQ20161201 (DE-627)OLC1986127222 (DE-599)GBVOLC1986127222 (PRQ)i826-f4842870f045004f40991c0a732fcc2cf1b72770d7d05560f15c8273f1439bc0 (KEY)0272399920160000022000600001enhancementofarrowphotonicdeviceperformanceviather DE-627 ger DE-627 rakwb eng 530 620 DNB Parks, Joshua W verfasserin aut Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Silicon-based optofluidic devices are very attractive for applications in biophotonics and chemical sensing. Understanding and controlling the properties of their dielectric waveguides is critical for the performance of these chips. We report that thermal annealing of PECVD-grown silicon dioxide (SiO 2 ) ridge waveguides results in considerable improvements to optical transmission and particle detection. There are two fundamental changes that yield higher optical transmission: 1) propagation loss in solid-core waveguides is reduced by over 70%, and 2) coupling efficiencies between solid- and liquid-core waveguides are optimized. The combined effects result in improved optical chip transmission by a factor of 100-1000 times. These improvements are shown to arise from the elimination of a high-index layer at the surface of the SiO 2 caused by water absorption into the porous oxide. The effects of this layer on optical transmission and mode confinement are shown to be reversible by alternating subjection of waveguides to water and subsequent low temperature annealing. Finally, we show that annealing improves the detection of fluorescent analytes in optofluidic chips with a signal-to-noise ratio improvement of 166x and a particle detection efficiency improvement of 94%. Annealing Liquid waveguides PECVD silicon dioxide biophotonics Optical imaging Optical refraction integrated waveguides Optical waveguides Optical variables control liquid core waveguides optofluidics anti-resonant reflecting optical waveguides (ARROWs) Optical device fabrication Wall, Thomas A oth Cai, Hong oth Hawkins, Aaron R oth Schmidt, Holger oth Enthalten in IEEE journal of selected topics in quantum electronics New York, NY : IEEE, 1995 22(2016), 6, Seite 1-6 (DE-627)184666007 (DE-600)1232977-0 (DE-576)046708901 1077-260X nnns volume:22 year:2016 number:6 pages:1-6 http://dx.doi.org/10.1109/JSTQE.2016.2549801 Volltext http://ieeexplore.ieee.org/document/7457660 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2006 AR 22 2016 6 1-6 |
allfieldsGer |
10.1109/JSTQE.2016.2549801 doi PQ20161201 (DE-627)OLC1986127222 (DE-599)GBVOLC1986127222 (PRQ)i826-f4842870f045004f40991c0a732fcc2cf1b72770d7d05560f15c8273f1439bc0 (KEY)0272399920160000022000600001enhancementofarrowphotonicdeviceperformanceviather DE-627 ger DE-627 rakwb eng 530 620 DNB Parks, Joshua W verfasserin aut Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Silicon-based optofluidic devices are very attractive for applications in biophotonics and chemical sensing. Understanding and controlling the properties of their dielectric waveguides is critical for the performance of these chips. We report that thermal annealing of PECVD-grown silicon dioxide (SiO 2 ) ridge waveguides results in considerable improvements to optical transmission and particle detection. There are two fundamental changes that yield higher optical transmission: 1) propagation loss in solid-core waveguides is reduced by over 70%, and 2) coupling efficiencies between solid- and liquid-core waveguides are optimized. The combined effects result in improved optical chip transmission by a factor of 100-1000 times. These improvements are shown to arise from the elimination of a high-index layer at the surface of the SiO 2 caused by water absorption into the porous oxide. The effects of this layer on optical transmission and mode confinement are shown to be reversible by alternating subjection of waveguides to water and subsequent low temperature annealing. Finally, we show that annealing improves the detection of fluorescent analytes in optofluidic chips with a signal-to-noise ratio improvement of 166x and a particle detection efficiency improvement of 94%. Annealing Liquid waveguides PECVD silicon dioxide biophotonics Optical imaging Optical refraction integrated waveguides Optical waveguides Optical variables control liquid core waveguides optofluidics anti-resonant reflecting optical waveguides (ARROWs) Optical device fabrication Wall, Thomas A oth Cai, Hong oth Hawkins, Aaron R oth Schmidt, Holger oth Enthalten in IEEE journal of selected topics in quantum electronics New York, NY : IEEE, 1995 22(2016), 6, Seite 1-6 (DE-627)184666007 (DE-600)1232977-0 (DE-576)046708901 1077-260X nnns volume:22 year:2016 number:6 pages:1-6 http://dx.doi.org/10.1109/JSTQE.2016.2549801 Volltext http://ieeexplore.ieee.org/document/7457660 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2006 AR 22 2016 6 1-6 |
allfieldsSound |
10.1109/JSTQE.2016.2549801 doi PQ20161201 (DE-627)OLC1986127222 (DE-599)GBVOLC1986127222 (PRQ)i826-f4842870f045004f40991c0a732fcc2cf1b72770d7d05560f15c8273f1439bc0 (KEY)0272399920160000022000600001enhancementofarrowphotonicdeviceperformanceviather DE-627 ger DE-627 rakwb eng 530 620 DNB Parks, Joshua W verfasserin aut Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Silicon-based optofluidic devices are very attractive for applications in biophotonics and chemical sensing. Understanding and controlling the properties of their dielectric waveguides is critical for the performance of these chips. We report that thermal annealing of PECVD-grown silicon dioxide (SiO 2 ) ridge waveguides results in considerable improvements to optical transmission and particle detection. There are two fundamental changes that yield higher optical transmission: 1) propagation loss in solid-core waveguides is reduced by over 70%, and 2) coupling efficiencies between solid- and liquid-core waveguides are optimized. The combined effects result in improved optical chip transmission by a factor of 100-1000 times. These improvements are shown to arise from the elimination of a high-index layer at the surface of the SiO 2 caused by water absorption into the porous oxide. The effects of this layer on optical transmission and mode confinement are shown to be reversible by alternating subjection of waveguides to water and subsequent low temperature annealing. Finally, we show that annealing improves the detection of fluorescent analytes in optofluidic chips with a signal-to-noise ratio improvement of 166x and a particle detection efficiency improvement of 94%. Annealing Liquid waveguides PECVD silicon dioxide biophotonics Optical imaging Optical refraction integrated waveguides Optical waveguides Optical variables control liquid core waveguides optofluidics anti-resonant reflecting optical waveguides (ARROWs) Optical device fabrication Wall, Thomas A oth Cai, Hong oth Hawkins, Aaron R oth Schmidt, Holger oth Enthalten in IEEE journal of selected topics in quantum electronics New York, NY : IEEE, 1995 22(2016), 6, Seite 1-6 (DE-627)184666007 (DE-600)1232977-0 (DE-576)046708901 1077-260X nnns volume:22 year:2016 number:6 pages:1-6 http://dx.doi.org/10.1109/JSTQE.2016.2549801 Volltext http://ieeexplore.ieee.org/document/7457660 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2006 AR 22 2016 6 1-6 |
language |
English |
source |
Enthalten in IEEE journal of selected topics in quantum electronics 22(2016), 6, Seite 1-6 volume:22 year:2016 number:6 pages:1-6 |
sourceStr |
Enthalten in IEEE journal of selected topics in quantum electronics 22(2016), 6, Seite 1-6 volume:22 year:2016 number:6 pages:1-6 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Annealing Liquid waveguides PECVD silicon dioxide biophotonics Optical imaging Optical refraction integrated waveguides Optical waveguides Optical variables control liquid core waveguides optofluidics anti-resonant reflecting optical waveguides (ARROWs) Optical device fabrication |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
IEEE journal of selected topics in quantum electronics |
authorswithroles_txt_mv |
Parks, Joshua W @@aut@@ Wall, Thomas A @@oth@@ Cai, Hong @@oth@@ Hawkins, Aaron R @@oth@@ Schmidt, Holger @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
184666007 |
dewey-sort |
3530 |
id |
OLC1986127222 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1986127222</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714233523.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JSTQE.2016.2549801</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1986127222</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1986127222</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i826-f4842870f045004f40991c0a732fcc2cf1b72770d7d05560f15c8273f1439bc0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0272399920160000022000600001enhancementofarrowphotonicdeviceperformanceviather</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Parks, Joshua W</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Silicon-based optofluidic devices are very attractive for applications in biophotonics and chemical sensing. Understanding and controlling the properties of their dielectric waveguides is critical for the performance of these chips. We report that thermal annealing of PECVD-grown silicon dioxide (SiO 2 ) ridge waveguides results in considerable improvements to optical transmission and particle detection. There are two fundamental changes that yield higher optical transmission: 1) propagation loss in solid-core waveguides is reduced by over 70%, and 2) coupling efficiencies between solid- and liquid-core waveguides are optimized. The combined effects result in improved optical chip transmission by a factor of 100-1000 times. These improvements are shown to arise from the elimination of a high-index layer at the surface of the SiO 2 caused by water absorption into the porous oxide. The effects of this layer on optical transmission and mode confinement are shown to be reversible by alternating subjection of waveguides to water and subsequent low temperature annealing. Finally, we show that annealing improves the detection of fluorescent analytes in optofluidic chips with a signal-to-noise ratio improvement of 166x and a particle detection efficiency improvement of 94%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Annealing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PECVD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silicon dioxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biophotonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical refraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integrated waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical variables control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liquid core waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optofluidics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anti-resonant reflecting optical waveguides (ARROWs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical device fabrication</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wall, Thomas A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Hong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hawkins, Aaron R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmidt, Holger</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE journal of selected topics in quantum electronics</subfield><subfield code="d">New York, NY : IEEE, 1995</subfield><subfield code="g">22(2016), 6, Seite 1-6</subfield><subfield code="w">(DE-627)184666007</subfield><subfield code="w">(DE-600)1232977-0</subfield><subfield code="w">(DE-576)046708901</subfield><subfield code="x">1077-260X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:1-6</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JSTQE.2016.2549801</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7457660</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="h">1-6</subfield></datafield></record></collection>
|
author |
Parks, Joshua W |
spellingShingle |
Parks, Joshua W ddc 530 misc Annealing misc Liquid waveguides misc PECVD misc silicon dioxide misc biophotonics misc Optical imaging misc Optical refraction misc integrated waveguides misc Optical waveguides misc Optical variables control misc liquid core waveguides misc optofluidics misc anti-resonant reflecting optical waveguides (ARROWs) misc Optical device fabrication Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides |
authorStr |
Parks, Joshua W |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)184666007 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1077-260X |
topic_title |
530 620 DNB Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides Annealing Liquid waveguides PECVD silicon dioxide biophotonics Optical imaging Optical refraction integrated waveguides Optical waveguides Optical variables control liquid core waveguides optofluidics anti-resonant reflecting optical waveguides (ARROWs) Optical device fabrication |
topic |
ddc 530 misc Annealing misc Liquid waveguides misc PECVD misc silicon dioxide misc biophotonics misc Optical imaging misc Optical refraction misc integrated waveguides misc Optical waveguides misc Optical variables control misc liquid core waveguides misc optofluidics misc anti-resonant reflecting optical waveguides (ARROWs) misc Optical device fabrication |
topic_unstemmed |
ddc 530 misc Annealing misc Liquid waveguides misc PECVD misc silicon dioxide misc biophotonics misc Optical imaging misc Optical refraction misc integrated waveguides misc Optical waveguides misc Optical variables control misc liquid core waveguides misc optofluidics misc anti-resonant reflecting optical waveguides (ARROWs) misc Optical device fabrication |
topic_browse |
ddc 530 misc Annealing misc Liquid waveguides misc PECVD misc silicon dioxide misc biophotonics misc Optical imaging misc Optical refraction misc integrated waveguides misc Optical waveguides misc Optical variables control misc liquid core waveguides misc optofluidics misc anti-resonant reflecting optical waveguides (ARROWs) misc Optical device fabrication |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t a w ta taw h c hc a r h ar arh h s hs |
hierarchy_parent_title |
IEEE journal of selected topics in quantum electronics |
hierarchy_parent_id |
184666007 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
IEEE journal of selected topics in quantum electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)184666007 (DE-600)1232977-0 (DE-576)046708901 |
title |
Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides |
ctrlnum |
(DE-627)OLC1986127222 (DE-599)GBVOLC1986127222 (PRQ)i826-f4842870f045004f40991c0a732fcc2cf1b72770d7d05560f15c8273f1439bc0 (KEY)0272399920160000022000600001enhancementofarrowphotonicdeviceperformanceviather |
title_full |
Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides |
author_sort |
Parks, Joshua W |
journal |
IEEE journal of selected topics in quantum electronics |
journalStr |
IEEE journal of selected topics in quantum electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Parks, Joshua W |
container_volume |
22 |
class |
530 620 DNB |
format_se |
Aufsätze |
author-letter |
Parks, Joshua W |
doi_str_mv |
10.1109/JSTQE.2016.2549801 |
dewey-full |
530 620 |
title_sort |
enhancement of arrow photonic device performance via thermal annealing of pecvd-based sio2 waveguides |
title_auth |
Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides |
abstract |
Silicon-based optofluidic devices are very attractive for applications in biophotonics and chemical sensing. Understanding and controlling the properties of their dielectric waveguides is critical for the performance of these chips. We report that thermal annealing of PECVD-grown silicon dioxide (SiO 2 ) ridge waveguides results in considerable improvements to optical transmission and particle detection. There are two fundamental changes that yield higher optical transmission: 1) propagation loss in solid-core waveguides is reduced by over 70%, and 2) coupling efficiencies between solid- and liquid-core waveguides are optimized. The combined effects result in improved optical chip transmission by a factor of 100-1000 times. These improvements are shown to arise from the elimination of a high-index layer at the surface of the SiO 2 caused by water absorption into the porous oxide. The effects of this layer on optical transmission and mode confinement are shown to be reversible by alternating subjection of waveguides to water and subsequent low temperature annealing. Finally, we show that annealing improves the detection of fluorescent analytes in optofluidic chips with a signal-to-noise ratio improvement of 166x and a particle detection efficiency improvement of 94%. |
abstractGer |
Silicon-based optofluidic devices are very attractive for applications in biophotonics and chemical sensing. Understanding and controlling the properties of their dielectric waveguides is critical for the performance of these chips. We report that thermal annealing of PECVD-grown silicon dioxide (SiO 2 ) ridge waveguides results in considerable improvements to optical transmission and particle detection. There are two fundamental changes that yield higher optical transmission: 1) propagation loss in solid-core waveguides is reduced by over 70%, and 2) coupling efficiencies between solid- and liquid-core waveguides are optimized. The combined effects result in improved optical chip transmission by a factor of 100-1000 times. These improvements are shown to arise from the elimination of a high-index layer at the surface of the SiO 2 caused by water absorption into the porous oxide. The effects of this layer on optical transmission and mode confinement are shown to be reversible by alternating subjection of waveguides to water and subsequent low temperature annealing. Finally, we show that annealing improves the detection of fluorescent analytes in optofluidic chips with a signal-to-noise ratio improvement of 166x and a particle detection efficiency improvement of 94%. |
abstract_unstemmed |
Silicon-based optofluidic devices are very attractive for applications in biophotonics and chemical sensing. Understanding and controlling the properties of their dielectric waveguides is critical for the performance of these chips. We report that thermal annealing of PECVD-grown silicon dioxide (SiO 2 ) ridge waveguides results in considerable improvements to optical transmission and particle detection. There are two fundamental changes that yield higher optical transmission: 1) propagation loss in solid-core waveguides is reduced by over 70%, and 2) coupling efficiencies between solid- and liquid-core waveguides are optimized. The combined effects result in improved optical chip transmission by a factor of 100-1000 times. These improvements are shown to arise from the elimination of a high-index layer at the surface of the SiO 2 caused by water absorption into the porous oxide. The effects of this layer on optical transmission and mode confinement are shown to be reversible by alternating subjection of waveguides to water and subsequent low temperature annealing. Finally, we show that annealing improves the detection of fluorescent analytes in optofluidic chips with a signal-to-noise ratio improvement of 166x and a particle detection efficiency improvement of 94%. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2006 |
container_issue |
6 |
title_short |
Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides |
url |
http://dx.doi.org/10.1109/JSTQE.2016.2549801 http://ieeexplore.ieee.org/document/7457660 |
remote_bool |
false |
author2 |
Wall, Thomas A Cai, Hong Hawkins, Aaron R Schmidt, Holger |
author2Str |
Wall, Thomas A Cai, Hong Hawkins, Aaron R Schmidt, Holger |
ppnlink |
184666007 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1109/JSTQE.2016.2549801 |
up_date |
2024-07-04T04:06:26.410Z |
_version_ |
1803619911778435072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1986127222</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714233523.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JSTQE.2016.2549801</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1986127222</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1986127222</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i826-f4842870f045004f40991c0a732fcc2cf1b72770d7d05560f15c8273f1439bc0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0272399920160000022000600001enhancementofarrowphotonicdeviceperformanceviather</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Parks, Joshua W</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-Based SiO2 Waveguides</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Silicon-based optofluidic devices are very attractive for applications in biophotonics and chemical sensing. Understanding and controlling the properties of their dielectric waveguides is critical for the performance of these chips. We report that thermal annealing of PECVD-grown silicon dioxide (SiO 2 ) ridge waveguides results in considerable improvements to optical transmission and particle detection. There are two fundamental changes that yield higher optical transmission: 1) propagation loss in solid-core waveguides is reduced by over 70%, and 2) coupling efficiencies between solid- and liquid-core waveguides are optimized. The combined effects result in improved optical chip transmission by a factor of 100-1000 times. These improvements are shown to arise from the elimination of a high-index layer at the surface of the SiO 2 caused by water absorption into the porous oxide. The effects of this layer on optical transmission and mode confinement are shown to be reversible by alternating subjection of waveguides to water and subsequent low temperature annealing. Finally, we show that annealing improves the detection of fluorescent analytes in optofluidic chips with a signal-to-noise ratio improvement of 166x and a particle detection efficiency improvement of 94%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Annealing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PECVD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silicon dioxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biophotonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical refraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integrated waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical variables control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liquid core waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optofluidics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anti-resonant reflecting optical waveguides (ARROWs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical device fabrication</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wall, Thomas A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Hong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hawkins, Aaron R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmidt, Holger</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE journal of selected topics in quantum electronics</subfield><subfield code="d">New York, NY : IEEE, 1995</subfield><subfield code="g">22(2016), 6, Seite 1-6</subfield><subfield code="w">(DE-627)184666007</subfield><subfield code="w">(DE-600)1232977-0</subfield><subfield code="w">(DE-576)046708901</subfield><subfield code="x">1077-260X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:1-6</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JSTQE.2016.2549801</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7457660</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="h">1-6</subfield></datafield></record></collection>
|
score |
7.40112 |