Improving information retrieval in functional analysis
Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequen...
Ausführliche Beschreibung
Autor*in: |
Rodriguez, Juan C [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers in biology and medicine - New York, NY [u.a.] : Pergamon Press, 1970, 79(2016), Seite 10-20 |
---|---|
Übergeordnetes Werk: |
volume:79 ; year:2016 ; pages:10-20 |
Links: |
---|
DOI / URN: |
10.1016/j.compbiomed.2016.09.017 |
---|
Katalog-ID: |
OLC1986848183 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1986848183 | ||
003 | DE-627 | ||
005 | 20230510180122.0 | ||
007 | tu | ||
008 | 170207s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compbiomed.2016.09.017 |2 doi | |
028 | 5 | 2 | |a PQ20170501 |
035 | |a (DE-627)OLC1986848183 | ||
035 | |a (DE-599)GBVOLC1986848183 | ||
035 | |a (PRQ)c2316-9ce60629a5e90ea71ee8b9ba4a061bfb1871ce019d73c1a561840339b1fe32840 | ||
035 | |a (KEY)0003445220160000079000000010improvinginformationretrievalinfunctionalanalysis | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |a 570 |q DE-600 |
084 | |a 44.00 |2 bkl | ||
084 | |a 42.00 |2 bkl | ||
100 | 1 | |a Rodriguez, Juan C |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improving information retrieval in functional analysis |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities. | ||
650 | 4 | |a Experiments | |
650 | 4 | |a Gene expression | |
650 | 4 | |a Information retrieval | |
650 | 4 | |a Methods | |
650 | 4 | |a Datasets | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Breast cancer | |
650 | 4 | |a Genotype & phenotype | |
650 | 4 | |a Medical prognosis | |
700 | 1 | |a González, Germán A |4 oth | |
700 | 1 | |a Fresno, Cristóbal |4 oth | |
700 | 1 | |a Llera, Andrea S |4 oth | |
700 | 1 | |a Fernández, Elmer A |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Computers in biology and medicine |d New York, NY [u.a.] : Pergamon Press, 1970 |g 79(2016), Seite 10-20 |w (DE-627)129312789 |w (DE-600)127557-4 |w (DE-576)014525828 |x 0010-4825 |7 nnns |
773 | 1 | 8 | |g volume:79 |g year:2016 |g pages:10-20 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.compbiomed.2016.09.017 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1846851692 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 44.00 |q AVZ |
936 | b | k | |a 42.00 |q AVZ |
951 | |a AR | ||
952 | |d 79 |j 2016 |h 10-20 |
author_variant |
j c r jc jcr |
---|---|
matchkey_str |
article:00104825:2016----::mrvnifrainereaifnt |
hierarchy_sort_str |
2016 |
bklnumber |
44.00 42.00 |
publishDate |
2016 |
allfields |
10.1016/j.compbiomed.2016.09.017 doi PQ20170501 (DE-627)OLC1986848183 (DE-599)GBVOLC1986848183 (PRQ)c2316-9ce60629a5e90ea71ee8b9ba4a061bfb1871ce019d73c1a561840339b1fe32840 (KEY)0003445220160000079000000010improvinginformationretrievalinfunctionalanalysis DE-627 ger DE-627 rakwb eng 610 570 DE-600 44.00 bkl 42.00 bkl Rodriguez, Juan C verfasserin aut Improving information retrieval in functional analysis 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities. Experiments Gene expression Information retrieval Methods Datasets Algorithms Breast cancer Genotype & phenotype Medical prognosis González, Germán A oth Fresno, Cristóbal oth Llera, Andrea S oth Fernández, Elmer A oth Enthalten in Computers in biology and medicine New York, NY [u.a.] : Pergamon Press, 1970 79(2016), Seite 10-20 (DE-627)129312789 (DE-600)127557-4 (DE-576)014525828 0010-4825 nnns volume:79 year:2016 pages:10-20 http://dx.doi.org/10.1016/j.compbiomed.2016.09.017 Volltext http://search.proquest.com/docview/1846851692 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 44.00 AVZ 42.00 AVZ AR 79 2016 10-20 |
spelling |
10.1016/j.compbiomed.2016.09.017 doi PQ20170501 (DE-627)OLC1986848183 (DE-599)GBVOLC1986848183 (PRQ)c2316-9ce60629a5e90ea71ee8b9ba4a061bfb1871ce019d73c1a561840339b1fe32840 (KEY)0003445220160000079000000010improvinginformationretrievalinfunctionalanalysis DE-627 ger DE-627 rakwb eng 610 570 DE-600 44.00 bkl 42.00 bkl Rodriguez, Juan C verfasserin aut Improving information retrieval in functional analysis 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities. Experiments Gene expression Information retrieval Methods Datasets Algorithms Breast cancer Genotype & phenotype Medical prognosis González, Germán A oth Fresno, Cristóbal oth Llera, Andrea S oth Fernández, Elmer A oth Enthalten in Computers in biology and medicine New York, NY [u.a.] : Pergamon Press, 1970 79(2016), Seite 10-20 (DE-627)129312789 (DE-600)127557-4 (DE-576)014525828 0010-4825 nnns volume:79 year:2016 pages:10-20 http://dx.doi.org/10.1016/j.compbiomed.2016.09.017 Volltext http://search.proquest.com/docview/1846851692 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 44.00 AVZ 42.00 AVZ AR 79 2016 10-20 |
allfields_unstemmed |
10.1016/j.compbiomed.2016.09.017 doi PQ20170501 (DE-627)OLC1986848183 (DE-599)GBVOLC1986848183 (PRQ)c2316-9ce60629a5e90ea71ee8b9ba4a061bfb1871ce019d73c1a561840339b1fe32840 (KEY)0003445220160000079000000010improvinginformationretrievalinfunctionalanalysis DE-627 ger DE-627 rakwb eng 610 570 DE-600 44.00 bkl 42.00 bkl Rodriguez, Juan C verfasserin aut Improving information retrieval in functional analysis 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities. Experiments Gene expression Information retrieval Methods Datasets Algorithms Breast cancer Genotype & phenotype Medical prognosis González, Germán A oth Fresno, Cristóbal oth Llera, Andrea S oth Fernández, Elmer A oth Enthalten in Computers in biology and medicine New York, NY [u.a.] : Pergamon Press, 1970 79(2016), Seite 10-20 (DE-627)129312789 (DE-600)127557-4 (DE-576)014525828 0010-4825 nnns volume:79 year:2016 pages:10-20 http://dx.doi.org/10.1016/j.compbiomed.2016.09.017 Volltext http://search.proquest.com/docview/1846851692 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 44.00 AVZ 42.00 AVZ AR 79 2016 10-20 |
allfieldsGer |
10.1016/j.compbiomed.2016.09.017 doi PQ20170501 (DE-627)OLC1986848183 (DE-599)GBVOLC1986848183 (PRQ)c2316-9ce60629a5e90ea71ee8b9ba4a061bfb1871ce019d73c1a561840339b1fe32840 (KEY)0003445220160000079000000010improvinginformationretrievalinfunctionalanalysis DE-627 ger DE-627 rakwb eng 610 570 DE-600 44.00 bkl 42.00 bkl Rodriguez, Juan C verfasserin aut Improving information retrieval in functional analysis 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities. Experiments Gene expression Information retrieval Methods Datasets Algorithms Breast cancer Genotype & phenotype Medical prognosis González, Germán A oth Fresno, Cristóbal oth Llera, Andrea S oth Fernández, Elmer A oth Enthalten in Computers in biology and medicine New York, NY [u.a.] : Pergamon Press, 1970 79(2016), Seite 10-20 (DE-627)129312789 (DE-600)127557-4 (DE-576)014525828 0010-4825 nnns volume:79 year:2016 pages:10-20 http://dx.doi.org/10.1016/j.compbiomed.2016.09.017 Volltext http://search.proquest.com/docview/1846851692 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 44.00 AVZ 42.00 AVZ AR 79 2016 10-20 |
allfieldsSound |
10.1016/j.compbiomed.2016.09.017 doi PQ20170501 (DE-627)OLC1986848183 (DE-599)GBVOLC1986848183 (PRQ)c2316-9ce60629a5e90ea71ee8b9ba4a061bfb1871ce019d73c1a561840339b1fe32840 (KEY)0003445220160000079000000010improvinginformationretrievalinfunctionalanalysis DE-627 ger DE-627 rakwb eng 610 570 DE-600 44.00 bkl 42.00 bkl Rodriguez, Juan C verfasserin aut Improving information retrieval in functional analysis 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities. Experiments Gene expression Information retrieval Methods Datasets Algorithms Breast cancer Genotype & phenotype Medical prognosis González, Germán A oth Fresno, Cristóbal oth Llera, Andrea S oth Fernández, Elmer A oth Enthalten in Computers in biology and medicine New York, NY [u.a.] : Pergamon Press, 1970 79(2016), Seite 10-20 (DE-627)129312789 (DE-600)127557-4 (DE-576)014525828 0010-4825 nnns volume:79 year:2016 pages:10-20 http://dx.doi.org/10.1016/j.compbiomed.2016.09.017 Volltext http://search.proquest.com/docview/1846851692 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 44.00 AVZ 42.00 AVZ AR 79 2016 10-20 |
language |
English |
source |
Enthalten in Computers in biology and medicine 79(2016), Seite 10-20 volume:79 year:2016 pages:10-20 |
sourceStr |
Enthalten in Computers in biology and medicine 79(2016), Seite 10-20 volume:79 year:2016 pages:10-20 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Experiments Gene expression Information retrieval Methods Datasets Algorithms Breast cancer Genotype & phenotype Medical prognosis |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Computers in biology and medicine |
authorswithroles_txt_mv |
Rodriguez, Juan C @@aut@@ González, Germán A @@oth@@ Fresno, Cristóbal @@oth@@ Llera, Andrea S @@oth@@ Fernández, Elmer A @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129312789 |
dewey-sort |
3610 |
id |
OLC1986848183 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1986848183</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510180122.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2016.09.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1986848183</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1986848183</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2316-9ce60629a5e90ea71ee8b9ba4a061bfb1871ce019d73c1a561840339b1fe32840</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0003445220160000079000000010improvinginformationretrievalinfunctionalanalysis</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rodriguez, Juan C</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving information retrieval in functional analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experiments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene expression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datasets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genotype & phenotype</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical prognosis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">González, Germán A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fresno, Cristóbal</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Llera, Andrea S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fernández, Elmer A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers in biology and medicine</subfield><subfield code="d">New York, NY [u.a.] : Pergamon Press, 1970</subfield><subfield code="g">79(2016), Seite 10-20</subfield><subfield code="w">(DE-627)129312789</subfield><subfield code="w">(DE-600)127557-4</subfield><subfield code="w">(DE-576)014525828</subfield><subfield code="x">0010-4825</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:79</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:10-20</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.compbiomed.2016.09.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1846851692</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">79</subfield><subfield code="j">2016</subfield><subfield code="h">10-20</subfield></datafield></record></collection>
|
author |
Rodriguez, Juan C |
spellingShingle |
Rodriguez, Juan C ddc 610 bkl 44.00 bkl 42.00 misc Experiments misc Gene expression misc Information retrieval misc Methods misc Datasets misc Algorithms misc Breast cancer misc Genotype & phenotype misc Medical prognosis Improving information retrieval in functional analysis |
authorStr |
Rodriguez, Juan C |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129312789 |
format |
Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-4825 |
topic_title |
610 570 DE-600 44.00 bkl 42.00 bkl Improving information retrieval in functional analysis Experiments Gene expression Information retrieval Methods Datasets Algorithms Breast cancer Genotype & phenotype Medical prognosis |
topic |
ddc 610 bkl 44.00 bkl 42.00 misc Experiments misc Gene expression misc Information retrieval misc Methods misc Datasets misc Algorithms misc Breast cancer misc Genotype & phenotype misc Medical prognosis |
topic_unstemmed |
ddc 610 bkl 44.00 bkl 42.00 misc Experiments misc Gene expression misc Information retrieval misc Methods misc Datasets misc Algorithms misc Breast cancer misc Genotype & phenotype misc Medical prognosis |
topic_browse |
ddc 610 bkl 44.00 bkl 42.00 misc Experiments misc Gene expression misc Information retrieval misc Methods misc Datasets misc Algorithms misc Breast cancer misc Genotype & phenotype misc Medical prognosis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
g a g ga gag c f cf a s l as asl e a f ea eaf |
hierarchy_parent_title |
Computers in biology and medicine |
hierarchy_parent_id |
129312789 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
Computers in biology and medicine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129312789 (DE-600)127557-4 (DE-576)014525828 |
title |
Improving information retrieval in functional analysis |
ctrlnum |
(DE-627)OLC1986848183 (DE-599)GBVOLC1986848183 (PRQ)c2316-9ce60629a5e90ea71ee8b9ba4a061bfb1871ce019d73c1a561840339b1fe32840 (KEY)0003445220160000079000000010improvinginformationretrievalinfunctionalanalysis |
title_full |
Improving information retrieval in functional analysis |
author_sort |
Rodriguez, Juan C |
journal |
Computers in biology and medicine |
journalStr |
Computers in biology and medicine |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
10 |
author_browse |
Rodriguez, Juan C |
container_volume |
79 |
class |
610 570 DE-600 44.00 bkl 42.00 bkl |
format_se |
Aufsätze |
author-letter |
Rodriguez, Juan C |
doi_str_mv |
10.1016/j.compbiomed.2016.09.017 |
dewey-full |
610 570 |
title_sort |
improving information retrieval in functional analysis |
title_auth |
Improving information retrieval in functional analysis |
abstract |
Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities. |
abstractGer |
Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities. |
abstract_unstemmed |
Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 |
title_short |
Improving information retrieval in functional analysis |
url |
http://dx.doi.org/10.1016/j.compbiomed.2016.09.017 http://search.proquest.com/docview/1846851692 |
remote_bool |
false |
author2 |
González, Germán A Fresno, Cristóbal Llera, Andrea S Fernández, Elmer A |
author2Str |
González, Germán A Fresno, Cristóbal Llera, Andrea S Fernández, Elmer A |
ppnlink |
129312789 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.compbiomed.2016.09.017 |
up_date |
2024-07-04T05:11:48.807Z |
_version_ |
1803624024700354560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1986848183</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510180122.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2016.09.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1986848183</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1986848183</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2316-9ce60629a5e90ea71ee8b9ba4a061bfb1871ce019d73c1a561840339b1fe32840</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0003445220160000079000000010improvinginformationretrievalinfunctionalanalysis</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rodriguez, Juan C</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving information retrieval in functional analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experiments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene expression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datasets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genotype & phenotype</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical prognosis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">González, Germán A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fresno, Cristóbal</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Llera, Andrea S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fernández, Elmer A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers in biology and medicine</subfield><subfield code="d">New York, NY [u.a.] : Pergamon Press, 1970</subfield><subfield code="g">79(2016), Seite 10-20</subfield><subfield code="w">(DE-627)129312789</subfield><subfield code="w">(DE-600)127557-4</subfield><subfield code="w">(DE-576)014525828</subfield><subfield code="x">0010-4825</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:79</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:10-20</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.compbiomed.2016.09.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1846851692</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">79</subfield><subfield code="j">2016</subfield><subfield code="h">10-20</subfield></datafield></record></collection>
|
score |
7.400794 |