On periodic solutions of a class of k-dimensional systems of max-type difference equations
Some sufficient conditions are given such that the following system of difference equations: x ( 1 ) ( n + 1 ) = max 1 ≤ j ≤ l 1 { f 1 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , x ( 2 ) ( n + 1 ) = max 1 ≤ j ≤ l 2 { f 2 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , ⋮ x ( k ) ( n + 1 ) = max 1...
Ausführliche Beschreibung
Autor*in: |
Stević, Stevo [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © The Author(s) 2016 |
---|
Schlagwörter: |
Difference and Functional Equations Partial Differential Equations max-type system of difference equations Ordinary Differential Equations |
---|
Übergeordnetes Werk: |
Enthalten in: Advances in difference equations - [Sylvania, Ohio] : Hindawi Publ. Corp., 2004, 2016(2016), 1, Seite 1-10 |
---|---|
Übergeordnetes Werk: |
volume:2016 ; year:2016 ; number:1 ; pages:1-10 |
Links: |
---|
DOI / URN: |
10.1186/s13662-016-0977-1 |
---|
Katalog-ID: |
OLC1986370593 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1986370593 | ||
003 | DE-627 | ||
005 | 20220216174229.0 | ||
007 | tu | ||
008 | 161202s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1186/s13662-016-0977-1 |2 doi | |
028 | 5 | 2 | |a PQ20161201 |
035 | |a (DE-627)OLC1986370593 | ||
035 | |a (DE-599)GBVOLC1986370593 | ||
035 | |a (PRQ)c1617-fdcb932a0cf1ff96ffae5318f9438e4b8666cb0407e1b7593dcf807d336565dd3 | ||
035 | |a (KEY)0544041620160000016000100001onperiodicsolutionsofaclassofkdimensionalsystemsof | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ZDB |
084 | |a 31.49 |2 bkl | ||
100 | 1 | |a Stević, Stevo |e verfasserin |4 aut | |
245 | 1 | 0 | |a On periodic solutions of a class of k-dimensional systems of max-type difference equations |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Some sufficient conditions are given such that the following system of difference equations: x ( 1 ) ( n + 1 ) = max 1 ≤ j ≤ l 1 { f 1 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , x ( 2 ) ( n + 1 ) = max 1 ≤ j ≤ l 2 { f 2 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , ⋮ x ( k ) ( n + 1 ) = max 1 ≤ j ≤ l k { f k j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , $$\begin{aligned} &x^{(1)}(n+1)=\max_{1\le j\le l_{1}} \bigl\{ f_{1j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &x^{(2)}(n+1)=\max_{1\le j\le l_{2}} \bigl\{ f_{2j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &\vdots \\ &x^{(k)}(n+1)=\max_{1\le j\le l_{k}} \bigl\{ f_{kj} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \end{aligned}$$ n ∈ N 0 $n\in {\mathbb {N}}_{0}$ , where k ∈ N $k\in {\mathbb {N}}$ , l i ∈ N $l_{i}\in {\mathbb {N}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , x ( i ) ( 0 ) ∈ R $x^{(i)}(0)\in {\mathbb {R}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , has a unique periodic solution attracting all the solutions to the system. Our main result considerably generalizes some recent results in the literature and simplifies their proofs. | ||
540 | |a Nutzungsrecht: © The Author(s) 2016 | ||
650 | 4 | |a Difference and Functional Equations | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a max-type system of difference equations | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Analysis | |
650 | 4 | |a existence of periodic solutions | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a 39A23 | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a global attractivity | |
650 | 4 | |a Mathematics | |
773 | 0 | 8 | |i Enthalten in |t Advances in difference equations |d [Sylvania, Ohio] : Hindawi Publ. Corp., 2004 |g 2016(2016), 1, Seite 1-10 |w (DE-627)394569423 |w (DE-600)2161260-2 |w (DE-576)9394569421 |x 1687-1839 |7 nnns |
773 | 1 | 8 | |g volume:2016 |g year:2016 |g number:1 |g pages:1-10 |
856 | 4 | 1 | |u http://dx.doi.org/10.1186/s13662-016-0977-1 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1824487480 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_4310 | ||
936 | b | k | |a 31.49 |q AVZ |
951 | |a AR | ||
952 | |d 2016 |j 2016 |e 1 |h 1-10 |
author_variant |
s s ss |
---|---|
matchkey_str |
article:16871839:2016----::neidcouinoalsokiesoassesfatp |
hierarchy_sort_str |
2016 |
bklnumber |
31.49 |
publishDate |
2016 |
allfields |
10.1186/s13662-016-0977-1 doi PQ20161201 (DE-627)OLC1986370593 (DE-599)GBVOLC1986370593 (PRQ)c1617-fdcb932a0cf1ff96ffae5318f9438e4b8666cb0407e1b7593dcf807d336565dd3 (KEY)0544041620160000016000100001onperiodicsolutionsofaclassofkdimensionalsystemsof DE-627 ger DE-627 rakwb eng 510 ZDB 31.49 bkl Stević, Stevo verfasserin aut On periodic solutions of a class of k-dimensional systems of max-type difference equations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Some sufficient conditions are given such that the following system of difference equations: x ( 1 ) ( n + 1 ) = max 1 ≤ j ≤ l 1 { f 1 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , x ( 2 ) ( n + 1 ) = max 1 ≤ j ≤ l 2 { f 2 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , ⋮ x ( k ) ( n + 1 ) = max 1 ≤ j ≤ l k { f k j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , $$\begin{aligned} &x^{(1)}(n+1)=\max_{1\le j\le l_{1}} \bigl\{ f_{1j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &x^{(2)}(n+1)=\max_{1\le j\le l_{2}} \bigl\{ f_{2j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &\vdots \\ &x^{(k)}(n+1)=\max_{1\le j\le l_{k}} \bigl\{ f_{kj} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \end{aligned}$$ n ∈ N 0 $n\in {\mathbb {N}}_{0}$ , where k ∈ N $k\in {\mathbb {N}}$ , l i ∈ N $l_{i}\in {\mathbb {N}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , x ( i ) ( 0 ) ∈ R $x^{(i)}(0)\in {\mathbb {R}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , has a unique periodic solution attracting all the solutions to the system. Our main result considerably generalizes some recent results in the literature and simplifies their proofs. Nutzungsrecht: © The Author(s) 2016 Difference and Functional Equations Partial Differential Equations max-type system of difference equations Ordinary Differential Equations Analysis existence of periodic solutions Functional Analysis 39A23 Mathematics, general global attractivity Mathematics Enthalten in Advances in difference equations [Sylvania, Ohio] : Hindawi Publ. Corp., 2004 2016(2016), 1, Seite 1-10 (DE-627)394569423 (DE-600)2161260-2 (DE-576)9394569421 1687-1839 nnns volume:2016 year:2016 number:1 pages:1-10 http://dx.doi.org/10.1186/s13662-016-0977-1 Volltext http://search.proquest.com/docview/1824487480 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4310 31.49 AVZ AR 2016 2016 1 1-10 |
spelling |
10.1186/s13662-016-0977-1 doi PQ20161201 (DE-627)OLC1986370593 (DE-599)GBVOLC1986370593 (PRQ)c1617-fdcb932a0cf1ff96ffae5318f9438e4b8666cb0407e1b7593dcf807d336565dd3 (KEY)0544041620160000016000100001onperiodicsolutionsofaclassofkdimensionalsystemsof DE-627 ger DE-627 rakwb eng 510 ZDB 31.49 bkl Stević, Stevo verfasserin aut On periodic solutions of a class of k-dimensional systems of max-type difference equations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Some sufficient conditions are given such that the following system of difference equations: x ( 1 ) ( n + 1 ) = max 1 ≤ j ≤ l 1 { f 1 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , x ( 2 ) ( n + 1 ) = max 1 ≤ j ≤ l 2 { f 2 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , ⋮ x ( k ) ( n + 1 ) = max 1 ≤ j ≤ l k { f k j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , $$\begin{aligned} &x^{(1)}(n+1)=\max_{1\le j\le l_{1}} \bigl\{ f_{1j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &x^{(2)}(n+1)=\max_{1\le j\le l_{2}} \bigl\{ f_{2j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &\vdots \\ &x^{(k)}(n+1)=\max_{1\le j\le l_{k}} \bigl\{ f_{kj} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \end{aligned}$$ n ∈ N 0 $n\in {\mathbb {N}}_{0}$ , where k ∈ N $k\in {\mathbb {N}}$ , l i ∈ N $l_{i}\in {\mathbb {N}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , x ( i ) ( 0 ) ∈ R $x^{(i)}(0)\in {\mathbb {R}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , has a unique periodic solution attracting all the solutions to the system. Our main result considerably generalizes some recent results in the literature and simplifies their proofs. Nutzungsrecht: © The Author(s) 2016 Difference and Functional Equations Partial Differential Equations max-type system of difference equations Ordinary Differential Equations Analysis existence of periodic solutions Functional Analysis 39A23 Mathematics, general global attractivity Mathematics Enthalten in Advances in difference equations [Sylvania, Ohio] : Hindawi Publ. Corp., 2004 2016(2016), 1, Seite 1-10 (DE-627)394569423 (DE-600)2161260-2 (DE-576)9394569421 1687-1839 nnns volume:2016 year:2016 number:1 pages:1-10 http://dx.doi.org/10.1186/s13662-016-0977-1 Volltext http://search.proquest.com/docview/1824487480 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4310 31.49 AVZ AR 2016 2016 1 1-10 |
allfields_unstemmed |
10.1186/s13662-016-0977-1 doi PQ20161201 (DE-627)OLC1986370593 (DE-599)GBVOLC1986370593 (PRQ)c1617-fdcb932a0cf1ff96ffae5318f9438e4b8666cb0407e1b7593dcf807d336565dd3 (KEY)0544041620160000016000100001onperiodicsolutionsofaclassofkdimensionalsystemsof DE-627 ger DE-627 rakwb eng 510 ZDB 31.49 bkl Stević, Stevo verfasserin aut On periodic solutions of a class of k-dimensional systems of max-type difference equations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Some sufficient conditions are given such that the following system of difference equations: x ( 1 ) ( n + 1 ) = max 1 ≤ j ≤ l 1 { f 1 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , x ( 2 ) ( n + 1 ) = max 1 ≤ j ≤ l 2 { f 2 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , ⋮ x ( k ) ( n + 1 ) = max 1 ≤ j ≤ l k { f k j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , $$\begin{aligned} &x^{(1)}(n+1)=\max_{1\le j\le l_{1}} \bigl\{ f_{1j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &x^{(2)}(n+1)=\max_{1\le j\le l_{2}} \bigl\{ f_{2j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &\vdots \\ &x^{(k)}(n+1)=\max_{1\le j\le l_{k}} \bigl\{ f_{kj} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \end{aligned}$$ n ∈ N 0 $n\in {\mathbb {N}}_{0}$ , where k ∈ N $k\in {\mathbb {N}}$ , l i ∈ N $l_{i}\in {\mathbb {N}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , x ( i ) ( 0 ) ∈ R $x^{(i)}(0)\in {\mathbb {R}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , has a unique periodic solution attracting all the solutions to the system. Our main result considerably generalizes some recent results in the literature and simplifies their proofs. Nutzungsrecht: © The Author(s) 2016 Difference and Functional Equations Partial Differential Equations max-type system of difference equations Ordinary Differential Equations Analysis existence of periodic solutions Functional Analysis 39A23 Mathematics, general global attractivity Mathematics Enthalten in Advances in difference equations [Sylvania, Ohio] : Hindawi Publ. Corp., 2004 2016(2016), 1, Seite 1-10 (DE-627)394569423 (DE-600)2161260-2 (DE-576)9394569421 1687-1839 nnns volume:2016 year:2016 number:1 pages:1-10 http://dx.doi.org/10.1186/s13662-016-0977-1 Volltext http://search.proquest.com/docview/1824487480 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4310 31.49 AVZ AR 2016 2016 1 1-10 |
allfieldsGer |
10.1186/s13662-016-0977-1 doi PQ20161201 (DE-627)OLC1986370593 (DE-599)GBVOLC1986370593 (PRQ)c1617-fdcb932a0cf1ff96ffae5318f9438e4b8666cb0407e1b7593dcf807d336565dd3 (KEY)0544041620160000016000100001onperiodicsolutionsofaclassofkdimensionalsystemsof DE-627 ger DE-627 rakwb eng 510 ZDB 31.49 bkl Stević, Stevo verfasserin aut On periodic solutions of a class of k-dimensional systems of max-type difference equations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Some sufficient conditions are given such that the following system of difference equations: x ( 1 ) ( n + 1 ) = max 1 ≤ j ≤ l 1 { f 1 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , x ( 2 ) ( n + 1 ) = max 1 ≤ j ≤ l 2 { f 2 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , ⋮ x ( k ) ( n + 1 ) = max 1 ≤ j ≤ l k { f k j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , $$\begin{aligned} &x^{(1)}(n+1)=\max_{1\le j\le l_{1}} \bigl\{ f_{1j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &x^{(2)}(n+1)=\max_{1\le j\le l_{2}} \bigl\{ f_{2j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &\vdots \\ &x^{(k)}(n+1)=\max_{1\le j\le l_{k}} \bigl\{ f_{kj} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \end{aligned}$$ n ∈ N 0 $n\in {\mathbb {N}}_{0}$ , where k ∈ N $k\in {\mathbb {N}}$ , l i ∈ N $l_{i}\in {\mathbb {N}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , x ( i ) ( 0 ) ∈ R $x^{(i)}(0)\in {\mathbb {R}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , has a unique periodic solution attracting all the solutions to the system. Our main result considerably generalizes some recent results in the literature and simplifies their proofs. Nutzungsrecht: © The Author(s) 2016 Difference and Functional Equations Partial Differential Equations max-type system of difference equations Ordinary Differential Equations Analysis existence of periodic solutions Functional Analysis 39A23 Mathematics, general global attractivity Mathematics Enthalten in Advances in difference equations [Sylvania, Ohio] : Hindawi Publ. Corp., 2004 2016(2016), 1, Seite 1-10 (DE-627)394569423 (DE-600)2161260-2 (DE-576)9394569421 1687-1839 nnns volume:2016 year:2016 number:1 pages:1-10 http://dx.doi.org/10.1186/s13662-016-0977-1 Volltext http://search.proquest.com/docview/1824487480 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4310 31.49 AVZ AR 2016 2016 1 1-10 |
allfieldsSound |
10.1186/s13662-016-0977-1 doi PQ20161201 (DE-627)OLC1986370593 (DE-599)GBVOLC1986370593 (PRQ)c1617-fdcb932a0cf1ff96ffae5318f9438e4b8666cb0407e1b7593dcf807d336565dd3 (KEY)0544041620160000016000100001onperiodicsolutionsofaclassofkdimensionalsystemsof DE-627 ger DE-627 rakwb eng 510 ZDB 31.49 bkl Stević, Stevo verfasserin aut On periodic solutions of a class of k-dimensional systems of max-type difference equations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Some sufficient conditions are given such that the following system of difference equations: x ( 1 ) ( n + 1 ) = max 1 ≤ j ≤ l 1 { f 1 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , x ( 2 ) ( n + 1 ) = max 1 ≤ j ≤ l 2 { f 2 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , ⋮ x ( k ) ( n + 1 ) = max 1 ≤ j ≤ l k { f k j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , $$\begin{aligned} &x^{(1)}(n+1)=\max_{1\le j\le l_{1}} \bigl\{ f_{1j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &x^{(2)}(n+1)=\max_{1\le j\le l_{2}} \bigl\{ f_{2j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &\vdots \\ &x^{(k)}(n+1)=\max_{1\le j\le l_{k}} \bigl\{ f_{kj} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \end{aligned}$$ n ∈ N 0 $n\in {\mathbb {N}}_{0}$ , where k ∈ N $k\in {\mathbb {N}}$ , l i ∈ N $l_{i}\in {\mathbb {N}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , x ( i ) ( 0 ) ∈ R $x^{(i)}(0)\in {\mathbb {R}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , has a unique periodic solution attracting all the solutions to the system. Our main result considerably generalizes some recent results in the literature and simplifies their proofs. Nutzungsrecht: © The Author(s) 2016 Difference and Functional Equations Partial Differential Equations max-type system of difference equations Ordinary Differential Equations Analysis existence of periodic solutions Functional Analysis 39A23 Mathematics, general global attractivity Mathematics Enthalten in Advances in difference equations [Sylvania, Ohio] : Hindawi Publ. Corp., 2004 2016(2016), 1, Seite 1-10 (DE-627)394569423 (DE-600)2161260-2 (DE-576)9394569421 1687-1839 nnns volume:2016 year:2016 number:1 pages:1-10 http://dx.doi.org/10.1186/s13662-016-0977-1 Volltext http://search.proquest.com/docview/1824487480 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4310 31.49 AVZ AR 2016 2016 1 1-10 |
language |
English |
source |
Enthalten in Advances in difference equations 2016(2016), 1, Seite 1-10 volume:2016 year:2016 number:1 pages:1-10 |
sourceStr |
Enthalten in Advances in difference equations 2016(2016), 1, Seite 1-10 volume:2016 year:2016 number:1 pages:1-10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Difference and Functional Equations Partial Differential Equations max-type system of difference equations Ordinary Differential Equations Analysis existence of periodic solutions Functional Analysis 39A23 Mathematics, general global attractivity Mathematics |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Advances in difference equations |
authorswithroles_txt_mv |
Stević, Stevo @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
394569423 |
dewey-sort |
3510 |
id |
OLC1986370593 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1986370593</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216174229.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-016-0977-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1986370593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1986370593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1617-fdcb932a0cf1ff96ffae5318f9438e4b8666cb0407e1b7593dcf807d336565dd3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0544041620160000016000100001onperiodicsolutionsofaclassofkdimensionalsystemsof</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stević, Stevo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On periodic solutions of a class of k-dimensional systems of max-type difference equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Some sufficient conditions are given such that the following system of difference equations: x ( 1 ) ( n + 1 ) = max 1 ≤ j ≤ l 1 { f 1 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , x ( 2 ) ( n + 1 ) = max 1 ≤ j ≤ l 2 { f 2 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , ⋮ x ( k ) ( n + 1 ) = max 1 ≤ j ≤ l k { f k j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , $$\begin{aligned} &x^{(1)}(n+1)=\max_{1\le j\le l_{1}} \bigl\{ f_{1j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &x^{(2)}(n+1)=\max_{1\le j\le l_{2}} \bigl\{ f_{2j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &\vdots \\ &x^{(k)}(n+1)=\max_{1\le j\le l_{k}} \bigl\{ f_{kj} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \end{aligned}$$ n ∈ N 0 $n\in {\mathbb {N}}_{0}$ , where k ∈ N $k\in {\mathbb {N}}$ , l i ∈ N $l_{i}\in {\mathbb {N}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , x ( i ) ( 0 ) ∈ R $x^{(i)}(0)\in {\mathbb {R}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , has a unique periodic solution attracting all the solutions to the system. Our main result considerably generalizes some recent results in the literature and simplifies their proofs.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © The Author(s) 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference and Functional Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">max-type system of difference equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">existence of periodic solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">39A23</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">global attractivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in difference equations</subfield><subfield code="d">[Sylvania, Ohio] : Hindawi Publ. Corp., 2004</subfield><subfield code="g">2016(2016), 1, Seite 1-10</subfield><subfield code="w">(DE-627)394569423</subfield><subfield code="w">(DE-600)2161260-2</subfield><subfield code="w">(DE-576)9394569421</subfield><subfield code="x">1687-1839</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2016</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:1-10</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1186/s13662-016-0977-1</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1824487480</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2016</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">1-10</subfield></datafield></record></collection>
|
author |
Stević, Stevo |
spellingShingle |
Stević, Stevo ddc 510 bkl 31.49 misc Difference and Functional Equations misc Partial Differential Equations misc max-type system of difference equations misc Ordinary Differential Equations misc Analysis misc existence of periodic solutions misc Functional Analysis misc 39A23 misc Mathematics, general misc global attractivity misc Mathematics On periodic solutions of a class of k-dimensional systems of max-type difference equations |
authorStr |
Stević, Stevo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)394569423 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1687-1839 |
topic_title |
510 ZDB 31.49 bkl On periodic solutions of a class of k-dimensional systems of max-type difference equations Difference and Functional Equations Partial Differential Equations max-type system of difference equations Ordinary Differential Equations Analysis existence of periodic solutions Functional Analysis 39A23 Mathematics, general global attractivity Mathematics |
topic |
ddc 510 bkl 31.49 misc Difference and Functional Equations misc Partial Differential Equations misc max-type system of difference equations misc Ordinary Differential Equations misc Analysis misc existence of periodic solutions misc Functional Analysis misc 39A23 misc Mathematics, general misc global attractivity misc Mathematics |
topic_unstemmed |
ddc 510 bkl 31.49 misc Difference and Functional Equations misc Partial Differential Equations misc max-type system of difference equations misc Ordinary Differential Equations misc Analysis misc existence of periodic solutions misc Functional Analysis misc 39A23 misc Mathematics, general misc global attractivity misc Mathematics |
topic_browse |
ddc 510 bkl 31.49 misc Difference and Functional Equations misc Partial Differential Equations misc max-type system of difference equations misc Ordinary Differential Equations misc Analysis misc existence of periodic solutions misc Functional Analysis misc 39A23 misc Mathematics, general misc global attractivity misc Mathematics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Advances in difference equations |
hierarchy_parent_id |
394569423 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Advances in difference equations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)394569423 (DE-600)2161260-2 (DE-576)9394569421 |
title |
On periodic solutions of a class of k-dimensional systems of max-type difference equations |
ctrlnum |
(DE-627)OLC1986370593 (DE-599)GBVOLC1986370593 (PRQ)c1617-fdcb932a0cf1ff96ffae5318f9438e4b8666cb0407e1b7593dcf807d336565dd3 (KEY)0544041620160000016000100001onperiodicsolutionsofaclassofkdimensionalsystemsof |
title_full |
On periodic solutions of a class of k-dimensional systems of max-type difference equations |
author_sort |
Stević, Stevo |
journal |
Advances in difference equations |
journalStr |
Advances in difference equations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Stević, Stevo |
container_volume |
2016 |
class |
510 ZDB 31.49 bkl |
format_se |
Aufsätze |
author-letter |
Stević, Stevo |
doi_str_mv |
10.1186/s13662-016-0977-1 |
dewey-full |
510 |
title_sort |
on periodic solutions of a class of k-dimensional systems of max-type difference equations |
title_auth |
On periodic solutions of a class of k-dimensional systems of max-type difference equations |
abstract |
Some sufficient conditions are given such that the following system of difference equations: x ( 1 ) ( n + 1 ) = max 1 ≤ j ≤ l 1 { f 1 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , x ( 2 ) ( n + 1 ) = max 1 ≤ j ≤ l 2 { f 2 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , ⋮ x ( k ) ( n + 1 ) = max 1 ≤ j ≤ l k { f k j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , $$\begin{aligned} &x^{(1)}(n+1)=\max_{1\le j\le l_{1}} \bigl\{ f_{1j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &x^{(2)}(n+1)=\max_{1\le j\le l_{2}} \bigl\{ f_{2j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &\vdots \\ &x^{(k)}(n+1)=\max_{1\le j\le l_{k}} \bigl\{ f_{kj} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \end{aligned}$$ n ∈ N 0 $n\in {\mathbb {N}}_{0}$ , where k ∈ N $k\in {\mathbb {N}}$ , l i ∈ N $l_{i}\in {\mathbb {N}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , x ( i ) ( 0 ) ∈ R $x^{(i)}(0)\in {\mathbb {R}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , has a unique periodic solution attracting all the solutions to the system. Our main result considerably generalizes some recent results in the literature and simplifies their proofs. |
abstractGer |
Some sufficient conditions are given such that the following system of difference equations: x ( 1 ) ( n + 1 ) = max 1 ≤ j ≤ l 1 { f 1 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , x ( 2 ) ( n + 1 ) = max 1 ≤ j ≤ l 2 { f 2 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , ⋮ x ( k ) ( n + 1 ) = max 1 ≤ j ≤ l k { f k j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , $$\begin{aligned} &x^{(1)}(n+1)=\max_{1\le j\le l_{1}} \bigl\{ f_{1j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &x^{(2)}(n+1)=\max_{1\le j\le l_{2}} \bigl\{ f_{2j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &\vdots \\ &x^{(k)}(n+1)=\max_{1\le j\le l_{k}} \bigl\{ f_{kj} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \end{aligned}$$ n ∈ N 0 $n\in {\mathbb {N}}_{0}$ , where k ∈ N $k\in {\mathbb {N}}$ , l i ∈ N $l_{i}\in {\mathbb {N}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , x ( i ) ( 0 ) ∈ R $x^{(i)}(0)\in {\mathbb {R}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , has a unique periodic solution attracting all the solutions to the system. Our main result considerably generalizes some recent results in the literature and simplifies their proofs. |
abstract_unstemmed |
Some sufficient conditions are given such that the following system of difference equations: x ( 1 ) ( n + 1 ) = max 1 ≤ j ≤ l 1 { f 1 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , x ( 2 ) ( n + 1 ) = max 1 ≤ j ≤ l 2 { f 2 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , ⋮ x ( k ) ( n + 1 ) = max 1 ≤ j ≤ l k { f k j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , $$\begin{aligned} &x^{(1)}(n+1)=\max_{1\le j\le l_{1}} \bigl\{ f_{1j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &x^{(2)}(n+1)=\max_{1\le j\le l_{2}} \bigl\{ f_{2j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &\vdots \\ &x^{(k)}(n+1)=\max_{1\le j\le l_{k}} \bigl\{ f_{kj} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \end{aligned}$$ n ∈ N 0 $n\in {\mathbb {N}}_{0}$ , where k ∈ N $k\in {\mathbb {N}}$ , l i ∈ N $l_{i}\in {\mathbb {N}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , x ( i ) ( 0 ) ∈ R $x^{(i)}(0)\in {\mathbb {R}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , has a unique periodic solution attracting all the solutions to the system. Our main result considerably generalizes some recent results in the literature and simplifies their proofs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4310 |
container_issue |
1 |
title_short |
On periodic solutions of a class of k-dimensional systems of max-type difference equations |
url |
http://dx.doi.org/10.1186/s13662-016-0977-1 http://search.proquest.com/docview/1824487480 |
remote_bool |
false |
ppnlink |
394569423 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13662-016-0977-1 |
up_date |
2024-07-04T04:31:45.266Z |
_version_ |
1803621504397606912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1986370593</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216174229.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">161202s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-016-0977-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20161201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1986370593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1986370593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1617-fdcb932a0cf1ff96ffae5318f9438e4b8666cb0407e1b7593dcf807d336565dd3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0544041620160000016000100001onperiodicsolutionsofaclassofkdimensionalsystemsof</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stević, Stevo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On periodic solutions of a class of k-dimensional systems of max-type difference equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Some sufficient conditions are given such that the following system of difference equations: x ( 1 ) ( n + 1 ) = max 1 ≤ j ≤ l 1 { f 1 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , x ( 2 ) ( n + 1 ) = max 1 ≤ j ≤ l 2 { f 2 j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , ⋮ x ( k ) ( n + 1 ) = max 1 ≤ j ≤ l k { f k j ( n , x ( 1 ) ( n ) , … , x ( k ) ( n ) ) } , $$\begin{aligned} &x^{(1)}(n+1)=\max_{1\le j\le l_{1}} \bigl\{ f_{1j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &x^{(2)}(n+1)=\max_{1\le j\le l_{2}} \bigl\{ f_{2j} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \\ &\vdots \\ &x^{(k)}(n+1)=\max_{1\le j\le l_{k}} \bigl\{ f_{kj} \bigl(n,x^{(1)}(n),\ldots ,x^{(k)}(n)\bigr) \bigr\} , \end{aligned}$$ n ∈ N 0 $n\in {\mathbb {N}}_{0}$ , where k ∈ N $k\in {\mathbb {N}}$ , l i ∈ N $l_{i}\in {\mathbb {N}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , x ( i ) ( 0 ) ∈ R $x^{(i)}(0)\in {\mathbb {R}}$ , i = 1 , k ‾ $i=\overline {1,k}$ , has a unique periodic solution attracting all the solutions to the system. Our main result considerably generalizes some recent results in the literature and simplifies their proofs.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © The Author(s) 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference and Functional Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">max-type system of difference equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">existence of periodic solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">39A23</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">global attractivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in difference equations</subfield><subfield code="d">[Sylvania, Ohio] : Hindawi Publ. Corp., 2004</subfield><subfield code="g">2016(2016), 1, Seite 1-10</subfield><subfield code="w">(DE-627)394569423</subfield><subfield code="w">(DE-600)2161260-2</subfield><subfield code="w">(DE-576)9394569421</subfield><subfield code="x">1687-1839</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2016</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:1-10</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1186/s13662-016-0977-1</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1824487480</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2016</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">1-10</subfield></datafield></record></collection>
|
score |
7.400505 |