Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI
Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information fr...
Ausführliche Beschreibung
Autor*in: |
Stramaglia, Sebastiano [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on biomedical engineering - New York, NY : IEEE, 1964, 63(2016), 12, Seite 2518-2524 |
---|---|
Übergeordnetes Werk: |
volume:63 ; year:2016 ; number:12 ; pages:2518-2524 |
Links: |
---|
DOI / URN: |
10.1109/TBME.2016.2559578 |
---|
Katalog-ID: |
OLC1987454855 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1987454855 | ||
003 | DE-627 | ||
005 | 20230517132230.0 | ||
007 | tu | ||
008 | 170207s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TBME.2016.2559578 |2 doi | |
028 | 5 | 2 | |a PQ20170206 |
035 | |a (DE-627)OLC1987454855 | ||
035 | |a (DE-599)GBVOLC1987454855 | ||
035 | |a (PRQ)a1625-6db2a0ed5172d843be861da224891bddbc010195e4bbfc839482539cb05b5a240 | ||
035 | |a (KEY)0037705820160000063001202518synergeticandredundantinformationflowdetectedbyunn | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 610 |q DE-600 |
084 | |a XA 48665 |q AVZ |2 rvk | ||
084 | |a 44.09 |2 bkl | ||
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Stramaglia, Sebastiano |e verfasserin |4 aut | |
245 | 1 | 0 | |a Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality, one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently, we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. Results: We report the application of the proposed approach to resting state functional magnetic resonance imaging data from the Human Connectome Project showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, while synergy occurs mainly between nonhomologous pairs of regions in opposite hemispheres. Conclusions: Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. Significance: The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits. | ||
650 | 4 | |a functional magnetic resonance imaging (fMRI) | |
650 | 4 | |a Indexes | |
650 | 4 | |a Complex systems | |
650 | 4 | |a Redundancy | |
650 | 4 | |a Kernel | |
650 | 4 | |a Brain connectivity | |
650 | 4 | |a Complex networks | |
650 | 4 | |a Analytical models | |
650 | 4 | |a Time series analysis | |
650 | 4 | |a granger causality (GC) | |
650 | 4 | |a synergy | |
650 | 4 | |a Quantitative Biology | |
650 | 4 | |a Physics | |
650 | 4 | |a Neurons and Cognition | |
650 | 4 | |a Computer Science | |
650 | 4 | |a Statistics and Probability | |
650 | 4 | |a Information Theory | |
650 | 4 | |a Data Analysis | |
700 | 1 | |a Angelini, Leonardo |4 oth | |
700 | 1 | |a Wu, Guorong |4 oth | |
700 | 1 | |a Cortes, Jesus M |4 oth | |
700 | 1 | |a Faes, Luca |4 oth | |
700 | 1 | |a Marinazzo, Daniele |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on biomedical engineering |d New York, NY : IEEE, 1964 |g 63(2016), 12, Seite 2518-2524 |w (DE-627)129358452 |w (DE-600)160429-6 |w (DE-576)01473074X |x 0018-9294 |7 nnns |
773 | 1 | 8 | |g volume:63 |g year:2016 |g number:12 |g pages:2518-2524 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TBME.2016.2559578 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7462237 |
856 | 4 | 2 | |u http://arxiv.org/abs/1504.03584 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-PHA | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2410 | ||
912 | |a GBV_ILN_4219 | ||
936 | r | v | |a XA 48665 |
936 | b | k | |a 44.09 |q AVZ |
936 | b | k | |a 44.40 |q AVZ |
951 | |a AR | ||
952 | |d 63 |j 2016 |e 12 |h 2518-2524 |
author_variant |
s s ss |
---|---|
matchkey_str |
article:00189294:2016----::yegtcnrdnatnomtofodtcebunraiegagrasltap |
hierarchy_sort_str |
2016 |
bklnumber |
44.09 44.40 |
publishDate |
2016 |
allfields |
10.1109/TBME.2016.2559578 doi PQ20170206 (DE-627)OLC1987454855 (DE-599)GBVOLC1987454855 (PRQ)a1625-6db2a0ed5172d843be861da224891bddbc010195e4bbfc839482539cb05b5a240 (KEY)0037705820160000063001202518synergeticandredundantinformationflowdetectedbyunn DE-627 ger DE-627 rakwb eng 620 610 DE-600 XA 48665 AVZ rvk 44.09 bkl 44.40 bkl Stramaglia, Sebastiano verfasserin aut Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality, one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently, we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. Results: We report the application of the proposed approach to resting state functional magnetic resonance imaging data from the Human Connectome Project showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, while synergy occurs mainly between nonhomologous pairs of regions in opposite hemispheres. Conclusions: Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. Significance: The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits. functional magnetic resonance imaging (fMRI) Indexes Complex systems Redundancy Kernel Brain connectivity Complex networks Analytical models Time series analysis granger causality (GC) synergy Quantitative Biology Physics Neurons and Cognition Computer Science Statistics and Probability Information Theory Data Analysis Angelini, Leonardo oth Wu, Guorong oth Cortes, Jesus M oth Faes, Luca oth Marinazzo, Daniele oth Enthalten in IEEE transactions on biomedical engineering New York, NY : IEEE, 1964 63(2016), 12, Seite 2518-2524 (DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X 0018-9294 nnns volume:63 year:2016 number:12 pages:2518-2524 http://dx.doi.org/10.1109/TBME.2016.2559578 Volltext http://ieeexplore.ieee.org/document/7462237 http://arxiv.org/abs/1504.03584 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-PHA GBV_ILN_70 GBV_ILN_170 GBV_ILN_2061 GBV_ILN_2410 GBV_ILN_4219 XA 48665 44.09 AVZ 44.40 AVZ AR 63 2016 12 2518-2524 |
spelling |
10.1109/TBME.2016.2559578 doi PQ20170206 (DE-627)OLC1987454855 (DE-599)GBVOLC1987454855 (PRQ)a1625-6db2a0ed5172d843be861da224891bddbc010195e4bbfc839482539cb05b5a240 (KEY)0037705820160000063001202518synergeticandredundantinformationflowdetectedbyunn DE-627 ger DE-627 rakwb eng 620 610 DE-600 XA 48665 AVZ rvk 44.09 bkl 44.40 bkl Stramaglia, Sebastiano verfasserin aut Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality, one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently, we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. Results: We report the application of the proposed approach to resting state functional magnetic resonance imaging data from the Human Connectome Project showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, while synergy occurs mainly between nonhomologous pairs of regions in opposite hemispheres. Conclusions: Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. Significance: The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits. functional magnetic resonance imaging (fMRI) Indexes Complex systems Redundancy Kernel Brain connectivity Complex networks Analytical models Time series analysis granger causality (GC) synergy Quantitative Biology Physics Neurons and Cognition Computer Science Statistics and Probability Information Theory Data Analysis Angelini, Leonardo oth Wu, Guorong oth Cortes, Jesus M oth Faes, Luca oth Marinazzo, Daniele oth Enthalten in IEEE transactions on biomedical engineering New York, NY : IEEE, 1964 63(2016), 12, Seite 2518-2524 (DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X 0018-9294 nnns volume:63 year:2016 number:12 pages:2518-2524 http://dx.doi.org/10.1109/TBME.2016.2559578 Volltext http://ieeexplore.ieee.org/document/7462237 http://arxiv.org/abs/1504.03584 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-PHA GBV_ILN_70 GBV_ILN_170 GBV_ILN_2061 GBV_ILN_2410 GBV_ILN_4219 XA 48665 44.09 AVZ 44.40 AVZ AR 63 2016 12 2518-2524 |
allfields_unstemmed |
10.1109/TBME.2016.2559578 doi PQ20170206 (DE-627)OLC1987454855 (DE-599)GBVOLC1987454855 (PRQ)a1625-6db2a0ed5172d843be861da224891bddbc010195e4bbfc839482539cb05b5a240 (KEY)0037705820160000063001202518synergeticandredundantinformationflowdetectedbyunn DE-627 ger DE-627 rakwb eng 620 610 DE-600 XA 48665 AVZ rvk 44.09 bkl 44.40 bkl Stramaglia, Sebastiano verfasserin aut Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality, one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently, we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. Results: We report the application of the proposed approach to resting state functional magnetic resonance imaging data from the Human Connectome Project showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, while synergy occurs mainly between nonhomologous pairs of regions in opposite hemispheres. Conclusions: Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. Significance: The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits. functional magnetic resonance imaging (fMRI) Indexes Complex systems Redundancy Kernel Brain connectivity Complex networks Analytical models Time series analysis granger causality (GC) synergy Quantitative Biology Physics Neurons and Cognition Computer Science Statistics and Probability Information Theory Data Analysis Angelini, Leonardo oth Wu, Guorong oth Cortes, Jesus M oth Faes, Luca oth Marinazzo, Daniele oth Enthalten in IEEE transactions on biomedical engineering New York, NY : IEEE, 1964 63(2016), 12, Seite 2518-2524 (DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X 0018-9294 nnns volume:63 year:2016 number:12 pages:2518-2524 http://dx.doi.org/10.1109/TBME.2016.2559578 Volltext http://ieeexplore.ieee.org/document/7462237 http://arxiv.org/abs/1504.03584 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-PHA GBV_ILN_70 GBV_ILN_170 GBV_ILN_2061 GBV_ILN_2410 GBV_ILN_4219 XA 48665 44.09 AVZ 44.40 AVZ AR 63 2016 12 2518-2524 |
allfieldsGer |
10.1109/TBME.2016.2559578 doi PQ20170206 (DE-627)OLC1987454855 (DE-599)GBVOLC1987454855 (PRQ)a1625-6db2a0ed5172d843be861da224891bddbc010195e4bbfc839482539cb05b5a240 (KEY)0037705820160000063001202518synergeticandredundantinformationflowdetectedbyunn DE-627 ger DE-627 rakwb eng 620 610 DE-600 XA 48665 AVZ rvk 44.09 bkl 44.40 bkl Stramaglia, Sebastiano verfasserin aut Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality, one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently, we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. Results: We report the application of the proposed approach to resting state functional magnetic resonance imaging data from the Human Connectome Project showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, while synergy occurs mainly between nonhomologous pairs of regions in opposite hemispheres. Conclusions: Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. Significance: The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits. functional magnetic resonance imaging (fMRI) Indexes Complex systems Redundancy Kernel Brain connectivity Complex networks Analytical models Time series analysis granger causality (GC) synergy Quantitative Biology Physics Neurons and Cognition Computer Science Statistics and Probability Information Theory Data Analysis Angelini, Leonardo oth Wu, Guorong oth Cortes, Jesus M oth Faes, Luca oth Marinazzo, Daniele oth Enthalten in IEEE transactions on biomedical engineering New York, NY : IEEE, 1964 63(2016), 12, Seite 2518-2524 (DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X 0018-9294 nnns volume:63 year:2016 number:12 pages:2518-2524 http://dx.doi.org/10.1109/TBME.2016.2559578 Volltext http://ieeexplore.ieee.org/document/7462237 http://arxiv.org/abs/1504.03584 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-PHA GBV_ILN_70 GBV_ILN_170 GBV_ILN_2061 GBV_ILN_2410 GBV_ILN_4219 XA 48665 44.09 AVZ 44.40 AVZ AR 63 2016 12 2518-2524 |
allfieldsSound |
10.1109/TBME.2016.2559578 doi PQ20170206 (DE-627)OLC1987454855 (DE-599)GBVOLC1987454855 (PRQ)a1625-6db2a0ed5172d843be861da224891bddbc010195e4bbfc839482539cb05b5a240 (KEY)0037705820160000063001202518synergeticandredundantinformationflowdetectedbyunn DE-627 ger DE-627 rakwb eng 620 610 DE-600 XA 48665 AVZ rvk 44.09 bkl 44.40 bkl Stramaglia, Sebastiano verfasserin aut Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality, one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently, we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. Results: We report the application of the proposed approach to resting state functional magnetic resonance imaging data from the Human Connectome Project showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, while synergy occurs mainly between nonhomologous pairs of regions in opposite hemispheres. Conclusions: Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. Significance: The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits. functional magnetic resonance imaging (fMRI) Indexes Complex systems Redundancy Kernel Brain connectivity Complex networks Analytical models Time series analysis granger causality (GC) synergy Quantitative Biology Physics Neurons and Cognition Computer Science Statistics and Probability Information Theory Data Analysis Angelini, Leonardo oth Wu, Guorong oth Cortes, Jesus M oth Faes, Luca oth Marinazzo, Daniele oth Enthalten in IEEE transactions on biomedical engineering New York, NY : IEEE, 1964 63(2016), 12, Seite 2518-2524 (DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X 0018-9294 nnns volume:63 year:2016 number:12 pages:2518-2524 http://dx.doi.org/10.1109/TBME.2016.2559578 Volltext http://ieeexplore.ieee.org/document/7462237 http://arxiv.org/abs/1504.03584 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-PHA GBV_ILN_70 GBV_ILN_170 GBV_ILN_2061 GBV_ILN_2410 GBV_ILN_4219 XA 48665 44.09 AVZ 44.40 AVZ AR 63 2016 12 2518-2524 |
language |
English |
source |
Enthalten in IEEE transactions on biomedical engineering 63(2016), 12, Seite 2518-2524 volume:63 year:2016 number:12 pages:2518-2524 |
sourceStr |
Enthalten in IEEE transactions on biomedical engineering 63(2016), 12, Seite 2518-2524 volume:63 year:2016 number:12 pages:2518-2524 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
functional magnetic resonance imaging (fMRI) Indexes Complex systems Redundancy Kernel Brain connectivity Complex networks Analytical models Time series analysis granger causality (GC) synergy Quantitative Biology Physics Neurons and Cognition Computer Science Statistics and Probability Information Theory Data Analysis |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on biomedical engineering |
authorswithroles_txt_mv |
Stramaglia, Sebastiano @@aut@@ Angelini, Leonardo @@oth@@ Wu, Guorong @@oth@@ Cortes, Jesus M @@oth@@ Faes, Luca @@oth@@ Marinazzo, Daniele @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129358452 |
dewey-sort |
3620 |
id |
OLC1987454855 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1987454855</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230517132230.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TBME.2016.2559578</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1987454855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1987454855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1625-6db2a0ed5172d843be861da224891bddbc010195e4bbfc839482539cb05b5a240</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0037705820160000063001202518synergeticandredundantinformationflowdetectedbyunn</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">XA 48665</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stramaglia, Sebastiano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality, one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently, we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. Results: We report the application of the proposed approach to resting state functional magnetic resonance imaging data from the Human Connectome Project showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, while synergy occurs mainly between nonhomologous pairs of regions in opposite hemispheres. Conclusions: Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. Significance: The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functional magnetic resonance imaging (fMRI)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Indexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Redundancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brain connectivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">granger causality (GC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synergy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantitative Biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neurons and Cognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics and Probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Angelini, Leonardo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Guorong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cortes, Jesus M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Faes, Luca</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marinazzo, Daniele</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on biomedical engineering</subfield><subfield code="d">New York, NY : IEEE, 1964</subfield><subfield code="g">63(2016), 12, Seite 2518-2524</subfield><subfield code="w">(DE-627)129358452</subfield><subfield code="w">(DE-600)160429-6</subfield><subfield code="w">(DE-576)01473074X</subfield><subfield code="x">0018-9294</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:2518-2524</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TBME.2016.2559578</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7462237</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1504.03584</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2410</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">XA 48665</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2016</subfield><subfield code="e">12</subfield><subfield code="h">2518-2524</subfield></datafield></record></collection>
|
author |
Stramaglia, Sebastiano |
spellingShingle |
Stramaglia, Sebastiano ddc 620 rvk XA 48665 bkl 44.09 bkl 44.40 misc functional magnetic resonance imaging (fMRI) misc Indexes misc Complex systems misc Redundancy misc Kernel misc Brain connectivity misc Complex networks misc Analytical models misc Time series analysis misc granger causality (GC) misc synergy misc Quantitative Biology misc Physics misc Neurons and Cognition misc Computer Science misc Statistics and Probability misc Information Theory misc Data Analysis Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI |
authorStr |
Stramaglia, Sebastiano |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129358452 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9294 |
topic_title |
620 610 DE-600 XA 48665 AVZ rvk 44.09 bkl 44.40 bkl Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI functional magnetic resonance imaging (fMRI) Indexes Complex systems Redundancy Kernel Brain connectivity Complex networks Analytical models Time series analysis granger causality (GC) synergy Quantitative Biology Physics Neurons and Cognition Computer Science Statistics and Probability Information Theory Data Analysis |
topic |
ddc 620 rvk XA 48665 bkl 44.09 bkl 44.40 misc functional magnetic resonance imaging (fMRI) misc Indexes misc Complex systems misc Redundancy misc Kernel misc Brain connectivity misc Complex networks misc Analytical models misc Time series analysis misc granger causality (GC) misc synergy misc Quantitative Biology misc Physics misc Neurons and Cognition misc Computer Science misc Statistics and Probability misc Information Theory misc Data Analysis |
topic_unstemmed |
ddc 620 rvk XA 48665 bkl 44.09 bkl 44.40 misc functional magnetic resonance imaging (fMRI) misc Indexes misc Complex systems misc Redundancy misc Kernel misc Brain connectivity misc Complex networks misc Analytical models misc Time series analysis misc granger causality (GC) misc synergy misc Quantitative Biology misc Physics misc Neurons and Cognition misc Computer Science misc Statistics and Probability misc Information Theory misc Data Analysis |
topic_browse |
ddc 620 rvk XA 48665 bkl 44.09 bkl 44.40 misc functional magnetic resonance imaging (fMRI) misc Indexes misc Complex systems misc Redundancy misc Kernel misc Brain connectivity misc Complex networks misc Analytical models misc Time series analysis misc granger causality (GC) misc synergy misc Quantitative Biology misc Physics misc Neurons and Cognition misc Computer Science misc Statistics and Probability misc Information Theory misc Data Analysis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
l a la g w gw j m c jm jmc l f lf d m dm |
hierarchy_parent_title |
IEEE transactions on biomedical engineering |
hierarchy_parent_id |
129358452 |
dewey-tens |
620 - Engineering 610 - Medicine & health |
hierarchy_top_title |
IEEE transactions on biomedical engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X |
title |
Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI |
ctrlnum |
(DE-627)OLC1987454855 (DE-599)GBVOLC1987454855 (PRQ)a1625-6db2a0ed5172d843be861da224891bddbc010195e4bbfc839482539cb05b5a240 (KEY)0037705820160000063001202518synergeticandredundantinformationflowdetectedbyunn |
title_full |
Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI |
author_sort |
Stramaglia, Sebastiano |
journal |
IEEE transactions on biomedical engineering |
journalStr |
IEEE transactions on biomedical engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
2518 |
author_browse |
Stramaglia, Sebastiano |
container_volume |
63 |
class |
620 610 DE-600 XA 48665 AVZ rvk 44.09 bkl 44.40 bkl |
format_se |
Aufsätze |
author-letter |
Stramaglia, Sebastiano |
doi_str_mv |
10.1109/TBME.2016.2559578 |
dewey-full |
620 610 |
title_sort |
synergetic and redundant information flow detected by unnormalized granger causality: application to resting state fmri |
title_auth |
Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI |
abstract |
Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality, one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently, we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. Results: We report the application of the proposed approach to resting state functional magnetic resonance imaging data from the Human Connectome Project showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, while synergy occurs mainly between nonhomologous pairs of regions in opposite hemispheres. Conclusions: Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. Significance: The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits. |
abstractGer |
Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality, one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently, we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. Results: We report the application of the proposed approach to resting state functional magnetic resonance imaging data from the Human Connectome Project showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, while synergy occurs mainly between nonhomologous pairs of regions in opposite hemispheres. Conclusions: Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. Significance: The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits. |
abstract_unstemmed |
Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality, one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently, we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. Results: We report the application of the proposed approach to resting state functional magnetic resonance imaging data from the Human Connectome Project showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, while synergy occurs mainly between nonhomologous pairs of regions in opposite hemispheres. Conclusions: Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. Significance: The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-PHA GBV_ILN_70 GBV_ILN_170 GBV_ILN_2061 GBV_ILN_2410 GBV_ILN_4219 |
container_issue |
12 |
title_short |
Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI |
url |
http://dx.doi.org/10.1109/TBME.2016.2559578 http://ieeexplore.ieee.org/document/7462237 http://arxiv.org/abs/1504.03584 |
remote_bool |
false |
author2 |
Angelini, Leonardo Wu, Guorong Cortes, Jesus M Faes, Luca Marinazzo, Daniele |
author2Str |
Angelini, Leonardo Wu, Guorong Cortes, Jesus M Faes, Luca Marinazzo, Daniele |
ppnlink |
129358452 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1109/TBME.2016.2559578 |
up_date |
2024-07-03T14:01:50.649Z |
_version_ |
1803566774381182976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1987454855</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230517132230.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TBME.2016.2559578</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1987454855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1987454855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1625-6db2a0ed5172d843be861da224891bddbc010195e4bbfc839482539cb05b5a240</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0037705820160000063001202518synergeticandredundantinformationflowdetectedbyunn</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">XA 48665</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stramaglia, Sebastiano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality, one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently, we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. Results: We report the application of the proposed approach to resting state functional magnetic resonance imaging data from the Human Connectome Project showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, while synergy occurs mainly between nonhomologous pairs of regions in opposite hemispheres. Conclusions: Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. Significance: The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functional magnetic resonance imaging (fMRI)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Indexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Redundancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brain connectivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">granger causality (GC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synergy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantitative Biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neurons and Cognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics and Probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Angelini, Leonardo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Guorong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cortes, Jesus M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Faes, Luca</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marinazzo, Daniele</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on biomedical engineering</subfield><subfield code="d">New York, NY : IEEE, 1964</subfield><subfield code="g">63(2016), 12, Seite 2518-2524</subfield><subfield code="w">(DE-627)129358452</subfield><subfield code="w">(DE-600)160429-6</subfield><subfield code="w">(DE-576)01473074X</subfield><subfield code="x">0018-9294</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:2518-2524</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TBME.2016.2559578</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7462237</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1504.03584</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2410</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">XA 48665</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2016</subfield><subfield code="e">12</subfield><subfield code="h">2518-2524</subfield></datafield></record></collection>
|
score |
7.4007006 |