Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process
The practical implications of replacing various individual transport resistances such as gas-solid mass and heat transfer, and gas phase axial dispersions of mass and heat in a numerical model of a pressure swing adsorption (PSA) process by a single, empirical, lumped, effective mass transport coeff...
Ausführliche Beschreibung
Autor*in: |
Vemula, Rama Rao [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 Taylor & Francis 2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Separation science and technology - Philadelphia, Pa. : Taylor & Francis, 1978, 52(2017), 1, Seite 35-41 |
---|---|
Übergeordnetes Werk: |
volume:52 ; year:2017 ; number:1 ; pages:35-41 |
Links: |
---|
DOI / URN: |
10.1080/01496395.2016.1242629 |
---|
Katalog-ID: |
OLC1987112059 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1987112059 | ||
003 | DE-627 | ||
005 | 20230715001440.0 | ||
007 | tu | ||
008 | 170207s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/01496395.2016.1242629 |2 doi | |
028 | 5 | 2 | |a PQ20170301 |
035 | |a (DE-627)OLC1987112059 | ||
035 | |a (DE-599)GBVOLC1987112059 | ||
035 | |a (PRQ)c1267-ed758591098af3df621d46face3884216cc43ade902d98b4d93ca36c84c360990 | ||
035 | |a (KEY)0017461020170000052000100035lumpedheatandmasstransfercoefficientforsimulationo | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DNB |
100 | 1 | |a Vemula, Rama Rao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The practical implications of replacing various individual transport resistances such as gas-solid mass and heat transfer, and gas phase axial dispersions of mass and heat in a numerical model of a pressure swing adsorption (PSA) process by a single, empirical, lumped, effective mass transport coefficient were evaluated. A non-isothermal, adiabatic, four-step Skarstrom-like PSA process for production of pure helium from a binary helium-nitrogen mixture using 5A zeolite adsorbent was considered. It was found that the above-described model simplification was adequate to describe key process performances such as the bed size factor and the product recovery vis-a-vis a detailed model where the effects of all individual resistances were explicitly included. | ||
540 | |a Nutzungsrecht: © 2017 Taylor & Francis 2017 | ||
650 | 4 | |a PSA process performance | |
650 | 4 | |a Axial mass and heat dispersion | |
650 | 4 | |a numerical simulation | |
650 | 4 | |a lumped mass and heat transfer coefficient | |
700 | 1 | |a Kothare, Mayuresh V |4 oth | |
700 | 1 | |a Sircar, Shivaji |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Separation science and technology |d Philadelphia, Pa. : Taylor & Francis, 1978 |g 52(2017), 1, Seite 35-41 |w (DE-627)12994100X |w (DE-600)391905-5 |w (DE-576)015504247 |x 0149-6395 |7 nnns |
773 | 1 | 8 | |g volume:52 |g year:2017 |g number:1 |g pages:35-41 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/01496395.2016.1242629 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/01496395.2016.1242629 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 52 |j 2017 |e 1 |h 35-41 |
author_variant |
r r v rr rrv |
---|---|
matchkey_str |
article:01496395:2017----::updetnmstasecefcetosmltooarsue |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1080/01496395.2016.1242629 doi PQ20170301 (DE-627)OLC1987112059 (DE-599)GBVOLC1987112059 (PRQ)c1267-ed758591098af3df621d46face3884216cc43ade902d98b4d93ca36c84c360990 (KEY)0017461020170000052000100035lumpedheatandmasstransfercoefficientforsimulationo DE-627 ger DE-627 rakwb eng 540 DNB Vemula, Rama Rao verfasserin aut Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The practical implications of replacing various individual transport resistances such as gas-solid mass and heat transfer, and gas phase axial dispersions of mass and heat in a numerical model of a pressure swing adsorption (PSA) process by a single, empirical, lumped, effective mass transport coefficient were evaluated. A non-isothermal, adiabatic, four-step Skarstrom-like PSA process for production of pure helium from a binary helium-nitrogen mixture using 5A zeolite adsorbent was considered. It was found that the above-described model simplification was adequate to describe key process performances such as the bed size factor and the product recovery vis-a-vis a detailed model where the effects of all individual resistances were explicitly included. Nutzungsrecht: © 2017 Taylor & Francis 2017 PSA process performance Axial mass and heat dispersion numerical simulation lumped mass and heat transfer coefficient Kothare, Mayuresh V oth Sircar, Shivaji oth Enthalten in Separation science and technology Philadelphia, Pa. : Taylor & Francis, 1978 52(2017), 1, Seite 35-41 (DE-627)12994100X (DE-600)391905-5 (DE-576)015504247 0149-6395 nnns volume:52 year:2017 number:1 pages:35-41 http://dx.doi.org/10.1080/01496395.2016.1242629 Volltext http://www.tandfonline.com/doi/abs/10.1080/01496395.2016.1242629 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 52 2017 1 35-41 |
spelling |
10.1080/01496395.2016.1242629 doi PQ20170301 (DE-627)OLC1987112059 (DE-599)GBVOLC1987112059 (PRQ)c1267-ed758591098af3df621d46face3884216cc43ade902d98b4d93ca36c84c360990 (KEY)0017461020170000052000100035lumpedheatandmasstransfercoefficientforsimulationo DE-627 ger DE-627 rakwb eng 540 DNB Vemula, Rama Rao verfasserin aut Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The practical implications of replacing various individual transport resistances such as gas-solid mass and heat transfer, and gas phase axial dispersions of mass and heat in a numerical model of a pressure swing adsorption (PSA) process by a single, empirical, lumped, effective mass transport coefficient were evaluated. A non-isothermal, adiabatic, four-step Skarstrom-like PSA process for production of pure helium from a binary helium-nitrogen mixture using 5A zeolite adsorbent was considered. It was found that the above-described model simplification was adequate to describe key process performances such as the bed size factor and the product recovery vis-a-vis a detailed model where the effects of all individual resistances were explicitly included. Nutzungsrecht: © 2017 Taylor & Francis 2017 PSA process performance Axial mass and heat dispersion numerical simulation lumped mass and heat transfer coefficient Kothare, Mayuresh V oth Sircar, Shivaji oth Enthalten in Separation science and technology Philadelphia, Pa. : Taylor & Francis, 1978 52(2017), 1, Seite 35-41 (DE-627)12994100X (DE-600)391905-5 (DE-576)015504247 0149-6395 nnns volume:52 year:2017 number:1 pages:35-41 http://dx.doi.org/10.1080/01496395.2016.1242629 Volltext http://www.tandfonline.com/doi/abs/10.1080/01496395.2016.1242629 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 52 2017 1 35-41 |
allfields_unstemmed |
10.1080/01496395.2016.1242629 doi PQ20170301 (DE-627)OLC1987112059 (DE-599)GBVOLC1987112059 (PRQ)c1267-ed758591098af3df621d46face3884216cc43ade902d98b4d93ca36c84c360990 (KEY)0017461020170000052000100035lumpedheatandmasstransfercoefficientforsimulationo DE-627 ger DE-627 rakwb eng 540 DNB Vemula, Rama Rao verfasserin aut Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The practical implications of replacing various individual transport resistances such as gas-solid mass and heat transfer, and gas phase axial dispersions of mass and heat in a numerical model of a pressure swing adsorption (PSA) process by a single, empirical, lumped, effective mass transport coefficient were evaluated. A non-isothermal, adiabatic, four-step Skarstrom-like PSA process for production of pure helium from a binary helium-nitrogen mixture using 5A zeolite adsorbent was considered. It was found that the above-described model simplification was adequate to describe key process performances such as the bed size factor and the product recovery vis-a-vis a detailed model where the effects of all individual resistances were explicitly included. Nutzungsrecht: © 2017 Taylor & Francis 2017 PSA process performance Axial mass and heat dispersion numerical simulation lumped mass and heat transfer coefficient Kothare, Mayuresh V oth Sircar, Shivaji oth Enthalten in Separation science and technology Philadelphia, Pa. : Taylor & Francis, 1978 52(2017), 1, Seite 35-41 (DE-627)12994100X (DE-600)391905-5 (DE-576)015504247 0149-6395 nnns volume:52 year:2017 number:1 pages:35-41 http://dx.doi.org/10.1080/01496395.2016.1242629 Volltext http://www.tandfonline.com/doi/abs/10.1080/01496395.2016.1242629 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 52 2017 1 35-41 |
allfieldsGer |
10.1080/01496395.2016.1242629 doi PQ20170301 (DE-627)OLC1987112059 (DE-599)GBVOLC1987112059 (PRQ)c1267-ed758591098af3df621d46face3884216cc43ade902d98b4d93ca36c84c360990 (KEY)0017461020170000052000100035lumpedheatandmasstransfercoefficientforsimulationo DE-627 ger DE-627 rakwb eng 540 DNB Vemula, Rama Rao verfasserin aut Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The practical implications of replacing various individual transport resistances such as gas-solid mass and heat transfer, and gas phase axial dispersions of mass and heat in a numerical model of a pressure swing adsorption (PSA) process by a single, empirical, lumped, effective mass transport coefficient were evaluated. A non-isothermal, adiabatic, four-step Skarstrom-like PSA process for production of pure helium from a binary helium-nitrogen mixture using 5A zeolite adsorbent was considered. It was found that the above-described model simplification was adequate to describe key process performances such as the bed size factor and the product recovery vis-a-vis a detailed model where the effects of all individual resistances were explicitly included. Nutzungsrecht: © 2017 Taylor & Francis 2017 PSA process performance Axial mass and heat dispersion numerical simulation lumped mass and heat transfer coefficient Kothare, Mayuresh V oth Sircar, Shivaji oth Enthalten in Separation science and technology Philadelphia, Pa. : Taylor & Francis, 1978 52(2017), 1, Seite 35-41 (DE-627)12994100X (DE-600)391905-5 (DE-576)015504247 0149-6395 nnns volume:52 year:2017 number:1 pages:35-41 http://dx.doi.org/10.1080/01496395.2016.1242629 Volltext http://www.tandfonline.com/doi/abs/10.1080/01496395.2016.1242629 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 52 2017 1 35-41 |
allfieldsSound |
10.1080/01496395.2016.1242629 doi PQ20170301 (DE-627)OLC1987112059 (DE-599)GBVOLC1987112059 (PRQ)c1267-ed758591098af3df621d46face3884216cc43ade902d98b4d93ca36c84c360990 (KEY)0017461020170000052000100035lumpedheatandmasstransfercoefficientforsimulationo DE-627 ger DE-627 rakwb eng 540 DNB Vemula, Rama Rao verfasserin aut Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The practical implications of replacing various individual transport resistances such as gas-solid mass and heat transfer, and gas phase axial dispersions of mass and heat in a numerical model of a pressure swing adsorption (PSA) process by a single, empirical, lumped, effective mass transport coefficient were evaluated. A non-isothermal, adiabatic, four-step Skarstrom-like PSA process for production of pure helium from a binary helium-nitrogen mixture using 5A zeolite adsorbent was considered. It was found that the above-described model simplification was adequate to describe key process performances such as the bed size factor and the product recovery vis-a-vis a detailed model where the effects of all individual resistances were explicitly included. Nutzungsrecht: © 2017 Taylor & Francis 2017 PSA process performance Axial mass and heat dispersion numerical simulation lumped mass and heat transfer coefficient Kothare, Mayuresh V oth Sircar, Shivaji oth Enthalten in Separation science and technology Philadelphia, Pa. : Taylor & Francis, 1978 52(2017), 1, Seite 35-41 (DE-627)12994100X (DE-600)391905-5 (DE-576)015504247 0149-6395 nnns volume:52 year:2017 number:1 pages:35-41 http://dx.doi.org/10.1080/01496395.2016.1242629 Volltext http://www.tandfonline.com/doi/abs/10.1080/01496395.2016.1242629 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 52 2017 1 35-41 |
language |
English |
source |
Enthalten in Separation science and technology 52(2017), 1, Seite 35-41 volume:52 year:2017 number:1 pages:35-41 |
sourceStr |
Enthalten in Separation science and technology 52(2017), 1, Seite 35-41 volume:52 year:2017 number:1 pages:35-41 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
PSA process performance Axial mass and heat dispersion numerical simulation lumped mass and heat transfer coefficient |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Separation science and technology |
authorswithroles_txt_mv |
Vemula, Rama Rao @@aut@@ Kothare, Mayuresh V @@oth@@ Sircar, Shivaji @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
12994100X |
dewey-sort |
3540 |
id |
OLC1987112059 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1987112059</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715001440.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/01496395.2016.1242629</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1987112059</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1987112059</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1267-ed758591098af3df621d46face3884216cc43ade902d98b4d93ca36c84c360990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0017461020170000052000100035lumpedheatandmasstransfercoefficientforsimulationo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vemula, Rama Rao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The practical implications of replacing various individual transport resistances such as gas-solid mass and heat transfer, and gas phase axial dispersions of mass and heat in a numerical model of a pressure swing adsorption (PSA) process by a single, empirical, lumped, effective mass transport coefficient were evaluated. A non-isothermal, adiabatic, four-step Skarstrom-like PSA process for production of pure helium from a binary helium-nitrogen mixture using 5A zeolite adsorbent was considered. It was found that the above-described model simplification was adequate to describe key process performances such as the bed size factor and the product recovery vis-a-vis a detailed model where the effects of all individual resistances were explicitly included.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Taylor & Francis 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PSA process performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Axial mass and heat dispersion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lumped mass and heat transfer coefficient</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kothare, Mayuresh V</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sircar, Shivaji</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Separation science and technology</subfield><subfield code="d">Philadelphia, Pa. : Taylor & Francis, 1978</subfield><subfield code="g">52(2017), 1, Seite 35-41</subfield><subfield code="w">(DE-627)12994100X</subfield><subfield code="w">(DE-600)391905-5</subfield><subfield code="w">(DE-576)015504247</subfield><subfield code="x">0149-6395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:35-41</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/01496395.2016.1242629</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/01496395.2016.1242629</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">35-41</subfield></datafield></record></collection>
|
author |
Vemula, Rama Rao |
spellingShingle |
Vemula, Rama Rao ddc 540 misc PSA process performance misc Axial mass and heat dispersion misc numerical simulation misc lumped mass and heat transfer coefficient Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process |
authorStr |
Vemula, Rama Rao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12994100X |
format |
Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0149-6395 |
topic_title |
540 DNB Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process PSA process performance Axial mass and heat dispersion numerical simulation lumped mass and heat transfer coefficient |
topic |
ddc 540 misc PSA process performance misc Axial mass and heat dispersion misc numerical simulation misc lumped mass and heat transfer coefficient |
topic_unstemmed |
ddc 540 misc PSA process performance misc Axial mass and heat dispersion misc numerical simulation misc lumped mass and heat transfer coefficient |
topic_browse |
ddc 540 misc PSA process performance misc Axial mass and heat dispersion misc numerical simulation misc lumped mass and heat transfer coefficient |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m v k mv mvk s s ss |
hierarchy_parent_title |
Separation science and technology |
hierarchy_parent_id |
12994100X |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Separation science and technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12994100X (DE-600)391905-5 (DE-576)015504247 |
title |
Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process |
ctrlnum |
(DE-627)OLC1987112059 (DE-599)GBVOLC1987112059 (PRQ)c1267-ed758591098af3df621d46face3884216cc43ade902d98b4d93ca36c84c360990 (KEY)0017461020170000052000100035lumpedheatandmasstransfercoefficientforsimulationo |
title_full |
Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process |
author_sort |
Vemula, Rama Rao |
journal |
Separation science and technology |
journalStr |
Separation science and technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
35 |
author_browse |
Vemula, Rama Rao |
container_volume |
52 |
class |
540 DNB |
format_se |
Aufsätze |
author-letter |
Vemula, Rama Rao |
doi_str_mv |
10.1080/01496395.2016.1242629 |
dewey-full |
540 |
title_sort |
lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process |
title_auth |
Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process |
abstract |
The practical implications of replacing various individual transport resistances such as gas-solid mass and heat transfer, and gas phase axial dispersions of mass and heat in a numerical model of a pressure swing adsorption (PSA) process by a single, empirical, lumped, effective mass transport coefficient were evaluated. A non-isothermal, adiabatic, four-step Skarstrom-like PSA process for production of pure helium from a binary helium-nitrogen mixture using 5A zeolite adsorbent was considered. It was found that the above-described model simplification was adequate to describe key process performances such as the bed size factor and the product recovery vis-a-vis a detailed model where the effects of all individual resistances were explicitly included. |
abstractGer |
The practical implications of replacing various individual transport resistances such as gas-solid mass and heat transfer, and gas phase axial dispersions of mass and heat in a numerical model of a pressure swing adsorption (PSA) process by a single, empirical, lumped, effective mass transport coefficient were evaluated. A non-isothermal, adiabatic, four-step Skarstrom-like PSA process for production of pure helium from a binary helium-nitrogen mixture using 5A zeolite adsorbent was considered. It was found that the above-described model simplification was adequate to describe key process performances such as the bed size factor and the product recovery vis-a-vis a detailed model where the effects of all individual resistances were explicitly included. |
abstract_unstemmed |
The practical implications of replacing various individual transport resistances such as gas-solid mass and heat transfer, and gas phase axial dispersions of mass and heat in a numerical model of a pressure swing adsorption (PSA) process by a single, empirical, lumped, effective mass transport coefficient were evaluated. A non-isothermal, adiabatic, four-step Skarstrom-like PSA process for production of pure helium from a binary helium-nitrogen mixture using 5A zeolite adsorbent was considered. It was found that the above-described model simplification was adequate to describe key process performances such as the bed size factor and the product recovery vis-a-vis a detailed model where the effects of all individual resistances were explicitly included. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 |
container_issue |
1 |
title_short |
Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process |
url |
http://dx.doi.org/10.1080/01496395.2016.1242629 http://www.tandfonline.com/doi/abs/10.1080/01496395.2016.1242629 |
remote_bool |
false |
author2 |
Kothare, Mayuresh V Sircar, Shivaji |
author2Str |
Kothare, Mayuresh V Sircar, Shivaji |
ppnlink |
12994100X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1080/01496395.2016.1242629 |
up_date |
2024-07-04T05:42:50.234Z |
_version_ |
1803625976535449600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1987112059</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715001440.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/01496395.2016.1242629</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1987112059</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1987112059</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1267-ed758591098af3df621d46face3884216cc43ade902d98b4d93ca36c84c360990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0017461020170000052000100035lumpedheatandmasstransfercoefficientforsimulationo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vemula, Rama Rao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The practical implications of replacing various individual transport resistances such as gas-solid mass and heat transfer, and gas phase axial dispersions of mass and heat in a numerical model of a pressure swing adsorption (PSA) process by a single, empirical, lumped, effective mass transport coefficient were evaluated. A non-isothermal, adiabatic, four-step Skarstrom-like PSA process for production of pure helium from a binary helium-nitrogen mixture using 5A zeolite adsorbent was considered. It was found that the above-described model simplification was adequate to describe key process performances such as the bed size factor and the product recovery vis-a-vis a detailed model where the effects of all individual resistances were explicitly included.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Taylor & Francis 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PSA process performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Axial mass and heat dispersion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lumped mass and heat transfer coefficient</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kothare, Mayuresh V</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sircar, Shivaji</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Separation science and technology</subfield><subfield code="d">Philadelphia, Pa. : Taylor & Francis, 1978</subfield><subfield code="g">52(2017), 1, Seite 35-41</subfield><subfield code="w">(DE-627)12994100X</subfield><subfield code="w">(DE-600)391905-5</subfield><subfield code="w">(DE-576)015504247</subfield><subfield code="x">0149-6395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:35-41</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/01496395.2016.1242629</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/01496395.2016.1242629</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">35-41</subfield></datafield></record></collection>
|
score |
7.400487 |